
Syntactic Effectful Realizability in Higher-Order Logic

Liron Cohen
Ben-Gurion University
Be’er Sheva, Israel

cliron@bgu.ac.il

Ariel Grunfeld
Ben-Gurion University
Be’er Sheva, Israel

arielgru@post.bgu.ac.il

Dominik Kirst
Ben-Gurion University, Israel

Inria Paris, France
dominik.kirst@inria.fr

Étienne Miquey
Aix Marseille Univ., CNRS, I2M

Marseille, France
etienne.miquey@univ-amu.fr

Abstract—Realizability interprets propositions as specifications
for computational entities in programming languages. Specifi-
cally, syntactic realizability is a powerful machinery that handles
realizability as a syntactic translation of propositions into new
propositions that describe what it means to realize the input
proposition. This paper introduces EffHOL (Effectful Higher-
Order Logic), a novel framework that expands syntactic real-
izability to uniformly support modern programming paradigms
with side effects. EffHOL combines higher-kinded polymorphism,
enabling typing of realizers for higher-order propositions, with
a computational term language that uses monads to represent
and reason about effectful computations. We craft a syntactic
realizability translation from (intuitionistic) higher-order logic
(HOL) to EffHOL, ensuring the extraction of computable realizers
through a constructive soundness proof. EffHOL’s parameteriza-
tion by monads allows for the synthesis of effectful realizers for
propositions unprovable in pure HOL, bridging the gap between
traditional and effectful computational paradigms. Examples,
including continuations and memoization, showcase EffHOL’s
capability to unify diverse computational models, with traditional
ones as special cases. For a semantic connection, we show that
any instance of EffHOL induces an evidenced frame, which, in
turn, yields a tripos and a realizability topos.

I. INTRODUCTION

Realizability, rooted in the works of Kleene [1], aims
to concretize the principle of constructivity by interpret-
ing propositions as specifications for computational entities
within a programming language. A key feature of realizability
is its assurance that the evidence for every proposition is
computable. Originally, realizability used natural numbers
to interpret formulas, but to get a more general notion of
realizability, its modern notion generally uses some complete
code language for realizing formulas. In the constructive case,
it is standardly based on the notion of Partial Combinatory
Algebras (PCAs) [2], while Krivine classical realizability uses
an abstract notion of stack machines [3].

However, both the constructive and classical approaches are
based on semantic constructions to yield models defined as a
tripos or a topos [4]. On the other hand, the syntactic approach
to realizability, pioneered by Gödel [5] and further developed

Cohen, Grunfeld and Kirst were partially supported by Grant No. 2020145
from the United States-Israel Binational Science Foundation (BSF). Kirst
also received funding from the European Union’s Horizon research and
innovation programme under the Marie Skłodowska-Curie grant agreement
No.101152583 and a Minerva Fellowship of the Minerva Stiftung Gesellschaft
für die Forschung mbH.

in Kreisel’s modified realizability [6], can be seen as abstract-
ing away many of the complex semantic machinery other-
wise required for constructing realizability models for rich
languages. By restricting to the syntax and abstracting away all
the nifty details of any particular semantic structure, this also
allows for a broader spectrum of possible interpretations, each
yielding its own realizability interpretation by virtue of being
a model of the target language, without having to tailor the
realizability construction to some particular structure. Roughly
speaking, it is based on handling realizability as a syntactic
translation of formulas into new formulas describing what
it means to realize the input formula. This can be seen as
an internalization of the notion of realizability of the source
language into the target language. Recent works adopting the
syntactic approach include, e.g., [7]–[12].

Yet, works on syntactic realizability tend to focus on the tra-
ditional notion of realizability or single computational effects.
However, features of modern programming languages include
multiple effects like non-determinism, stateful computation,
probabilistic computation, etc.

To this end, much work has been devoted to the extension of
the notion of realizability to allow for side effects, e.g., [9, 13]–
[24]. Other than providing support for richer programming
languages, it was also shown that effectful realizability pro-
vides new models, which, in turn, can implement new features.
For instance, with the development of classical realizability
continuing work of Griffin [25], Krivine evidences the fact
that extending the λ-calculus with new programming instruc-
tions may result in new reasoning principles: call/cc to get
classical logic [3], quote for dependent choice [26], etc.

Accordingly, this work provides a framework for syntac-
tic effectful realizability. That is, we extend the syntactic
realizability approach by considering a target language that
supports effectful programs as realizers for a higher-order
source language. Concretely, we present a framework, dubbed
EffHOL for Effectful Higher-Order Logic, that combines two
key features: higher-kinded polymorphism and a computa-
tional term language. The higher-kinded polymorphic type
system, inspired by Girard’s System Fω [27], allows for typed
realizers of higher-order propositions. The computational term
language, which can be seen as a simplification of Pitts’
Evaluation Logic [28], enables reasoning about effectful pro-
grams in the sense of a general program logic (cf. [29]). In

1

particular, to support effectful realizability, we adhere to the
standard approach for reasoning about effectful programs via
monads [30]. This provides a uniform language parameterized
intuitively by a monad that carries the computational behavior
of the language. By providing internal support for standard
program language features, for example by having typed
realizers and effectful programs, EffHOL is applicable to a
broad range of languages, and reasoning about realizers is
done in a natural manner, similar to the way one would reason
about programs. Traditional systems like System Fω and com-
putational λ-calculus are subsystems of EffHOL, illustrating
the versatility and robustness of the system.

Concretely, we show how to model (intuitionistic) higher-
order logic [31] (HOL) using EffHOL by providing a syntactic
realizability translation from HOL into EffHOL. The realiz-
ability translation assigns to an HOL proposition the type of
its realizers in EffHOL, along with a specification describing
which programs of the corresponding type are realizers of
said proposition. A key feature of our syntactic realizability
translation is that when translating a provable HOL sequent,
it provides an algorithm for constructing an EffHOL proof of
its translation, which, in turn, contains a realizer. Thus, our
translation can be seen as synthesizing HOL realizers within
EffHOL. Furthermore, as EffHOL is parameterized by a monad,
the synthesized realizer obtained from the soundness proof
is agnostic to the specifics of the monad. That is, the HOL
realizers stemming from the soundness proof do not make
actual use of the specific behavior of the monad. However, as
we show via a few illustrative examples, we can take advantage
of the monad to get effectful realizers for propositions that are
not provable in pure HOL.

To obtain a semantic connection, we link our syntactic real-
izability translation to the framework of evidenced frames [18],
which are abstract algebraic structures from which one can
construct effectful realizability models (i.e., triposes) via a
uniform construction. Here we show that for each instance
of EffHOL with a concrete choice of monad, the realizability
translation induces an evidenced frame, thereby associating
our realizability translation with the tripos models.

Outline and Main Contributions:

• Sec. II provides a high-level, intuitive overview of the
construction of EffHOL and the realizability translation,
emphasizing the reasoning behind each component and the
interplay between them.

• Sec. III fixes the formalism of higher-order logic used in
this paper.

• Sec. IV presents EffHOL, a higher-order logic that combines
higher-kinded polymorphism and computational types, thus
allowing higher-order reasoning about effectful programs.

• Sec. V provides a realizability translation of HOL to EffHOL,
yielding a realizability model of HOL from any instance of
EffHOL, and gives a constructive soundness proof for the
translation, extracting EffHOL programs from HOL proofs.

• Sec. VI demonstrates the utility and generality of EffHOL
via illustrative examples, including continuations and mem-

oization.
• Sec. VII relates our syntactic approach to realizability with

the semantic ones by showing how the realizability transla-
tion induces a structure of an evidenced frame.

• Sec. VIII discusses related works and Sec. IX concludes.
We supplement our development with a Rocq mechanization
(https://github.com/dominik-kirst/effhol), and mechanized re-
sults are indicated with clickable icons.

II. OVERVIEW OF THE REALIZABILITY FRAMEWORK

The realizability approach to semantics relates logic with
computation by interpreting propositions as denoting specifi-
cations of computer programs, or equivalently, using computer
programs to demonstrate the validity of propositions. While
the approach is very general, with many variations, at its core
it usually relates a specific logic with a specific programming
language by translating each proposition in the logic to a
specification for programs of this programming language.
The wide literature on realizability interpretation introduces
numerous very different such interpretations with different
purposes. A recent work [18] aiming to pinpoint the common
structure of these interpretations identified a structure, dubbed
evidenced frame, mathematically defined as a triple (E,Φ,⊩)
precisely capturing these three components : E being the set of
so-called evidences (the programs that serve as realizers), Φ
the set of formulas (i.e. the logic that is being interpreted),
while ⊩ is the realizability relation connecting the former
components. Many realizability interpretations usually define
this realizability relation · ⊩ · externally, in the meta-theory.

Following the idea that this relation can be understood as
defining specifications for programs to be adequate realizers
of the corresponding formulas, we make this slogan more
concrete by relying on a program logic to define such speci-
fications. In line with Kreisel’s modified realizability [6], we
formally consider a realizability interpretation as a translation:
it then translates propositions, i.e. statements about mathe-
matical structures, as specifications in our target logic, i.e.
statements about computer programs.

Logical Proposition Program Specification
realizability translation

By carefully defining a general enough target language,
which we call Effectful Higher-Order Logic (EffHOL) (intro-
duced in Sec. IV), it turns out that not only does our approach
encompass usual realizability interpretations, but it also pro-
vides us with an even more general framework, compatible
with typed realizers, effectful programs, etc. To better grasp
intuitions on how these features fit into the picture, let us
first recall through a simple example how realizability works.
Consider for instance a simple tautology Φ expressing that the
conjunction is, from a logical point of view, commutative:

Φ ≜ (Φ1 ∧ Φ2) ⊃ (Φ2 ∧ Φ1)

Following the core intuition of realizability as depicted by
the BHK interpretation [32], a realizer of a conjunction is
intended to be a program providing a pair of realizers, one for

2

https://github.com/dominik-kirst/effhol
https://dominik-kirst.github.io/mca/effhol/EffHOL.html

Φ1 and one for Φ2, while a realizer of an implication is meant
to compute out of a realizer of the premise a realizer of the
conclusion. Formally, this takes the form of a translation of
any proposition Φ into a specification JΦKS mapping programs
to propositions, JΦKS (r) expressing that r is a realizer of Φ.
A realizer of this proposition is expected, out of a program
computing a pair of realizers for Φ1 and Φ2, to provide a
computation that produces a pair of realizers for Φ1 and Φ2:

Jφ ⊃ ψKS (t) ≜ ∀c.
(
JφKS (c) ⊃ JφKS (t c)

)
Jφ1 ∧ φ2K

S
(c) ≜ Jφ1K

S
(π1 c) ∧ Jφ2K

S
(π2 c)

For instance, using a λ-calculus with primitive pairs and
projections as the language of realizers, the term r ≜
λx.⟨π2 x, π1 x⟩ would do the job: formally, with the definitions
above, JΦKS (r) holds. In fact, since such a term does not rely
on a specific choice of Φ1 and Φ2 (or of their interpretations),
this term would be a realizer for the same proposition if Φ1 and
Φ2 were universally quantified. Moreover, depending on the
choice of the set of programs that may serve as realizers, many
other programs may realize the same proposition. In particular,
realizers need not be purely functional (they may use, e.g.,
printing instructions, increase some references, etc) and there
are no rules as to how that ordered pair has to be computed
(right-to-left, left-to-right, in parallel?), what representation it
should have (are pairs primitive, encoded?), or even whether
an actual value of an ordered pair is ever given (or only a
program that may compute such a pair). Before introducing
in detail our target logic EffHOL, we first give an overview
of some of its features and how they allow our framework to
account for a large spectrum of realizability interpretations.

