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Abstract—This paper investigates the denotational invariants
of non-wellfounded and circular proofs of linear logic with least
and greatest fixed points, µLL, by providing a categorical seman-
tics. More precisely the paper successively introduces semantics
for (i) non-wellfounded pre-proofs, be they valid or not, (ii)
valid pre-proofs exploiting their validity condition by considering
an orthogonality construction on the given categorical model
and finally (iii) circular strongly valid pre-proofs, exploiting
both validity and regularity in order to define inductively the
interpretation. Then the paper investigates the semantical content
of the translation from finitary proofs to non-wellfounded proofs
and, conversely, from (strongly valid) circular proofs to finitary
proofs, showing that both translations preserve the interpretation.

I. INTRODUCTION

a) Fixed-points in formulas and proofs: In the frame-
work of logics with (co)induction (such as the µ-calculus,
logics with inductive definitions, Kleene algebras, etc...), cir-
cular and non-wellfounded proofs (allowing infinitely long
branches) have gained growing attention over the past twenty
years. Different proof systems have been considered for var-
ious logics such as classical [11]–[13], intuitionistic [17] or
linear logic [6], [23], [28], [44], as well as linear-time or
branching-time temporal logics [1], [21], [24], [36], [57], and
session-typed processes [22], [55].

Beside non-wellfounded proof systems, there are also fini-
tary proof systems that allow us to do (co)inductive reasoning.
For instance, in the case of linear logic, Baelde and Miller
considered µMALL, an extension of multiplicative additive
linear logic with induction and coinduction principles [2], [7]
in the form of Park’s rules. Such finitary proof systems usually
predate the circular ones. It seems accepted that if we want to
have a cut-elimination theorem for the finitary proof systems
with an induction principle, then the price to pay is to lose
the sub-formula property [41]. There are basically two ways
to solve this, by considering either infinitary logic in the sense
of [50], [53], or non-wellfounded proofs as above.

In non-wellfounded proofs, derivation trees are not restricted
to be finite trees anymore and this makes the logic a priori
inconsistent (See Figure 4b for an example illustrating how
one can derive any sequent): we refer to any arbitrary non-
wellfounded derivation tree as a pre-proof. A syntactic notion
of validity is then introduced to restore the consistency of

the logic, and derivation trees that satisfy this validity are
called valid pre-proofs, or simply proofs. Despite the fact
that fixed-point inference rules are much simpler compared to
finitary proof systems, the logic remains very expressive, even
when restricted to the regular fragment, that is constraining
derivations to be infinite regular trees, that we shall refer to
as circular proofs. Such circular proofs can be represented as
finite trees with back-edges (see an example below) which can
be seen as a trivial fixed-point problem on proofs.

b) Relations between finitary and non-wellfounded
proofs: The relationship between finitary and non-wellfounded
proof systems is an important and, often, difficult question
remaining open in a number of cases. In particular, in the sub-
structural versions of the µ-calculus, it is not known whether
the regular fragment of non-wellfounded proofs, coincides
with the finitary fragment. For systems with Martin-Löf’s
inductive predicates [41], Berardi and Tatsuta showed [10] that
circular and inductive proofs are not equivalent in general [13].
On the other hand, Simpson [51] and Berardi and Tatsuta [9]
showed that circular and inductive proofs are equivalent for
classical logic when both systems (inductive and circular)
contain Peano arithmetic. This question is still open for linear
logic: one essentially only knows that the provability of
µLL∞ circular proofs is strictly included in the provability of
arbitrary non-wellfounded µLL∞ proofs [20]. One inclusion
is clear however: circular proof systems derives at least as
many sequents as finitary one. Te see this, one proceeds by
“unfolding” the (co)inductive inferences using the ability to
build circular reasonings. In the case of µMALL, a use of
Park’s rule [58] (rule (νrec)):

π1

⊢ ∆, A

π2

⊢ A⊥, F [A/X]
(νrec)⊢ ∆, νX.F

can be transformed into the derivation of Figure 1 (assuming
[π1] and [π2] are obtained by recursively applying the same
transformation). Little is known about the properties of such
translations. The present paper aims at clarifying their proper-
ties at an operational level, to argue for their correctness from
a Curry–Howard correspondence perspective. Hence we first
need to develop a denotational semantics of µLL∞.



[π1]

⊢ ∆, A

[π2]

⊢ A⊥, F [A/X]

⊢ A⊥, νX.F
(FF )

⊢ (F [A/X])⊥, F [νX.F/X]
(cut)

⊢ A⊥, F [νX.F/X]
(ν)

⊢ A⊥, νX.F
(cut)

⊢ ∆, νX.F

Fig. 1: Circular unfolding of (νrec)

c) Denotational semantics: While Tarskian semantics
focus on the notion of truth and hence provability of formulas,
denotational semantics examine the proof objects and the rela-
tionships between different proofs of a formula [46], [47], [49].
In particular, it is expected that the meaning of a proof remains
unchanged during cut-reduction steps – a property commonly
referred to as the soundness theorem of a denotational model.