A. Typed realizers

Realizability is commonly based on an untyped notion of
computer programs, where realizers of a given proposition Φ
are characterized as being the computationally well-behaved
programs (w.r.t. the specification Φ provides). Notably, when
the languages for propositions and types coincide, typed pro-
grams are shown to be realizers of their types (but not the only
ones) in what is usually called the adequacy lemma of real-
izability interpretation. However, certain settings necessitate a
clear distinction between the language of propositions that are
interpreted and the language of types. This is for instance the
case in Blot’s interpretation of second-order arithmetic using
programs in an extension of PCF [33], or in Paulin-Mohring’s
realizability model used to prove the soundness of Rocq’s
original extraction mechanism, where formulas in the Calculus
of Constructions are realized by programs in Fω [34]. More
generally, to enable our framework to provide specifications
for actual programming languages, we need to (i) distinguish
between the language used for logical propositions and that
used for types, and (ii) allow the language of realizers to
be typed. The latter is not a restrictive requirement since
considering a unique type assigned to all programs reduces
to an untyped setting. To further refine the separation, we
consider an a priori distinct language for the propositions

in our logic, which we call specifications. To address this
challenge, we thus enhance the translation to further include
an assignment of a type for each proposition:

Proposition Type× Specification
realizability translation

Technically, if Φ is a proposition of the source logic, we define
both its interpretations as a type JΦKT and as a specification
JΦKS. Going back to our example, assuming that Φ1 and Φ2

are respectively interpreted by some types τ1 and τ2, a realizer
of Φ = (Φ1 ∧ Φ2) ⊃ (Φ2 ∧ Φ1) is required to be a program
of type JΦKT = τ1 × τ2 → τ2 × τ1, while JΦKS now defines a
propositions on programs of that type.

B. Polymorphism

Our candidate realizer r for the proposition Φ does not rely
on a particular choice for the propositions Φ1 and Φ2. At the
typing level, this can be reflected using polymorphic types,
in particular, in an expressive enough type-system we could
type r : ∀τ1, τ2.τ1 × τ2 → τ2 × τ1. The logical counterpart
of this amounts to the universal quantification on propositions
provided by second-order logic, allowing for a refinement of
the proposition compatible with any choice of Φ1 and Φ2:

Φ′ ≜ ∀Φ1,Φ2. (Φ1 ∧ Φ2) ⊃ (Φ2 ∧ Φ1)

While there exist numerous logical systems featuring such a
quantification, e.g. Girard-Reynold’s System F [35], it is well-
known that this quantification introduces nuanced challenges
when interpreting it within a model [36]. This work is no
exception: since we want propositions in the source language
to be interpreted both as a specification on their realizers and as
the type of these realizers, it means that via a sound translation,
the image of a universal quantification over any possible
proposition should range over any possible specification over
several possible types, while the corresponding realizers may
be assigned polymorphic types. Hence, the type system for
terms includes a quantification over types, while the specifi-
cation language features both a quantification over types and
over specifications. With these, we define the translations to
types and specifications of a proposition ∀X.Φ(X) as follows

J∀X.Φ(X)KT ≜ ∀τ : ⋆. JΦ(τ)KT

J∀X.Φ(X)KS ≜ ∀τ : ⋆.∀p : τ → Prop. JΦ(p)KS

where τ : ⋆ (resp. p : Prop) denotes that τ is a type (resp.
p a proposition). In particular, as specifications, propositional
variables are interpreted as predicates on their realizer’s type.

C. Higher-Order Logic

The realizability interpretation we provide is, in fact, of
stronger logical expressiveness in that it interprets higher-order
logic (HOL), which adds a few more technicalities. In (multi-
sorted) HOL, besides mere propositions, formulas also include
predicates ranging over terms of a given sort s (acting like
sets of such terms), predicates ranging over such predicates
(acting like sets of sets), etc. In the general case, HOL includes
predicates of sorts P (s1, . . . , sn), ranging over terms of sorts

3

Sort Proposition/Term

HOL

Kind Index Type Specification/Expression

EffHOL

J−KK J−KI J−KT J−KS

Fig. 1: The Realizability Translation

s1, ... sn. This makes the underlying theory expressive enough
to internalize any (open) formula Φ(x1,, xn) ranging over
variables x1, ...xn respectively of sorts s1, ..., sn through a
comprehension predicate {x1 : s1, ..., xn : sn|Φ(x1,, xn)}
of sort P (s1, . . . , sn). The fact that this predicate holds for cer-
tain terms t1, ..., tn can then be expressed using a membership
proposition t1, ..., tn ∈ {x1 : s1, ..., xn : sn|Φ(x1,, xn)}
that is logically equivalent to the formula Φ(t1, ..., tn).

The realizability interpretation requires the target language
EffHOL to also encompass higher-order logic. Specifically,
since any proposition of HOL is translated both as a type and
as a specification, both components need to be equipped with
a counterpart of the sort system: the translation to types uses
a kind system for types while the translation to specifications
uses something analogous to kinds for specifications which we
call indices. To summarize, our target language EffHOL is a
language of specifications, whose structures are reflected by
indices, expressing properties of terms. In turn, these terms
come with a type, whose structure is expressed by means of a
kind system. The realizability interpretation, as illustrated by
Fig. 1, consists of four translations, two translations J·KK and
J·KI from sorts to kinds and indices, and two translations J·KT

and J·KS to types and specifications respectively.
In particular, for HOL formulas that quantify over predicates

of a given sort, e.g. ∀X : s.Φ(X), through the realizability
interpretation, predicates (here the predicate variable X : s)
are turned into specifications expressing which terms define
adequate realizers. Such specifications therefore range over
one extra variable for terms of the corresponding type, and
as such their index should be refined to reflect this. We write
Rτ (σ1, ..., σn) to denote the index of a specification (over
specifications of indices σ1, ..., σn) whose realizers are of
type τ . Hence, the translation of a sort s to an index takes
the corresponding type (say τ) of the intended realizers as
a parameter, written as JsKIτ . Overall, the translations of a
formula ∀X : s.Φ to types and specifications is given by:

J∀X : s.Φ(X)KT ≜ ∀τ : JsKK . JΦ(τ)KT

J∀X : s.Φ(X)KS ≜ ∀τ : JsKK .∀p : JsKIτ . JΦ(p)K
S

The full translation, with extra technicalities for handling open
propositions and various contexts, is given in Sec. V.

D. Spectrum
Following the modern tradition of realizability interpre-

tations, we aim at a framework that allows for effectful

realizers. In this paper, we choose to approach effects via
monads, as is done in Pitts’ Evaluation Logic [28] and Moggi’s
Computational λ-Calculus [37]. Specifically, our language
features a type M (τ) denoting computations of type τ , while
terms account for the usual return and bind constructions of
monads. This choice has the strong benefit that the resulting
system is compatible with any choice of a monad, endorsing
the subsequent language of realizers with the corresponding
effects. However, this is only a choice made for the purpose
of providing a ready-to-use generic framework. Indeed, we
could also consider variants of EffHOL where terms, instead of
monadic constructs, allow for effectful instructions in direct-
style, as is done for instance in Krivine classical realizability
with the control operator call/cc [3]. Nonetheless, such an
approach would have the significant drawback that any choice
of a particular effect would require to adapt the operational
semantics (e.g. with stacks for control-operators, heaps for
states, etc.), and therefore the target language EffHOL of our
realizability translation and its semantics. While a monad-
free approach to effects would be more general, ensuring
soundness and usefulness for a specific instance would require
significantly more effort. Thus, to provide a robust generic
framework, we here focus on the monadic approach. This
already allows us to cover a wide spectrum of realizability
interpretations, as we shall demonstrate.

III. HIGHER-ORDER LOGIC

To begin, we fix the specific version of higher-order logic
employed in this paper. To generate realizability models,
we focus on a constructive variant, namely, intuitionistic,
many-sorted, monadic, higher-order logic, denoted by HOL.
To keep our system as general as possible, we opt for a
very minimalistic formalization of HOL. For one, we only
consider a core of logical constructs, namely, implication and
universal quantification. Furthermore, our language emulates
propositional application and abstraction through comprehen-
sion terms and membership propositions. We do this instead
of the alternative formalization using λ-terms to ensure we
do not commit to any specific language construct that goes
beyond the bare minimum required for HOL.

Fig. 2 presents the HOL framework, where all inference
rules assume well-formedness. As a many-sorted logic, the
syntax of HOL consists of propositions and terms, where each
term has a sort. Terms are either variables or (base) compre-
hension terms. Propositions can make statements about prop-
erties of terms by having terms appear inside propositions. The
comprehension terms provide a syntactic machinery for terms
to refer to propositions, which, in turn, allows propositions to
make statements about properties of other propositions. This
is the core source of the higher-order structure of the logic.
‘Extracting’ the inner proposition from a comprehension term,
is then done via the membership proposition. Concretely, for a
term t1 of sort s and a comprehension term t2 = {u : s | ψ} of
sort s↣ , the proposition t1∈ t2 states that t1 is a member
of t2, which amounts to saying that ψ with t1 for u holds . This
mechanism may be seen as a representation of standard func-

4

Sorts s ::= | s↣

Terms t ::= u | {u : s | ψ} | {ψ}

Propositions ψ ::= t | t∈ t | ψ ⊐ ψ | ∀u:s.ψ

Sort context S ::= ∅ | S, u : s

S ⊢Ψ, ψ1 ⇛ ψ2

S ⊢Ψ⇛ ψ1 ⊐ ψ2

(Imp-I)
S ⊢Ψ⇛ ψ1 ⊐ ψ2 S ⊢Ψ⇛ ψ1

S ⊢Ψ⇛ ψ2

(Imp-E)

S, u : s ⊢Ψ⇛ ψ

S ⊢Ψ⇛ ∀u:s.ψ
(Uni-I)

S ⊢Ψ⇛ ∀u:s.ψ
S ⊢Ψ⇛ ψ [u := t]

(Uni-E)

S ⊢Ψ⇛ ψ [u := t]

S ⊢Ψ⇛ t∈{u : s | ψ}
(Mem-I)

S ⊢Ψ⇛ t∈{u : s | ψ}
S ⊢Ψ⇛ ψ [u := t]

(Mem-E)

S ⊢Ψ⇛ ψ

S ⊢Ψ⇛ {ψ}
(Mem0-I)

S ⊢Ψ⇛ {ψ}
S ⊢Ψ⇛ ψ

(Mem0-E)
ψ ∈ Ψ

S ⊢Ψ⇛ ψ
(Id)

Fig. 2: HOL Syntax and Theory

tion abstraction and application in programming languages,
which allows higher-order functions. Comprehension binds a
variable within a proposition and turns it into a comprehension
term, just as abstraction binds a variable within an expression
to turn it into a function. Membership applies a comprehension
term to an argument, yielding a proposition, just like a function
applied to an argument yields an expression.

Propositions include only implication, universal quantifica-
tion, and membership, from which the other logical constructs
are standardly derivable. But, while comprehension terms
{u : s | ψ} of composite sort s↣ are in principle enough
to encode the other logical connectives and construct the
higher-order hierarchy, our language also requires base terms
and propositions. For this, we include comprehension terms
{ψ} of base sort with corresponding embedding of terms
t : as formulas t to effectively simulate quantification over
propositional variables. Thus, for instance, a falsity constant
⊥ can be defined naturally by ∀u: .u.

We use S to denote a sort context, i.e., a list of unique
sorted variables u1 : s1, . . . , un : sn. We have standard
typing rules for the judgments that, under a sort context S

a term is of a specific sort, written S ⊢ t : s, and that ψ
is a well-formed proposition, written S ⊢ ψ. We opt for a
representation where well-formed propositions are a separate
construct, equivalently, a unique sort could have been used to
denote well-formed propositions.

For simplicity, we use a monadic presentation of HOL,
i.e. using only unary sorts s ↣ instead of n-ary sorts
of the form (s1, . . . sn) ↣ . While in second-order logic,
the monadic fragment is less expressive, with arbitrary orders,
expressivity is equivalent since n-ary sorts can be encoded at
higher orders [38]. Thus, our sort structure is, in fact, equiv-
alent to the natural numbers but is presented syntactically to
allow for potential extensions to more complex sort structures.