The fact that linear logic can be viewed, from a proof-
structural perspective, as a symmetrical refinement of intu-
itionistic logic is also reflected in the denotational models.
Considering cartesian closed categories as models of intu-
itionistic logic [37]–[39], a proof in intuitionistic logic can be
interpreted as a set function in the set-theoretical model. This
interpretation is then generalized to use relations for interpret-
ing proofs in linear logic [14], [15], [42]: the relational model
will be an important and central example of our constructions.

An interesting question in denotational semantics is how to
refine models to obtain syntactic properties in a syntax inde-
pendent way. For instance, the notion of totality in denotational
semantics offers a semantical account of the syntactic concept
of proof normalization [30], [40], [48]. In this paper, we will
address a notion of totality which allows us to distinguish pre-
proofs from the valid ones.

d) Related works: Several previous works proposed de-
notational semantics for fixed-point logics. Santocanale and
Fortier considered circular proofs for purely Additive linear
logic with fixed-points and provided a categorical interpre-
tation of circular proofs in µ-bicomplete categories [28],
[28], [44]. In this paper we will consider full linear logic.
Clairambault investigated [17], [18] the game with totality
semantics of an extension of intuitionistic logic with fixed
points in a finitary setting (independently of [29], [40]).
Baelde et al. [4] provided a denotational semantics for µMALL
(finitary) proofs in the setting of Girard’s ludics [33]. Their
interpretations of fixed points rules is based on ludics’ designs
which are infinitary objects, and the completeness result relies
on finitization of infinitary objects. A categorical model of µLL
is provided in [25] which is based on the standard notion of
Seely category of classical linear logic and on strong functors
acting on them.

e) Contributions: After recalling the necessary back-
ground in Section II, we first revisit the syntactical relationship
between the finitary and circular proofs in Section III. The
standard translation from µMALL to circular proofs is ex-
tended to µLL. In the other direction, we present a translation
from circular proofs to finitary ones under a condition called

strong validity, extending results from Doumane’s thesis [23].
In the same manner as we first define pre-proofs and then

valid pre-proofs in syntax, we first provide a categorical
semantics for non-wellfounded pre-proofs in Section IV, by
considering a Cpo structure on the categorical model of µLL
in [25]. We then refine our categorical model in Section V,
based on the focused orthogonality construction given in [34],
to capture the syntactic validity criterion. We exhibit two
simple instances of our settings. The first one is based on
the category Rel of sets and relations, and the second one
is the category of Nuts (non-uniform totality spaces), an
enrichment of Rel by considering sets equipped with an
additional structure of totality. Finally, in Section VI, we
consider the interpretation of the circular fragment: we relax
our assumption of having a Cpo-enriched category, and we
provide a parameterized interpretation of circular strongly
valid pre-proofs, exploiting both validity and regularity in
order to define inductively the interpretation function.

Our semantics is then used to investigate the denotational
content of the standard translation from finitary proofs to
non-wellfounded ones: we show that the above-mentioned
translation from finitary proofs to circular ones preserves the
semantics, suggesting that the translation is indeed correct
(Theorem 16). In the other direction, we also show that
the finitization translation of strongly valid pre-proofs also
preserves the semantics (Theorem 26).

Moreover, the paper studies some properties of this se-
mantics: the semantics is indeed sound in the sense that
each element of an infinite cut-reduction sequence of pre-
proofs converging to a cut-free valid pre-proof has the same
interpretation as its limit (Corollary 15); we also show that
valid pre-proofs are interpreted as morphisms in the focused
orthogonality category. In the case of the concrete model
Nuts, although it is not true in general that the totality of
the interpretation of a proof implies its validity, the notion of
totality in Nuts provides the most liberal notion of validity
as, intuitively, T (E) represents the total, that is, terminating
computations of type E.

A pictorial summary of the results is shown in Figure 2.
On the left side, we present the syntactical world and their
relationship, and on the right side, the semantical world
captures the different fragments of µLL∞ and the relationship
between circular strongly valid pre-proofs with µLL proofs.

A long version of this paper is available [26].

II. BACKGROUND: µLL∞ PROOFS BY EXAMPLES

In this section, we introduce the necessary background on
finite, regular and non-wellfounded proof theory of linear logic
with least and greatest fixed-points. We shall essentially work
by illustrating the notions on examples rather than providing
all the definitions, since all those notions are provided in the
literature [6], [23]; we hope that this will make simpler to
grasp those concepts. See long version [26] for details.

Linear logic (LL) was introduced by Jean-Yves Girard in his
seminal work [31] soon after Kozen provided his axiomatiza-
tion of the modal µ-calculus [36]. LL is a refinement of both
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Fig. 2: Relationships between the proof systems and the semantics considered in the paper. Plain arrows refer to interpretation
maps, dashed arrows refer to syntactic translations on proofs, dotted arrows refer to the interpretation of individual proofs.

classical and intuitionistic logic: LL is a substructural logic,
meaning that one does not have free access to the structural
rules of weakening and contraction. More precisely, we can
only weaken and contract formulas if they have been marked
with the so-called exponential modalities. The µ-calculus is a
framework allowing to enrich a logic with expression of least
and greatest fixed-points, that is speaking of inductive and
coinductive properties. The remainder of this section recalls
how one can extend LL with least and greatest fixed points
operators, first introducing the syntax of formulas, then its
finitary proof system and finally its infinitary proof system.