The main judgments of the theory of HOL are of the form
S ⊢ Ψ ⇛ ψ, where Ψ is a finite set of propositions and S is
an adequate sort context. A sequent represents entailment, that
is, the judgment that within the specified context, assuming

all the propositions in the left-hand-side hold entails the right-
hand-side holds. The theory of HOL is inductively generated
by the inference rules in Fig. 2. Standardly, in rule (Uni-I),
u is a fresh variable. The membership rules simply identify
membership in comprehension terms t ∈ {u : s | ψ} with
substitutions ψ [u := t] of the inner formula as expected.
(ψ [u := t] and t′ [u := t] denote standard substitutions of t for
u in ψ and t′, resp.) As noted, we omit the typing premises,
but, for example, rule (Mem-I) has the additional premise
S ⊢ t : s. Standard structural rules like Exchange, Weakening,
Contraction, and Cut are derivable from those in Fig. 2, given
that Ψ is treated as a set in the (Id) rule.

IV. EFFECTFUL HIGHER-ORDER LOGIC

To provide an abstract, general framework for handling a
wide range of program languages, this section describes Ef-
fectful Higher-Order Logic, EffHOL. EffHOL is a form of
higher-order logic based on two key features: higher-kinded
polymorphism and computational term language. The higher-
kinded polymorphic type system, inspired by Girard’s System
Fω [27], is used to type higher-order specifications. The
computational term language enables the treatment of effectful
programs. It can be seen as a simplification of Pitts’ Evaluation
Logic [28] that only has a single monotonic modality with the
values and composition laws holding only in the left-to-right
direction. In particular, the effectful aspect of the language
is captured through monads. The design of EffHOL invokes
similar design choices as HOL, for example, opting for a
monadic presentation and using only unary kinds and indices.

A. The Language of EffHOL

The syntax of EffHOL, formally given in Fig. 3, consists
of the following components: kinds, types, programs, indices,
expressions and specifications. Kinds and types are used to
provide the types of realizers associated with typed programs,
while indices, expressions and specifications hold the logical
counterpart of our realizability interpretation by describing the
properties of these programs.

As is standard, kinds are used as types for type constructors.
Well-formed type constructors are of kind κ↣ ⋆, which de-
notes the kind of type constructors that take type constructors
of kind κ and return a type. Concrete types take no arguments
and have kind ⋆. As for sorts in HOL, we take a minimalistic
kind system, equivalent to the natural numbers.

The syntax of types is also minimal, and includes variables,
application, abstraction, functions, universal, and computation
types. As is standard, the type abstraction and universal bind a
free variable in a type. The former returns a type constructor,
while the latter returns a polymorphic type. Intuitively, the
M stands for the underlying monad of EffHOL. This approach
ensures that the computational behavior of programs is made
explicit in the type system, and allows for easy extensions with
constructs that exhibit various computational effects. Since the
type system has higher-order polymorphism it does not include
base types. Each type variable has a kind. To keep track of
the kinds of the free type variables in a type, all judgments in

5

https://dominik-kirst.github.io/mca/effhol/HOL.html

Kinds κ ::= ⋆ (base type const.)
| κ↣ ⋆ (type const.)

Types τ ::= X (variable)
| τ τ (application)
| Λ̄X:κ.τ (abstraction)
| τ→τ (function)
|

∏
X:κ .τ (universal)

| M (τ) (computation)

Programs p ::= x (variable)
| ΛX :κ.p (type abstraction)
| λx :τ.p (term abstraction)
| p τ (type application)
| p p (term application)
| [p] (return)
| let x← p in p (bind)

Indices σ ::= Rτ (base refinement)
| Rτ (σ) (refinement)
|

∧
X:κ .σ (universal)

Expressions e ::= y (variable)
| {◦x : τ ; y : σ | φ ◦} (comprehension)
| {◦x : τ | φ ◦} (base comprehension)
| ΛX:κ.e (type abstraction)
| e τ (type application)

Specifications φ ::= p; e A e (membership)
| p A e (base membership)
| φ ⊃ φ (implication)
| ⟨x← p⟩ φ (modality)
| ∩X:κ.φ (type uni.)
| ⊓x:τ .φ (program uni.)
| ∀y:σ.φ (expression uni.)

Contexts:

K ::= ∅ | K, X : κ
I ::= ∅ | I, y : σ
T ::= ∅ | T , x : τ

Fig. 3: EffHOL Syntax

EffHOL depend on a kind context, denoted by K, containing
declarations of the form X : κ.

The syntax of programs combines constructs for pure and
effectful computations. It contains the standard constructs of
pure programs, as in System Fω , such as variables, term ab-
straction and application, and type abstraction and application.
In addition, it contains standard constructs for handling effect-
ful computations through monads via return and bind, as in
Pitts’ Evaluation Logic [28] (or rather, Moggi’s Computational
λ-Calculus [37]). The variable X is bound in type abstraction
and the variable x is bound in term abstraction and bind
program. Programs depend on types, which, in turn, depend
on kinds. Therefore, they further require a type context. A type
context, denoted by T , contains declarations of the form x : τ .
That is, it is a list of typed program variables, where each type
may have free variables denoting type constructors, hence a
type context depends on a kind context.

To reason about programs, the logical part of EffHOL relies
on specifications, which in turn are defined using expressions
which are typed with indices. Indices mark the logical order
of statements. First-order statements about a program of type
τ are indexed with the base refinement Rτ . Higher-order
statements can also refer to some other statements of different
types, in which case they are of the form Rτ (σ). The syntax
of indices also includes indices of the form

∧
X:κ .σ, which

bind X , that capture that the index is polymorphic over the
type variable X of kind κ, together with the corresponding
expressions to abstract over types.

Expressions include variables, (base) comprehension, and
type abstraction and application. The type abstraction (in
which X is bound) and type application reflect type polymor-
phism. To enable stating higher-order properties of programs,
the comprehension expression binds a program variable along
with an optional expression variable. The program variable
specifies the program satisfying the property, while the op-
tional expression variable describes a property that is related
to the program in some manner via the inner specification. A
comprehension expression that takes an expression argument
is denoted by {◦x : τ ; y : σ | φ ◦}, whereas, like in HOL, base

comprehension expression with no arguments is denoted by
{◦x : τ | φ ◦}. Each expression is typed with an index, and we
use an index context I, to keep track of such declarations y : σ,
where y is an expression variable.

The membership specification, p; e2 A e1, intuitively states
that e1 (with argument e2) holds on p. When e1 takes no
arguments, we use the base expression p A e1. As in HOL, a
membership specification is a form of application in that stat-
ing that an expression is a member of a comprehension expres-
sion amounts to the inner comprehension specification applied
to that expression. The language of specifications includes
standard implication, and has three different forms of universal
quantification: type quantification quantifies over programs,
index quantification quantifies over properties thereof, and
kind quantification allows the specifications to be polymorphic
over arbitrary types. Last, to describe specifications of effectful
programs, we use a modality ⟨x← p⟩ φ, which intuitively
states that the property φ holds when x is the result of running
the (effectful) program p. This is the core source of effectful
computations in EffHOL. Specifically, if only considering pure
programs, this would collapse into standard substitution.

Example 1. To illustrate the role of each of the logical compo-
nents, consider, e.g., a specification p ↓τ := (⟨x← p⟩ ⊥) ⊃ ⊥
stating that a program p of type τ is not non-terminating.
Using a comprehension term, one can build the first-order
expression normτ ≜ {◦x : τ | x ↓τ ◦} which corresponds to the
set of programs of type τ which are not non-terminating, or,
in a more type-theoretic fashion, as a function that associates
to each such program p : τ the specification p ↓τ . Such an
expression is of index Rτ , while in the higher-order case, an
index Rτ (σ) denotes expressions that define a specification
for programs of type τ using an expression of index σ.

For a program of type τ → τ , a natural example of such
a higher-order statement is to state that some property that
holds for the input also holds for the output. Using compre-
hension, such property can be formalized using the expres-
sion presτ ≜ {◦x : τ→τ ; e : Rτ | ⊓x′:τ .(x

′ A e ⊃ xx′ A e) ◦}
of index Rτ→τ (Rτ). Then, (λx :τ.x) ; normτ A presτ ex-

6

https://dominik-kirst.github.io/mca/effhol/EffHOL.html

Typing Rules for Types K ⊢ τ : κ

(X : κ) ∈ K

K ⊢ X : κ

K ⊢ τ1 : κ K ⊢ τ2 : κ↣ ⋆

K ⊢ τ2 τ1 : ⋆

K, X : κ ⊢ τ : ⋆

K ⊢ Λ̄X:κ.τ : κ↣ ⋆

K ⊢ τ1 : ⋆ K ⊢ τ2 : ⋆

K ⊢ τ1→τ2 : ⋆

K, X : κ ⊢ τ : ⋆

K ⊢
∏
X:κ τ : ⋆

K ⊢ τ : ⋆
K ⊢M (τ) : ⋆

Typing Rules for Programs K | T ⊢ p : τ

(x : τ) ∈ T

K | T ⊢ x : τ

K, X : κ | T ⊢ p : τ

K | T ⊢ ΛX :κ.p :
∏
X:κ τ

K | T , x : τ1 ⊢ p : τ2

K | T ⊢ λx :τ1.p : τ1→τ2

K | T ⊢ p :
∏
X:κ τ2 K ⊢ τ1 : κ

K | T ⊢ p τ1 : τ2 [X := τ1]

K | T ⊢ p : τ K ⊢ τ ′ : κ τ ≡ τ ′

K | T ⊢ p : τ ′

K | T ⊢ p2 : τ1→τ2 K | T ⊢ p1 : τ1

K | T ⊢ p2 p1 : τ2

K | T ⊢ p : τ

K | T ⊢ [p] :M (τ)

K | T ⊢ p1 :M (τ1) K | T , x : τ1 ⊢ p2 :M (τ2)

K | T ⊢ let x← p1 in p2 :M (τ2)

Typing Rules for Expressions K | I |T ⊢ e : σ

(y : σ) ∈ I

K | I |T ⊢ y : σ

K | I, y : σ | T , x : τ ⊢ φ
K | I |T ⊢ {◦x : τ ; y : σ | φ ◦} : Rτ (σ)

K, X : κ | I | T ⊢ e : σ
K | I |T ⊢ ΛX:κ.e :

∧
X:κ .σ

K | I |T ⊢ e :
∧
X:κ .σ K ⊢ τ : κ

K | I |T ⊢ e τ : σ [X := τ]

K | I | T , x : τ ⊢ φ
K | I |T ⊢ {◦x : τ | φ ◦} : Rτ

K | I |T ⊢ e : σ σ ≡ σ′

K | I |T ⊢ e : σ′

Typing Rules for Specifications K | I |T ⊢ φ

K | I |T ⊢ p : τ K | I |T ⊢ e : Rτ
K | I |T ⊢ p A e

K | I | T , x : τ ⊢ φ
K | I |T ⊢ ⊓x:τ .φ

K | I |T ⊢ φ1 K | I |T ⊢ φ2

K | I |T ⊢ φ1 ⊃ φ2

K, X : κ | I | T ⊢ φ
K | I |T ⊢ ∩X:κ.φ

K | T ⊢ p :M (τ) K | I | T , x : τ ⊢ φ
K | I |T ⊢ ⟨x← p⟩ φ

K | I, y : σ | T ⊢ φ
K | I |T ⊢ ∀y:σ.φ

K | I |T ⊢ p : τ K | I |T ⊢ e1 : σ K | I |T ⊢ e2 : Rτ (σ)

K | I |T ⊢ p; e1 A e2

Fig. 4: Typing Rules for EffHOL

presses that the identity function preserves normalization.

EffHOL supports the following standardly defined capture-
avoiding substitutions: A [X := τ] , B [x := p] , C [y := e] for
A∈{‘τ ’, ‘σ’, ‘p’, ‘e’, ‘φ’}, B∈{‘p’, ‘e’, ‘φ’}, and C∈{‘e’, ‘φ’}.

To summarize, the computational components of EffHOL
are kinds, types and programs. Each type has a kind and
each program has a type. The logical components of EffHOL
are indices, expressions and specifications. Each expression
has an index. Specifications and expressions depend on both
programs and indices, which, in turn, both depend on types,
which, in turn, depend on kinds.

B. Operational Semantics and Type System

Since EffHOL is agnostic to the details of the computational
effects, the operational semantics also has to be as generic
and modular as possible, allowing for different computational
effects to be plugged in. Therefore, we only invoke a minimal
(one-step) β-reduction relation ⇝ on programs:

let x← [p1] in p2 ⇝ p2 [x := p1]

(ΛX :κ.p) τ ⇝ p [X := τ] (λx :τ.p)V ⇝ p [x := V]

where V ::= x |ΛX :κ.p |λx :τ.p. An abstraction applied to a
type is reduced to type substitution (in types and expressions).
We define a conversion relation ≡ as the (reflexive, symmetric
and transitive) contextual closure of ≡τ ∪ ≡e for

(Λ̄X:κ.τ1) τ2 ≡τ τ1 [X := τ2] (ΛX:κ.e) τ ≡e e [X := τ]

in all syntactic categories of the equivalence relation induced
by these reductions.

The typing rules of EffHOL use four different judgments:
K ⊢ τ : κ for τ being a well-formed type of kind κ in the
context, K |T ⊢ p : τ for p being a well-formed program of

type τ , K | I |T ⊢ e : σ for e being a well-formed expression
of index σ, and K | I | T ⊢ φ for φ being a well-formed
specification. The type system of EffHOL is inductively defined
by the rules in Fig. 4. For readability, we elide the typing
for σ being a well-formed index, as those are easily obtained
by requiring the constituent types to be of base kind (for full
details, see the Coq formalization). The typing rules are closed
under context extension and under (well-formed) substitution.
Moreover, they are closed under conversion and β-reduction,
and type preservation for programs holds.

C. Deductive Apparatus

The theory of EffHOL is obtained through inference rules
that manipulate sequents of specifications. Judgments are of
the form K | I |T ⊢Φ⇒ φ, where Φ is a finite set of specifica-
tions. Fig. 5 presents the inference rules that inductively define
the theory of EffHOL (omitting the typing premises). The rules
closely resemble those of HOL, except for those handling
modalities and polymorphism. Standardly, the theory includes
an identity axiom, implication introduction and elimination,
and universal introduction and elimination for expressions.
Additionally, it includes introduction and elimination rules for
program and type universal quantification. As is standard, in
(UniProg.-I) and (UniExp.-I), x and y, resp., are fresh.

In addition, EffHOL includes rules for modalities. The
modality introduction rule, (Mod-I), states that whenever a
specification holds for a value, it holds for the computation
that does nothing except return that value. The modality elim-
ination rule, (Mod-E), states that a nesting of two modalities,
where the specification depends only on the last computation,
can be collapsed into a single modality with the same specifi-
cation over the nesting of the computations. The Monotonicity
rule, (Mon), states that the modality respects deductions, so

7

https://dominik-kirst.github.io/mca/effhol/EffHOL.html#has_kind

K | I | T , x : τ ⊢Φ⇒ φ

K | I |T ⊢Φ⇒ ⊓x:τ .φ
(UniProg.-I)

K | I, y : σ |T ⊢Φ⇒ φ

K | I |T ⊢Φ⇒ ∀y:σ.φ
(UniExp.-I)

K, X : κ | I |T ⊢Φ⇒ φ

K | I |T ⊢Φ⇒ ∩X:κ.φ
(UniType-I)

K | I |T ⊢Φ⇒ ⊓x:τ .φ
K | I |T ⊢Φ⇒ φ [x := p]

(UniProg.-E)
K | I |T ⊢Φ⇒ ∀y:σ.φ

K | T | I ⊢Φ⇒ φ [y := e]
(UniExp.-E)

K | I |T ⊢Φ⇒ ∩X:κ.φ

K | I |T ⊢Φ⇒ φ [X := τ]
(UniType-E)

K | I |T ⊢Φ, φ1 ⇒ φ2

K | I |T ⊢Φ⇒ φ1 ⊃ φ2

(Imp-I)
K | I |T ⊢Φ⇒ φ [x := p]

K | I |T ⊢Φ⇒ ⟨x← [p]⟩ φ
(Mod-I)

K | I |T , x : τ ⊢Φ, φ1 ⇒ φ2 K | I |T ⊢Φ⇒ ⟨x← p⟩ φ1

K | I |T ⊢Φ⇒ ⟨x← p⟩ φ2

(Mon)

K | I |T ⊢Φ⇒ φ1 ⊃ φ2 K | I |T ⊢Φ⇒ φ1

K | I |T ⊢Φ⇒ φ2

(Imp-E)
K | I |T ⊢Φ⇒ ⟨x1 ← p1⟩ ⟨x2 ← p2⟩ φ

K | I |T ⊢Φ⇒ ⟨x2 ← (let x1 ← p1 in p2)⟩ φ
(Mod-E)

φ ∈ Φ

K | I |T ⊢Φ⇒ φ
(Id)

K | I |T ⊢Φ⇒ φ [x := p] [y := e]

K | I |T ⊢ Φ ⇒ p; e A {◦x : τ ; y : σ | φ ◦}
(Mem-I)

K | I |T ⊢Φ⇒ φ [x := p]

K | I |T ⊢ Φ ⇒ p A {◦x : τ | φ ◦}
(Mem0-I)

K | I |T ⊢Φ⇒ φ′ φ ≡ φ′

K | I |T ⊢Φ⇒ φ
(≡)

K | I |T ⊢ Φ ⇒ p; e A {◦x : τ ; y : σ | φ ◦}
K | I |T ⊢Φ⇒ φ [x := p] [y := e]

(Mem-E)
K | I |T ⊢ Φ ⇒ p A {◦x : σ | φ ◦}

K | I |T ⊢Φ⇒ φ [x := p]
(Mem0-E)

K | I |T ⊢Φ⇒ φ [x := p2] p1 ⇝ p2

K | I |T ⊢Φ⇒ φ [x := p1]
(⇝)

Fig. 5: The Theory of EffHOL

whenever φ1 entails φ2, if φ1 holds for the value of some
computation, so does φ2. The (base) membership introduction
and elimination rules are completely dual and acount for the
mutual dependency of expressions and specifications.

Lastly, EffHOL includes two computational rules that enable
the use of the computational reductions and conversions in
the logical side of EffHOL. The rule (≡) allows for replacing
specifications that are equivalent by conversions. The rule
(⇝) enforces a key property of the realizability interpretation,
namely the closure of specifications under anti-reduction, by
stating that if a program p1 reduces to a program p2, then
any valid specification for p2 is also valid for p1. By the
assumption that all judgments are well-typed, rule (⇝) can
only be applied when the reduction preserves typing. Standard
structural rules are admissible in EffHOL, with the exception
that the substitution rule for programs is only valid for values.

Since HOL is a mere fragment of EffHOL, there is a trivial
forgetful translation function J−K from the latter to the former,
erasing all program, type, and kind structure. Thus, all EffHOL
deductions can be replayed in HOL. In particular, as any
specification φ expressing a contradiction in EffHOL is mapped
to a formula JφK expressing a contradiction in HOL. This
reduces the consistency of EffHOL to that of HOL.

Proposition 2 (). EffHOL is consistent.

Hoare Triples: The theory of EffHOL allows expressing
properties of programs in the familiar style of Hoare logic [39].
The known triple form is defined as an abbreviation of a
sequent with a modality on the right-hand-side:

{Φ}x←− p {φ} ≜ Φ⇒ ⟨x← p⟩ φ

Intuitively, this states that, assuming all the formulas in Φ hold,
then after binding x with the result obtained by computing p,
the formula φ holds. The triple form will be used later when
discussing the realizability translation. That is, we show that
for every provable theorem of HOL there is a corresponding
program, called the evidence of the theorem, for which the
translation of said theorem forms a provable triple in EffHOL.

Importantly, the consistency of Prop. 2 only concerns the
core logical system of EffHOL and not the derived triples. That
is, while ⊥ is underivable, ⟨x← p⟩ ⊥ may be derivable for
some ps. Indeed, we allow for instantiations of the computa-
tional system, including ones realizing no meaningful logic.

D. Instances of EffHOL

EffHOL can be seen as a generic framework relying on
several parameters, that can be instantiated in different ways
to capture a wide range of computational behaviors. The most
direct family of instantiations is given by syntactic translations
of EffHOL into itself, using its effect-free fragment EffHOL− in
the target, i.e., the subsystem of EffHOL without the constructs
M (τ), [p], let x ← p1 in p2, and ⟨x← p⟩ φ. In the target
language, we allow any choice of a reduction relation ⇝ on
programs that extends the β-reduction of EffHOL. That is,
different operational semantics for programs can be invoked
by, e.g., extending the notion of values or adding congruence
rules describing a particular evaluation strategy. Sec. VI-A
provides an example that invokes a call-by-name evaluation
strategy. As standard, meta-properties of EffHOL, such as type
preservation for programs, might fail in such extensions.

Definition 3 (Pure instance). A pure instance of EffHOL
is an interpretation of EffHOL in EffHOL− which interprets
the non-pure constructs in EffHOL as pure. That is, a pure
instance of EffHOL: (1) assigns to each τ, p, p1, p2, x, φ, an
interpretation in EffHOL− of M (τ) as a type, [p] as a pro-
gram, let x ← p1 in p2 as a program, and ⟨x← p⟩ φ as
a specification, such that the typing and inference rules of
M (τ), [p], let x ← p1 in p2, and ⟨x← p⟩ φ are satisfied by
their respective interpretations, and (2) picks a (potentially
extended) evaluation strategy, such that the reduction and
conversion rules are preserved.

Lemma 4 (). If K | I |T ⊢Φ⇒ φ is derivable in EffHOL, then
for every pure instance, the interpreted judgment is derivable
in EffHOL−.

8

https://dominik-kirst.github.io/mca/effhol/EffHOL.html#HOPL_prv
https://dominik-kirst.github.io/mca/effhol/EffHOL_to_HOL.html#Consistency
https://dominik-kirst.github.io/mca/effhol/EffHOL_to_Fw.html
https://dominik-kirst.github.io/mca/effhol/EffHOL_to_Fw.html#HOPL_Fw

After introducing the realizability interpretation (Thm. 5),
Sec. VI provides illustrative examples of pure instances and
showcases how the effectful programs provided by the monad
can be used to realize additional logical principles. In the
context of Thm. 5 we will also discuss a way in which the
computational behavior can be axiomatized within EffHOL
itself, without an explicit syntactic instantiation.

Interestingly, the above restricted notion of pure instances is
already sufficient for capturing all those examples. Nonethe-
less, one might invoke a more general notion of an instance,
allowing for different target languages outside of EffHOL itself.
To define such an instance, one has to choose a monad and
an evaluation strategy for programs, and then to define the
interpretation of the modality ⟨x← p⟩ φ. Any choice for these
parameters can be taken, provided that substitution, reduction
and conversion are respected, and the corresponding typing
judgments and logical rules remain valid.

V. THE REALIZABILITY TRANSLATION

This section established how the EffHOL framework can be
used to model HOL. To this end, we provide a syntactic realiz-
ability translation of HOL judgments into EffHOL judgments,
which ensures that the programming language described by
EffHOL is a realizability model of HOL. As mentioned in
the overview, the general translation mainly consists of the
following four syntactic translations.

J−KK : sort→ kind J−KI− : sort→ type→ index

J−KT : prop→ type J−KS− : prop→ prog→ spec

To accommodate the term language with comprehension
terms, there are two additional (canonical) translations:

J−Kt : term→ type J−Ke : term→ expr

The recursive translations are given in Fig. 6. The proposition-
to-specification translation, JψKSp , is the main realizability
translation, converting any HOL proposition ψ to a speci-
fication describing what it means for a program to realize
the proposition. The realizer is internalized as an extra input
p of the appropriate type JψKT of realizers. The sort-to-
index translation, JsKIτ reflects the proposition-to-specification
translation at the sort level, and the sort-to-kind translation,
JsKK, reflects the proposition-to-types translation at the sort
level. In fact, as the types of sorts and kinds are isomorphic,
the last translation is essentially the identity mapping.

The translations of terms are required to translate variables.
Since we translate higher-order propositions to higher-order
specifications, a variable u that appears in a proposition gets
translated into a type variable, Xu, that fills the same role
variables serve in higher-order logic, namely, to fill in for
arbitrary specifications. Similarly, when translating u to an
expression we use an expression variable, yu.

The translation of implication states that a realizer of
implication takes a realizer of the assumption and computes a
realizer of the conclusion, and the type of the realizer reflects
this fact as a type of functions from the type of realizers of

the assumption to the type of computations of realizers of the
conclusion. The translation of universal quantification says that
a realizer of a universally quantified proposition computes a
realizer of the proposition for any possible instantiation of
the quantified variable, reinterpreted as an assertion variable
ranging over type variables of the appropriate kind. The
translation of membership is simply membership in EffHOL,
with the realizer bundled with the element translation and the
predicate translation instantiated to the element’s type.

We lift the sort translations J−KK and J−KI− to contexts:

J∅KK := ∅ JS, u : sKK := JSKK , Xu : JsKK

J∅KI := ∅ JS, u : sKI := JSKI , yu : JsKIXu

This allows us to prove that our translation preserves well-
formedness judgments. With this we next state and prove
the soundness of our translation. That is, we show that for
every sequent Ψ ⇛ ψ in HOL, our translation produces
a computation program p : M JψKT, such that the triple{

JΨKS
}
xr ←− p

{
JψKSxr

}
is provable in EffHOL.

Theorem 5 (Soundness). For each HOL theorem

S ⊢ ψ1, . . . , ψn ⇛ ψ

there is a program p with

JSKK | JΨKT ⊢ p :M JψKT

such that for any collection of specifications K | I |T ⊢ Φ:

JSKK ,K | JSKI , I | JΨKT , T ⊢
{

JΨKS ,Φ
}
xr ←− p

{
JψKSxr

}
.

where we use Ψ := ψ1, ..., ψn, JΨKS := Jψ1K
S
x1
, . . . , JψnK

S
xn

,
and JΨKT := x1 : Jψ1K

T
, . . . , xn : JψnK

T.

In this setting, we can then view the translation as defining
a realizability model for HOL by saying that a theorem of
HOL is valid whenever there exists a program p satisfying the
statements of the soundness theorem. Importantly, the proof is
constructive, in the sense that it actually constructs the realizer
p from the derivation in HOL. In fact, the proof shows how
each rule in HOL corresponds to a program construct that
is sound for the realizability translation, i.e. which builds a
realizer of the conclusion from realizers of the premises. As a
consequence, the programs extracted from the soundness proof
are modular with respect to HOL derivations. In particular, if
a specific instance of EffHOL allows us to provide an effectful
realizer for some proposition of HOL through the translation,
then this proposition could be taken as an extra axiom in
HOL. Indeed, since it has a realizer this proposition would be
valid in the induced realizability model, as would any theorem
derived using this theorem, by modularity of the extracted
realizer. We shall illustrate this in Sec. VI-A, using an instance
of EffHOL corresponding to Krivine realizability, relying on
control operators to validate classical reasoning principles.

Importantly, the program p obtained in the translation is
uniform in that it does not rely on the specifics of the monad
and the modality. Hence, in particular, it must also work for

9

https://dominik-kirst.github.io/mca/effhol/HOL_to_EffHOL.html#soundness

J−KK : sort → kind

J KK ≜ ⋆

Js↣ KK ≜ JsKK ↣ ⋆

J−Kt : term → type

JuKt ≜ Xu

J{u : s | ψ}Kt ≜ Λ̄Xu:JsKK . JψKT

J{ψ}Kt ≜ JψKT

J−Ke : term → expr

JuKe ≜ yu

J{u : s | ψ}Ke ≜ ΛXu:JsKK .{◦x : JψKT ; yu : JsKIXu
| JψKSx ◦}

J{ψ}Ke ≜ {◦x : JψKT | JψKSx ◦}

J−KI− : sort → type → index

J KIτ ≜ Rτ

Js↣ KIτ ≜
∧
X0:JsKK

.Rτ X0

(
JsKIX0

)
J−KT : prop → type

Jψ1 ⊐ ψ2KT ≜ Jψ1KT→M
(
Jψ2KT

)
J∀u:sψKT ≜

∏
Xu:JsKK .M

(
JψKT

)
Jt1∈ t2KT ≜ Jt2Kt Jt1Kt
q
t
yT ≜ JtKt

J−KS− : prop → prog → spec

Jψ1 ⊐ ψ2KSp ≜ ⊓x1:Jψ1KT .Jψ1KSx1 ⊃ ⟨x2 ← p x1⟩ Jψ2KSx2
J∀u:sψKSp ≜ ∩Xu:JsKK .∀yu:JsKI

Xu
. ⟨x0 ← pXu⟩ JψKSx0

Jt1∈ t2KSp ≜ p; Jt1Ke A Jt2Ke Jt1Kt
q
t
yS

p
≜ p A JtKe

Fig. 6: The Realizability Translation

consistent modalities that do not permit evidence of falsity, i.e.,
where p :M (τ) ⊢⟨x← p⟩ ⊥ ⇒ ⊥ is provable. Therefore, if
the modality itself is consistent, the only way to give evidence
for ⊤ ⇒ ⊥ is if it holds in the meta-theory, thus ensuring the
object theory is consistent as long as the meta-theory is.

By the general formulation of the soundness theorem,
the realizability translation of HOL sequents is valid in the
presence of arbitrary well-typed assumptions Φ. This in itself
is not surprising, due to weakening, but it offers additional
applicativity in that the additional set of assumptions can be
used, for example, to introduce new constants in computation
types with axiomatized behavior. This generality enables treat-
ing the translation of HOL as a generic realizability translation
into particular computational settings, enabling consistency
and independence proofs. This can be done via, e.g., pure
instances of EffHOL, as the instance interpretation can be
composed with the realizability translation to obtain a sound
realizability translation into the pure instance of EffHOL ().

VI. ILLUSTRATIVE APPLICATIONS

This section illustrates the versatility of the EffHOL frame-
work through various applications. First, we highlight its
uniformity by seamlessly reproducing classical realizability
results. Next, we demonstrate its use in a simple (relative)
consistency proof of Markov’s Principle. Finally, we showcase
its generality, enabling robust computational interpretations
across diverse effectful instances. Due to space limitations, we
focus on the first application and briefly outline the other two.

A. Krivine Classical Realizability

This section illustrates how Krivine classical realizability
can be seen as a particular pure instance of EffHOL. Kriv-
ine realizability was introduced as a complete reformulation
of standard intuitionistic realizability, which was inherently
incompatible with classical logic, by building on Griffin’s
seminal observation that the control operator call/cc can be
typed with Peirce’s law [3, 25]. Its original presentation uses
control operators in a direct-style fashion, based on the λc-
calculus, an extension of the λ-calculus with call/cc. To that
end, the corresponding operational semantics is then expressed
using processes ⟨p || π⟩ of an abstract machine, where p is a

program and π is a stack. The instruction call/cc allows
programs to backtrack, as shown by its operational semantics:

⟨call/cc || p · π⟩▷⟨p || throwπ · π⟩ ⟨throwπ || p · π′⟩▷⟨p || π⟩

When applied to a stack π, call/cc provides its first argument
with a program throwπ , which, at any future point, can
drop the current stack to restore π. Such instructions can be
compiled to the pure λ-calculus using a continuation-passing
style (CPS) translation. At the type level, this translation corre-
sponds to a negative translation embedding classical logic into
intuitionistic logic [25]. Oliva and Streicher later demonstrated
that Krivine realizability can be obtained by combining a
standard intuitionistic realizability interpretation with a CPS
translation [40]. More generally, this suggests that effectful
interpretations can be defined via an indirect presentation of
effects via a well-chosen monad, rather than relying on a
direct-style representation. To illustrate this, we show how
Oliva and Streicher’s formulation of Krivine realizability can
be naturally expressed in our framework using the continuation
monad. We here only sketch certain salient features of Krivine
realizability, and for more details, we refer the readers to
papers focusing on Oliva and Streicher’s approach [40]–[42].

We define EffHOL¬¬ as a pure instance of EffHOL based on
the continuation monad. Namely, we first define the monad
M (τ) ≜ ¬¬τ at the level of types where ¬τ denotes the
type τ → ⊥ (using the standard encoding ⊥ ≜

∏
X:⋆ .X).

Intuitively, one can think of a computation of type ¬¬τ as
the CPS translation of a λc-term, therefore waiting for a
continuation of type ¬τ which accounts for the translation
of a stack. As such, via the continuation monad a process
⟨p || π⟩ formed by the interaction of a computation p and a
continuation π simply corresponds to the application p π.

We assume programs are evaluated in a call-by-name fash-
ion1, taking advantage of the fact that EffHOL is parametric
with respect to the choice of an evaluation strategy. We define
the return and bind of the monad as expected by:

[p] ≜ λk :¬τ.k p let x← p1 in p2 ≜ λk :¬τ2.p1 (λx :τ1.p2 k)

1This will have the benefit of easing some definitions and proofs that rely
on β-reductions or substitutions, which are easier to handle in call-by-name.

10

https://dominik-kirst.github.io/mca/effhol/HOL_to_EffHOL.html
https://dominik-kirst.github.io/mca/effhol/EffHOL_to_Fw.html#soundness_Fw

where p (resp. p1, p2) is of type τ (resp. ¬¬τ1, ¬¬τ2). It is
then easy to verify that they satisfy the associated typing rules.

Lastly, we need to instantiate the modality ⟨p← x⟩ φ. For
this, we follow the intuitions of Krivine’s classical realizability,
where realizers are defined using an orthogonality relation with
respect to a set of stacks acting as opponents [3]. In a call-
by-value setting, the latter is itself defined by orthogonality
to a set of values acting as realizers [43]. The orthogonality
relation is typically parameterized by a set of processes ⊥⊥,
which intuitively encompasses the set of intended correct
computations in the chosen realizability model. Then, the
orthogonal of a set of stacks A is defined as the sets of
programs that successfully compute in front of any stack in
A, i.e. A⊥ = {p | ∀π ∈ A.⟨p || π⟩ ∈ ⊥⊥}. The realizability
translation of an HOL proposition ψ can be seen as the
expression {◦x : JψKT | JψKSx ◦} of index RJψKT . We thus define
an orthogonality relation on expressions e of index Rτ

e⊥ ≜ {◦x : ¬τ | ⊓x′:τ .(x
′ A e) ⊃ (xx′ A ⊥⊥) ◦}

where, for simplicity, we take ⊥⊥ ≜ {◦x : ⊥ | ⊥◦}. Observe
that if e is an expression of index Rτ , then e⊥ is of index
R¬τ , and therefore e⊥⊥ has index R¬¬τ . The biorthogonality
relation thus allows us to lift expressions on a given type τ
to expressions on the corresponding computational type ¬¬τ .
Viewing a well-formed specification φ for x : τ as a proposi-
tion defining a set of values, for a program p of type ¬¬τ , the
modality ⟨x← p⟩ φ can be viewed as expressing that p is a
valid computation with respect to φ, i.e. a realizer. Following
Krivine realizability, we can define it by biorthogonality:

⟨x← p⟩ φ ≜ p A {◦x : τ | φ ◦}⊥⊥

Proposition 6. EffHOL¬¬ is a valid pure instance of EffHOL.

Since EffHOL¬¬ is a valid pure instance of EffHOL, we can
take advantage of the continuation monad to obtain effectful
realizers for classical reasoning principles. Recall that Peirce’s
law is defined by Peirce ≜ ∀a: .∀b: .((a ⊐ b) ⊐ a) ⊐ a,
abusing notations to write a for the proposition a. Through
the translations, we get:

JPeirceKT= Λ̄X:⋆.¬¬
(
Λ̄Y :⋆.¬¬((X→¬¬Y)→¬¬X)→¬¬X

)
To obtain a realizer of Pierce’s law via the realizability
interpretation of HOL in EffHOL¬¬, we define the programs:

call/cc ≜ ΛX :⋆.
[
ΛY :⋆.

[
call/cc

X,Y
]]

call/cc
τ,τ ′
≜ λz : (τ→¬¬τ ′)→¬¬τ.λk :¬τ.z throwτ,τ

′

k k

throw
τ,τ ′

k ≜ λx :τ.λk′ :¬τ ′.k x
Observe that call/cc

τ,τ ′
and throw

τ,τ ′

k are essentially
the CPS translations of the corresponding instructions in
Krivine’s λc-calculus presented earlier (in particular, they
have the same computational behavior up to the CPS), while
call/cc handles the polymorphic aspect. Thus, it is no
surprise that call/cc serves as a realizer for Peirce’s law.

Theorem 7. The following hold:
1) ⊢ call/cc : JPeirceKT

2) ⊢⊤ ⇒ ⟨x← [call/cc]⟩ JPeirceKSx

B. Consistency of Markov’s Principle

In Sec. VI-A, since we defined a realizability model that
validates Peirce’s law, we obtain that HOL is consistent with
it and all its fragments, for instance Markov’s principle (MP)
allowing double negation elimination of Σ1 formulas. In
fact, using partiality as a computational effect in EffHOL,
this (relative) consistency result can be obtained in a more
direct way. Note that it is well-known that Kreisel’s modified
realizability provides a model for the negation of Markov’s
Principle [44], so the principle is in fact independent.

Arguing informally, we stipulate a type variable N of base
kind together with constants O : N, S : N → N and find :
(N → N) → M(N). To specify their intended behavior, we
assume a set Φ expressing the usual axioms of (higher-order)
arithmetic and including a specification of the form

{∃n : N. f n = O}x←− find f {f x = O}

expressing that find implements some sort of linear search.
These few ingredients now allow one to quickly explore
which consequences the presence of linear search has on the
realized logic. For instance, one could set out to verify that
under certain circumstances (for instance assuming MP on
the meta-level) a realizer for the translation of MP, stating
that ¬¬(∃n : N. f n = O) implies ∃n : N. f n = O, can be
constructed from find. So if indeed there is a p such that

{Φ}xr ←− p
{

JMPKSxr

}
we immediately obtain that HOL cannot derive ¬MP, as
otherwise by Thm. 5 there would be evidence p′ with

{Φ}xr ←− p′
{

J¬MPKSxr

}
yielding contradicting realizability triples. To obtain formal
certainty that such a contradiction cannot follow from the
axiomatic extension itsef, one can routinely verify that a
consistent instance of EffHOL based on the monad M(τ) :=
N → τ implemented by step-indexing allows to define a
deterministic search function find as axiomatized (cf. [45]),
and that assuming MP on the meta-level is consistent, as
common in Kleene realizability.

C. Memoizing Countable Choice

This section demonstrates an application of EffHOL that
relies on its uniformity to identify core computational ca-
pabilities needed for realizing specifications. We illustrate
this using the principle of Countable Choice (CC), whose
validity status drastically changes w.r.t. the underlying effectful
capabilities [19]. While deterministic computation guarantees
CC, non-deterministic computation can negate CC, and stateful
computation can validate CC via memoization. In fact, dif-
ferent forms of memoization techniques have been used in
various settings to prove CC (e.g., [46]–[50]), suggesting it
is somehow a more robust model of CC. The generality of
EffHOL enables the formalization of such a robustness prop-
erty, proving that memoization techniques indeed guarantee
the validity of CC even in the presence of other effects.

11

To simplify the formalization of CC we again take N to
be a standard encoding of the natural numbers in HOL, and
use a predicate nn verifying that n is a natural number2For
readability, we also use pairs, which can be standardly encoded
in HOL. CC over a type τ can be axiomatized in HOL as:

CC := ∀u1:N×τ↣ .
Tot (u1) ⊐ ∃u2:N×τ↣ .u2 ⊆ u1 ⊓ Det (u2) ⊓ Tot (u2)

where Tot(u) = ∀n : N. ∃i : τ. nn ⊃ (n, i) ∈ u expresses
that u is a total relation, Det(u) that u is deterministic and
u1⊆u2 that u1 a sub-relation of u2.

Crucially, in the statement of Tot(u) the universal quantifi-
cation over natural numbers is relativized via the nn predicate.
Through the translation, when provided with a value n, a
realizer eu1 of Tot(u1) will compute a realizer, say pin of
(n, i) ∈ u1 for some index i ∈ I (without specifying what i
is). Yet, in the presence of effectful computations, eu1

may
not behave as a function (i.e., different applications of eu to
n may result in different pin), and the relation may indeed
need not be functional. To recover a functional sub-relation
u2 ⊆ u1 with a realizer of Tot(u2), one can use memoization
techniques to store the pin at a given location, making sure
that for each n only one pin is ever computed. Those serve as
realizers for a subrelation u2 ⊆ u1 which is now functional.

To define a realizer eCC of CC along these lines, one
essentially needs to be provided with computational features
that are axiomatized by a monad with state and location,
e.g., [51, 52]. Again, assume that Φmem is a set of speci-
fications which axiomatizes the structure necessary for the
standard computational constructs of lookup, alloc and update.
Then, using memoization as in [19] (and assuming CC on the
meta-level as done with MP in the previous example) we can
define a program eCC : JCCKT such that:

{Φmem}x←− eCC
{

JCCKSx
}

The interesting by-products of such an axiomatic presenta-
tion is that any instance EffHOLmem of EffHOL providing an
instantiation of the additional computational features such that
the axioms of Φmem hold will then have the corresponding
eCC also realizing of CC. In other words, this captures the
robustness of the interpretation of CC based on memoization
techniques. A concrete instance EffHOLmem can be obtained
with the state monad and its standard demonic (i.e., necessity)
modality, mimicking the mem-SCA framework in [19]. How-
ever, this suggests that a realizer of CC can be obtained in a
larger class of instantiations, and it remains to be seen if works
realizing CC in different settings, such as [46, 47, 49, 50, 53]
can be obtained as such instances.

VII. FROM SYNTAX TO SEMANTICS : THE INDUCED
EVIDENCED FRAME

An approach to unify several established forms of real-
izability, including effectful ones, was suggested by Cohen,

2This enables relativized quantifiers over N, i.e. formulas of the shape A ≡
∀n : N.nn ⊃ A′ where nn acts as a formula realized by the encoding of n.

Miquey, and Tate [18]. That work abstracts away the core
of various constructions of realizability models through a
single structure, called evidenced frame, which focuses solely
on the relationship between propositions and their evidence,
leaving out the computational specifics of particular models.
This is done semantically, by considering any model as an
evidenced frame and providing a uniform construction of a
realizability tripos from an evidenced frame. Similarly, EffHOL
unifies several established forms of realizability, but through a
syntactic translation rather than a semantic abstraction, while
focusing on effectful programming languages.

Next, we show how evidenced frames can be constructed
from our EffHOL framework. More concretely, we provide a
method that takes a pure instance of EffHOL and defines an
evidenced frame. Roughly speaking, an evidenced frame is a
triple (Φ, E, · ·−→ ·), where Φ is a set of propositions, E is a set
of evidence, and ϕ1

e−→ ϕ2 is a evidence relation on Φ×E×Φ,
with some required relationships between the operations on
propositions and the operations on evidence.

The definition of evidenced frames is at its core very
semantical, and in particular, the universal implication requires
to define a proposition that acts like an intersection on any
set of propositions, which the syntax of HOL cannot account
for: we can not directly define propositions of an evidenced
frame as mere HOL propositions. In turn, as is usual, the
set of (semantics evidenced frame) propositions Φef we are
looking for should reflect the structure of the set of realizers
we obtain through the realizability translation. For a (closed)
HOL proposition ψ, the set of its realizers is given by a
set of closed programs ⊢ p : JψKT such that JψKSp holds.
The evidencing relation φ

e−→ ψ should reflect the triple{
JφKSp

}
x ←− e p

{
JψKSx

}
. Nonetheless, as was observed in

earlier work, in typed settings such as those coming from
modified realizability, one obtains a tripos only if the type
system admits a universal type, i.e. if the setting is essentially
untyped [54]. The present work faces similar issues, and to
circumvent this, we consider a type erasure function ⌊·⌋ and
define propositions as erasures of set of programs.

Consider a pure instance of EffHOL, with P its set of
programs (which we assume to be extended with pairs and pro-
jections to handle the conjunction). We denote by ⌊·⌋ : P → Λ
the type erasure function from P to the untyped computational
λ-calculus, i.e. the function erasing type annotations on vari-
ables, type abstractions and type applications. We write Λ for
the set of λ-terms equipped with the same reduction (up to
erasure) as P , and we write V for its set of values. Then,
propositions are defined as sets of values obtained as erasures
of programs, while evidence are (untyped) λ-terms:

Φef ≜ {⌊P⌋ | P ⊆ P ∧ ⌊P⌋ ⊆ V} Eef ≜ Λ

As highlighted in Sec. VI-A, defining the evidence relation
requires lifting a proposition φ ∈ Φef (defined in terms of
values) to a set φ intuitively comprising of computations
returning values in φ. For this we use the modality, which
transforms an expression e of index Rτ into an expression e

12

of index RM(τ) by e ≜ {◦x′ :M (τ) | ⟨x← x′⟩ x A e ◦}. For a
pure instance of EffHOL, this modality is defined internally as a
specification. By considering the (meta) set-theoretic counter-
parts of EffHOL’s logical constructs (replacing comprehension
terms by comprehension, logical membership by membership,
and quantification by meta-quantification), the definition of the
modality carries over to sets of (erased) programs, thus we
define, for any A ⊆ P , the set A ≜ {p ∈ P | ⟨x← p⟩ x ∈ A}.
We extend this definition along the erasure function by simply
taking ⌊A⌋ ≜ ⌊A⌋. With this, we can define the evidence
relation to mimic the syntactic realizability translation:

ϕ1
e−→ ϕ2 ≜ ∀p1 ∈ ϕ1.e p1 ∈ ϕ2

Theorem 8. (Φef ,Eef , ·
·−→ ·) is an evidenced frame.

In particular, since any evidenced frame defines a tri-
pos [18], connecting the dots we obtain:

Corollary 9. Any pure instance of EffHOL induces a tripos
and a realizability topos.

In fact, this construction applies to any (not necessarily
pure) instance for which the operation A to lift sets of values to
sets of programs using the modality satisfies the meta-theoretic
counterpart of the rules (Mod-I), (Mod-E), (Mon), (⇝) for sets
of programs. Interestingly, the resulting evidenced frame and
tripos neither match the usual definitions coming from a fully
typed realizability setting such as modified realizability (where
types would be accounted for in all the components of the
evidenced frame), nor the ones in an untyped setting [55]. In
a sense, by taking types into account while erasing them, this
definition lies somewhere in between these two situations, and
the precise connection between them is left for future work.

VIII. RELATED WORK

Evaluation Logic: Evaluation logic [28] is a deductive
system for reasoning about program evaluation, extending [30]
with modalities. It resembles EffHOL but with a simplified
polymorphic and kind structure and it uses two modalities.
Its higher-order extension [56] still lacks polymorphism and a
separation of logical and computational components, limiting
its ability to support typed higher-order realizability.

Syntactic Realizability: Syntactic realizability, pioneered
by Gödel [5] and Kreisel [6], translates Heyting Arithmetic
into to a simply typed purely functional programming lan-
guage (System T). Modified realizability was extended by
Paulin-Mohring [34] to verify Rocq’s extraction mechanism,
with further advancements in [10, 11]. Realizability as a trans-
lation between type systems was also studied in [57]. In the
context of interactive realizability, Birolo [58] introduces
monadic realizability which focuses on the exception-state
monad and is restricted to first-order Heyting arithmetic. Our
work extends these frameworks to higher-order logic using
effectful programming languages.

Effectful Curry-Howard: Many recent works extend for-
mal systems with logical principles and computational ef-
fects, e.g. [8, 9, 21]–[24, 59]–[68]. In particular, Pédrot and

Tabareau [24] prove that any observably effectful type the-
ory (with other standard properties) is inconsistent. While
these extensions are usually guided by specific principles
or computational capabilities such as exceptions, our work
defines a generic syntactic translation for HOL, without de-
pendencies on or direct references to the effectful realizers at
play. Recently, PCAs were extended to Monadic Combinatory
Algebras (MCAs) and used to derive an alternative formulation
of effectful realizability [55]. However, while EffHOL yields
a typed syntactic notion of realizability, MCAs lead to an
untyped semantic notion of realizability.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented a purely syntactic account of
effectful realizability within a higher-order setting. EffHOL is a
highly expressive, unified system for internally reasoning about
effectful program logics in a natural manner. The reasoning is
done internally as the language of EffHOL includes programs
that act as realizers for HOL theorems via the syntactic realiz-
ability translation. EffHOL’s strength lies in its parameteriza-
tion by a monad, capturing effectful behavior, and its natural
integration of standard programming language features, such
as typed realizers and effectful programs, enabling reasoning
about realizers in a way akin to reasoning about programs.

Since this paper focuses on syntactic realizability, due to
space constraints, we leave the presentation of a categorical
semantics for EffHOL to future paper. This involves combining
the semantics of Higher-Order Logic, System Fω , and Evalu-
ation Logic, using indexed categories for polymorphism [69],
a strong monad for computational types, along with a tripos
and a T-modality for the logical components, as in [28, 30].

Future work includes direct effect handling beyond monads
in EffHOL. This can be done by replacing the dependency on
the monad by restricting some language constructs to variables
in the spirit of dynamic logic [70]. Additionally, applying
EffHOL to a case study in a complex programming language
with effects is planned, though this requires addressing auxil-
iary details, which we reserve for future efforts. We also note
that while EffHOL follows traditional PCA-based realizability
by invoking a CbV evaluation strategy [2, 13, 45, 69], we plan
to explore alternative strategies like call-by-push-value [71],
which may reveal new computational behaviors.

A particularly interesting example is traditional realizability
interpretations à la Kleene, relying on partial combinatory
algebras (that is a partial variant of the untyped λ-calculus).
However, since the very core of such models is untyped,
obtaining them as an instance of EffHOL in a natural way
requires further structure and is left for future work.

ACKNOWLEDGMENT

We are deeply grateful to Ross Tate for his valuable ideas
and insights, which significantly shaped the direction of this
work. We also thank the anonymous reviewers for their con-
structive feedback and thoughtful suggestions, which greatly
improved the clarity and quality of this paper.

13

REFERENCES

[1] S. C. Kleene, “On the Interpretation of Intuitionistic Number Theory,”
The journal of symbolic logic, vol. 10, no. 4, pp. 109–124, 1945.

[2] P. J. Hofstra, “Partial Combinatory Algebras and Realizability
Toposes,” University of Ottowa, 2004. [Online]. Available: https:
//cspages.ucalgary.ca/∼robin/FMCS/FMCS 04/material/hofstra.pdf

[3] J.-L. Krivine, “Realizability in Classical Logic. In Interactive Models of
Computation and Program Behaviour,” Panoramas et synthèses, vol. 27,
2009.

[4] J. M. E. Hyland, P. T. Johnstone, and A. M. Pitts, “Tripos Theory,”
in Mathematical Proceedings of the Cambridge philosophical society,
vol. 88, no. 2. Cambridge University Press, 1980, pp. 205–232.

[5] V. K. Gödel, “Über eine bisher noch nicht benützte Erweiterung des
finiten Standpunktes,” dialectica, vol. 12, no. 3-4, pp. 280–287, 1958.

[6] G. Kreisel, “Interpretation of Analysis by Means of Constructive Func-
tionals of Finite Types,” in Constructivity in mathematics, A. Heyting,
Ed. North-Holland Pub. Co., 1959, pp. 101–128.

[7] J. van Oosten, “The Modified Realizability Topos,” Journal of pure and
applied algebra, vol. 116, no. 1-3, pp. 273–289, 1997.

[8] G. Jaber, G. Lewertowski, P.-M. Pédrot, M. Sozeau, and N. Tabareau,
“The Definitional Side of the Forcing,” in Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, 2016, pp. 367–
376.

[9] P. Pédrot and N. Tabareau, “Failure is Not an Option - An Exceptional
Type Theory,” in 27th European Symposium on Programming, ser.
LNCS, vol. 10801. Thessaloniki, Greece: Springer, Apr. 2018, pp.
245–271. [Online]. Available: https://hal.inria.fr/hal-01840643

[10] P. Letouzey, “A New Extraction for Coq,” in International Workshop on
Types for Proofs and Programs. Springer, 2002, pp. 200–219.

[11] Y. Forster, M. Sozeau, and N. Tabareau, “Verified Extraction from Coq
to OCaml,” Proceedings of the ACM on Programming Languages, vol. 8,
no. PLDI, pp. 52–75, 2024.

[12] J.-P. Bernardy and M. Lasson, “Realizability and Parametricity in Pure
Type Systems,” in Foundations of Software Science and Computational
Structures: 14th International Conference, FOSSACS 2011, Held as
Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2011, Saarbrücken, Germany, March 26–April 3, 2011.
Proceedings 14. Springer, 2011, pp. 108–122.

[13] R. Lepigre, “A Classical Realizability Model for a Semantical Value
Restriction,” in ESOP, ser. Lecture Notes in Computer Science, vol.
9632. Springer, 2016, pp. 476–502.

[14] E. Miquey, “A Sequent Calculus with Dependent Types for Classical
Arithmetic,” in Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, ser. LICS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 720–729. [Online].
Available: https://doi.org/10.1145/3209108.3209199

[15] G. Geoffroy, “Classical Realizability as a Classifier for
Nondeterminism,” in ACM/IEEE Symposium on Logic in Computer
Science, Oxford, United Kingdom, Jul. 2018. [Online]. Available:
https://hal.science/hal-01802215

[16] D. Ahman, C. Hriţcu, K. Maillard, G. Martı́nez, G. Plotkin, J. Protzenko,
A. Rastogi, and N. Swamy, “Dijkstra Monads for Free,” in Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, 2017, pp. 515–529.

[17] K. Maillard, D. Ahman, R. Atkey, G. Martı́nez, C. Hriţcu,
E. Rivas, and E. Tanter, “Dijkstra Monads for All,” Proc. ACM
Program. Lang., vol. 3, no. ICFP, Jul. 2019. [Online]. Available:
https://doi.org/10.1145/3341708

[18] L. Cohen, É. Miquey, and R. Tate, “Evidenced Frames: A Unifying
Framework Broadening Realizability Models,” in 2021 36th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), 2021,
pp. 1–13.

[19] L. Cohen, S. A. Faro, and R. Tate, “The Effects of Effects on Construc-
tivism,” Electronic Notes in Theoretical Computer Science, vol. 347, pp.
87–120, 2019.

[20] P. Pédrot and N. Tabareau, “An Effectful Way to Eliminate Addiction
to Dependence,” in Logic in Computer Science (LICS), 2017 32nd
Annual ACM/IEEE Symposium on, Reykjavik, Iceland, Jun. 2017,
p. 12. [Online]. Available: https://hal.inria.fr/hal-01441829

[21] S. Boulier, P.-M. Pédrot, and N. Tabareau, “The Next 700 Syntactical
Models of Type Theory,” in Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs, ser. CPP 2017. New

York, NY, USA: Association for Computing Machinery, 2017, p.
182–194. [Online]. Available: https://doi.org/10.1145/3018610.3018620

[22] P. Pédrot, N. Tabareau, H. J. Fehrmann, and É. Tanter, “A
Reasonably Exceptional Type Theory,” Proc. ACM Program. Lang.,
vol. 3, no. ICFP, pp. 108:1–108:29, 2019. [Online]. Available:
https://doi.org/10.1145/3341712

[23] P. Pédrot, “Russian Constructivism in a Prefascist Theory,” in
35th Annual ACM/IEEE Symposium on Logic in Computer Science,
Saarbrücken, Germany, H. Hermanns, L. Zhang, N. Kobayashi, and
D. Miller, Eds. ACM, 2020, pp. 782–794. [Online]. Available:
https://doi.org/10.1145/3373718.3394740

[24] P. Pédrot and N. Tabareau, “The Fire Triangle: How to Mix Substitution,
Dependent Elimination, and Effects,” Proc. ACM Program. Lang.,
vol. 4, no. POPL, pp. 58:1–58:28, 2020. [Online]. Available:
https://doi.org/10.1145/3371126

[25] T. Griffin, “A Formulae-as-type Notion of Control,” in Proceedings of
the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, ser. POPL ’90. New York, NY, USA: ACM, 1990,
pp. 47–58.

[26] J.-L. Krivine, “Dependent Choice, ‘quote’ and the Clock,” Th. Comp.
Sc., vol. 308, pp. 259–276, 2003.

[27] J.-Y. Girard, “Interprétation Fonctionnelle Et élimination Des Coupures
De L’arithmétique D’ordre Supérieur,” Ph.D. dissertation, Université
Paris Diderot - Paris 7, 1972.

[28] A. M. Pitts, “Evaluation Logic,” in IV Higher Order Workshop, Banff
1990: Proceedings of the IV Higher Order Workshop, Banff, Alberta,
Canada 10–14 September 1990. Springer, 1991, pp. 162–189.

[29] M. Vistrup, M. Sammler, and R. Jung, “Program Logics à la Carte,”
Proc. ACM Program. Lang., vol. 9, no. POPL, Jan. 2025. [Online].
Available: https://doi.org/10.1145/3704847

[30] E. Moggi, “Notions of Computation and Monads,” Information and
computation, vol. 93, no. 1, pp. 55–92, 1991.

[31] B. Jacobs, Categorical Logic and Type Theory, ser. Studies in Logic and
the Foundations of Mathematics. Amsterdam: North Holland, 1999, no.
141.

[32] J. L. Bates and R. L. Constable, “Proofs as Programs,” ACM Transac-
tions on Programming Languages and Systems (TOPLAS), vol. 7, no. 1,
pp. 113–136, 1985.

[33] V. Blot, “A Direct Computational Interpretation of Second-Order
Arithmetic via Update Recursion,” in LICS 2022 - 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haı̈fa, Israel,
Aug. 2022. [Online]. Available: https://inria.hal.science/hal-03698879

[34] C. Paulin-Mohring, “Extracting Fω’s Programs from Proofs in the
Calculus of Constructions,” in Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’89. New York, NY, USA: Association for Computing
Machinery, 1989, p. 89–104. [Online]. Available: https://doi.org/10.
1145/75277.75285

[35] J. Girard, Y. Lafont, and P. Taylor, Proofs and Types, ser. Cambridge
Tracts in Theoretical Computer Science. Cambridge University
Press, 1989. [Online]. Available: https://books.google.fr/books?id=
6JOEQgAACAAJ

[36] J. C. Reynolds, “Polymorphism is Not Set-Theoretic,” in International
Symposium on Semantics of Data Types. Springer, 1984, pp. 145–156.

[37] E. Moggi, “Computational Lambda-Calculus and Monads,” [1989]
Proceedings. Fourth Annual Symposium on Logic in Computer Science,
pp. 14–23, 1989. [Online]. Available: https://api.semanticscholar.org/
CorpusID:5411355

[38] D. Scott and D. McCarty, “Reconsidering Ordered Pairs,” The Bulletin
of Symbolic Logic, vol. 14, no. 3, pp. 379–397, 2008. [Online].
Available: http://www.jstor.org/stable/20059989

[39] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,”
Commun. ACM, vol. 12, no. 10, p. 576–580, oct 1969. [Online].
Available: https://doi.org/10.1145/363235.363259

[40] P. Oliva and T. Streicher, “On Krivine’s Realizability Interpretation of
Classical Second-Order Arithmetic,” Fundam. Inform., vol. 84, no. 2,
pp. 207–220, 2008.

[41] A. Miquel, “Existential Witness Extraction in Classical Realizability
and via a Negative Translation,” Logical Methods in Computer
Science, vol. Volume 7, Issue 2, Apr. 2011. [Online]. Available:
https://lmcs.episciences.org/1068

[42] S. Gardelle and É. Miquey, “Do CPS Translations Also Translate
Realizers?” in JFLA 2023 - 34èmes Journées Francophones des
Langages Applicatifs, T. Bourke and D. Demange, Eds., Praz-

14

https://cspages.ucalgary.ca/~robin/FMCS/FMCS_04/material/hofstra.pdf
https://cspages.ucalgary.ca/~robin/FMCS/FMCS_04/material/hofstra.pdf
https://hal.inria.fr/hal-01840643
https://doi.org/10.1145/3209108.3209199
https://hal.science/hal-01802215
https://doi.org/10.1145/3341708
https://hal.inria.fr/hal-01441829
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/3341712
https://doi.org/10.1145/3373718.3394740
https://doi.org/10.1145/3371126
https://doi.org/10.1145/3704847
https://inria.hal.science/hal-03698879
https://doi.org/10.1145/75277.75285
https://doi.org/10.1145/75277.75285
https://books.google.fr/books?id=6JOEQgAACAAJ
https://books.google.fr/books?id=6JOEQgAACAAJ
https://api.semanticscholar.org/CorpusID:5411355
https://api.semanticscholar.org/CorpusID:5411355
http://www.jstor.org/stable/20059989
https://doi.org/10.1145/363235.363259
https://lmcs.episciences.org/1068

sur-Arly, France, Jan. 2023, pp. 103–120. [Online]. Available:
https://hal.inria.fr/hal-03910311

[43] G. Munch-Maccagnoni, “Focalisation and Classical Realisability,” in
Computer Science Logic, E. Grädel and R. Kahle, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 409–423.

[44] G. Kreisel, “The Non-Derivability of ¬xA(x) → ∃x¬A(x), A(x)
Primitive Recursive, in Intuitionistic Formal Systems,” The Journal of
Symbolic Logic, vol. 23, no. 4, pp. 456–457, 1958.

[45] F. Richman, “Church’s Thesis Without Tears,” Journal of Symbolic
Logic, vol. 48, no. 3, p. 797–803, 1983.

[46] S. Berardi, M. Bezem, and T. Coquand, “On the Computational Content
of the Axiom of Choice,” Journal of Symbolic Logic, vol. 63, no. 2, pp.
600–622, 1998. [Online]. Available: http://dx.doi.org/10.2307/2586854

[47] H. Herbelin, “A Constructive Proof of Dependent Choice, Compatible
with Classical Logic,” in LICS, 2012. [Online]. Available: https:
//hal.inria.fr/hal-00697240

[48] V. Blot and C. Riba, “On Bar Recursion and Choice in a Classical
Setting,” in Programming Languages and Systems, 2013.

[49] E. Miquey, “A Sequent Calculus with Dependent Types for
Classical Arithmetic,” in LICS, 2018. [Online]. Available: https:
//doi.org/10.1145/3209108.3209199

[50] J.-L. Krivine, “Bar Recursion in Classical Realisability: Dependent
Choice and Continuum Hypothesis,” in Computer Science Logic, vol. 62,
2016. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2016/
6565

[51] A. Bauer, “What is Algebraic about Algebraic Effects and Handlers?”
2019. [Online]. Available: https://arxiv.org/abs/1807.05923

[52] G. Plotkin and J. Power, “Notions of Computation Determine Mon-
ads,” in Foundations of Software Science and Computation Structures,
M. Nielsen and U. Engberg, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 342–356.

[53] V. Blot, “A Direct Computational Interpretation of Second-Order Arith-
metic via Update Recursion,” in LICS 2022 - 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, Haı̈fa, Israel, Aug. 2022.

[54] P. LIETZ and T. STREICHER, “Impredicativity entails untypedness,”
Mathematical Structures in Computer Science, vol. 12, no. 3, p.
335–347, 2002.

[55] L. Cohen, A. Grunfeld, D. Kirst, and E. Miquey, “From Partial to
Monadic: Combinatory Algebra with Effects,” in 10th International
Conference on Formal Structures for Computation and Deduction, ser.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 337,
2025.

[56] E. Moggi, “A Semantics for Evaluation Logic,” Fundam. Inf., vol. 22,
no. 1,2, p. 117–152, apr 1995.

[57] J.-P. Bernardy and M. Lasson, “Realizability and Parametricity in Pure
Type Systems,” in Proceedings of the 14th International Conference on
Foundations of Software Science and Computational Structures: Part of
the Joint European Conferences on Theory and Practice of Software, ser.
FOSSACS’11/ETAPS’11. Berlin, Heidelberg: Springer-Verlag, 2011,
p. 108–122.

[58] G. Birolo, “Interactive Realizability, Monads and Witness Extraction,”
arXiv preprint arXiv:1304.4091, 2013.

[59] M. Baillon, A. Mahboubi, and P.-M. Pédrot, “Gardening with the
Pythia A Model of Continuity in a Dependent Setting,” in 30th EACSL
Annual Conference on Computer Science Logic (CSL 2022), ser.
Leibniz International Proceedings in Informatics (LIPIcs), F. Manea
and A. Simpson, Eds., vol. 216. Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022, pp. 5:1–5:18. [Online].
Available: https://drops.dagstuhl.de/opus/volltexte/2022/15725

[60] M. H. Escardó, “Continuity of Gödel’s System T Definable
Functionals via Effectful Forcing,” Electr. Notes Theor. Comput.
Sci., vol. 298, pp. 119–141, 2013. [Online]. Available: http:
//dx.doi.org/10.1016/j.entcs.2013.09.010

[61] T. Coquand and G. Jaber, “A Note on Forcing and Type Theory,”
Fundam. Inform., vol. 100, no. 1-4, pp. 43–52, 2010. [Online].
Available: http://dx.doi.org/10.3233/FI-2010-262

[62] ——, “A Computational Interpretation of Forcing in Type Theory,”
in Epistemology versus Ontology: Essays on the Philosophy and
Foundations of Mathematics in Honour of Per Martin-Löf, P. Dybjer,
S. Lindström, E. Palmgren, and G. Sundholm, Eds. Dordrecht:
Springer Netherlands, 2012, pp. 203–213. [Online]. Available: https:
//doi.org/10.1007/978-94-007-4435-6 10

[63] M. Bickford, L. Cohen, R. L. Constable, and V. Rahli, “Computability
Beyond Church-Turing via Choice Sequences,” in Proceedings of the

33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
ser. LICS ’18. New York, NY, USA: ACM, 2018, pp. 245–254.
[Online]. Available: http://doi.acm.org/10.1145/3209108.3209200

[64] L. Cohen and V. Rahli, “Constructing Unprejudiced Extensional Type
Theories with Choices via Modalities,” in 7th International Conference
on Formal Structures for Computation and Deduction, FSCD 2022,
August 2-5, 2022, Haifa, Israel, ser. LIPIcs, A. P. Felty, Ed., vol.
228. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp.
10:1–10:23. [Online]. Available: https://doi.org/10.4230/LIPIcs.FSCD.
2022.10

[65] M. Bickford, L. Cohen, R. L. Constable, and V. Rahli, “Open Bar -
a Brouwerian Intuitionistic Logic with a Pinch of Excluded Middle,”
in CSL, ser. LIPIcs, C. Baier and J. Goubault-Larrecq, Eds., vol. 183.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 11:1–
11:23. [Online]. Available: https://doi.org/10.4230/LIPIcs.CSL.2021.11

[66] L. Cohen and V. Rahli, “Realizing Continuity Using Stateful
Computations,” in 31st EACSL Annual Conference on Computer
Science Logic (CSL 2023), ser. Leibniz International Proceedings
in Informatics (LIPIcs), B. Klin and E. Pimentel, Eds., vol.
252. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023, pp. 15:1–15:18. [Online]. Available: https:
//drops.dagstuhl.de/opus/volltexte/2023/17476

[67] L. Cohen, B. da Rocha Paiva, V. Rahli, and A. Tosun, “Inductive
Continuity via Brouwer Trees,” in 48th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2023), ser.
Leibniz International Proceedings in Informatics (LIPIcs), J. Leroux,
S. Lombardy, and D. Peleg, Eds., vol. 272. Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023, pp. 37:1–37:16.
[Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2023/18571

[68] A. Bauer and J. E. Hanson, “The Countable Reals,” 2024. [Online].
Available: https://arxiv.org/abs/2404.01256

[69] R. A. Seely, “Categorical Semantics for Higher Order Polymorphic
Lambda Calculus,” The Journal of Symbolic Logic, vol. 52, no. 4, pp.
969–989, 1987.

[70] D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic. MIT Press, 2000.
[71] P. B. Levy, “Call-by-push-value: A subsuming paradigm,” in Interna-

tional Conference on Typed Lambda Calculi and Applications. Springer,
1999, pp. 228–243.

15

https://hal.inria.fr/hal-03910311
https://doi.org/10.2307/2586854
https://doi.org/10.2307/2586854
http://dx.doi.org/10.2307/2586854
https://hal.inria.fr/hal-00697240
https://hal.inria.fr/hal-00697240
https://doi.org/10.1145/3209108.3209199
https://doi.org/10.1145/3209108.3209199
http://drops.dagstuhl.de/opus/volltexte/2016/6565
http://drops.dagstuhl.de/opus/volltexte/2016/6565
https://arxiv.org/abs/1807.05923
https://drops.dagstuhl.de/opus/volltexte/2022/15725
http://dx.doi.org/10.1016/j.entcs.2013.09.010
http://dx.doi.org/10.1016/j.entcs.2013.09.010
http://dx.doi.org/10.3233/FI-2010-262
https://doi.org/10.1007/978-94-007-4435-6_10
https://doi.org/10.1007/978-94-007-4435-6_10
http://doi.acm.org/10.1145/3209108.3209200
https://doi.org/10.4230/LIPIcs.FSCD.2022.10
https://doi.org/10.4230/LIPIcs.FSCD.2022.10
https://doi.org/10.4230/LIPIcs.CSL.2021.11
https://drops.dagstuhl.de/opus/volltexte/2023/17476
https://drops.dagstuhl.de/opus/volltexte/2023/17476
https://drops.dagstuhl.de/opus/volltexte/2023/18571
https://arxiv.org/abs/2404.01256

	Introduction
	Overview of the Realizability Framework
	Typed realizers
	Polymorphism
	Higher-Order Logic
	Spectrum

	Higher-Order Logic
	Effectful Higher-Order Logic
	The Language of EffHOL
	Operational Semantics and Type System
	Deductive Apparatus
	Instances of EffHOL

	The Realizability Translation
	Illustrative Applications
	Krivine Classical Realizability
	Consistency of Markov's Principle
	Memoizing Countable Choice

	From syntax to semantics : the induced evidenced frame
	Related Work
	Conclusion and Future Work
	References