A. Syntax of formulas of linear logic with fixed points

Given a countable set of fixed-point variables V (X,Y . . . ),
µLL pre-formulas are inductively defined as:

A,B, · · · := 1 | A⊗B | 0 | A⊕B | !A |
⊥ | A`B | ⊤ | A&B | ?A |
X | µX.A | νX.A.

(1)

Natural numbers can be represented as nat = µX.(1⊕X).
Closed pre-formulas and capture-avoiding substitution,

A [B/X], are defined as usual, µ and ν being the only two
binders. We will almost exclusively use closed pre-formulas
which are simply referred to as µLL formulas. Negation (or
dualization) is the involution extending LL negation1 to pre-
formulas extending with (X)⊥ = X , (µX.A)⊥ = νX.(A)⊥.
For instance nat⊥ = νX.(⊥&X).

In addition to usual sub-formulas, we shall consider
Fischer-Ladner subformulas, a specific notion of sub-formula
for the µ-calculus, for which the immediate FL-subformula of
µX.A is its unfolding, A [µX.A/X]. For instance 1 ⊕ nat is

1LL negation is the involution that swaps recursively the connectives of the
second line of 1 with the one immediately above it: (⊥)⊥ = 1, (A`B)⊥ =
(A)⊥ ⊗ (B)⊥...

the immediate FL-subformula of nat. (Details are provided
in the long version [26].)

Remark 1. We will use in our proof of Theorem 20 an
alternative notion of marked formula [23] (Definition 18)
annotating the ν binder with an ordinal, as ναX.F .

In the following sections, we shall consider two proof
systems for deriving judgments concerning µLL formulas,
a finitary proof system and a non-wellfounded one. Those
proof systems derive sequents ⊢ Γ where Γ is an ordered
list of µLL formulas. Using sequents as lists allows us to
distinguish two different occurrences of the same formula
in a sequent, by referring to their respective position in the
sequent. The inference rules to be introduced in the following
subsections will be equipped with a (standard [16]) notion
of formula ancestor, relating for each inference, occurrences
of conclusion formulas to occurrences of formulas in the
premisses. The ancestry relation is defined graphically in the
proof system (as colored links) and will usually be kept
implicit on examples unless useful. When a line links a context
variable, say Γ, between a conclusion and a premise, this
means that each formula of the list is in relation with the
formula in the same position in the other list. While it is
crucial to trace formula occurrences to give a computational
and denotational content to proofs, in the following, it will
also be exploited to define what is a valid non-wellfounded
proof, using the notion of threads.

B. Finitary µLL

In the present section, we will briefly describe the syntax of
proofs of µLL [2], [35]. µLL proof system extends the usual
one-sided sequent calculus of propositional LL [31], which is
recalled in Figure 3(a), with the (µ) and (νrec) rules, given
in Figure 3(b). As an example, consider the natural number
formula nat = µX.(1⊕X), and its dual nat⊥ = νX.(⊥&X).



(a)
(Ax)

⊢ F, F⊥
⊢ Γ, F ⊢ F⊥,∆

(Cut)
⊢ Γ,∆

⊢ Γ, G, F,∆
(X)

⊢ Γ, F ,G,∆
⊢ F,G,Γ

(`)
⊢ F `G,Γ

⊢ F ,Γ ⊢ G,∆
(⊗)

⊢ F ⊗G,Γ,∆

⊢ Γ
(⊥)

⊢ ⊥,Γ
(1)

⊢ 1
⊢ F ,Γ ⊢ G,Γ

(&)
⊢ F &G,Γ

⊢ Ai,Γ
(⊕i)⊢ A1 ⊕A2,Γ

(⊤)
⊢ ⊤,Γ (no rule for 0)

⊢ F ,Γ
(?d)

⊢?F ,Γ

⊢ F , ?Γ
(!p)

⊢!F , ?Γ

⊢ Γ
(?w)

⊢?F,Γ
⊢?F , ?F,Γ

(?c)
⊢?F ,Γ

(b)
⊢ F [µX.F/X],Γ

(µ)
⊢ µX.F,Γ

⊢ F [νX.F/X],Γ
(ν)

⊢ νX.F,Γ

⊢ ∆, A ⊢ ?Γ, A⊥, F [A/X]
(νrec)⊢ ∆, ?Γ, νX.F

Fig. 3: (a) Inference rules of LL, (b) Inference rules for fixed-points

The following µLL proofs correspond to the encoding of the
natural numbers and the successor function:

π0 =

(1)
⊢ 1

(⊕1)⊢ 1⊕ nat
(µ)

⊢ nat

πk+1 =

πk
(⊕2)⊢ 1⊕ nat
(µ)

⊢ nat

πsucc =

(Ax)

⊢ nat⊥, nat
(⊕2)

⊢ nat⊥, 1⊕ nat
(µ)

⊢ nat⊥, nat

C. Non-wellfounded LL with fixed points (µLL∞)

Formulas and inferences of µLL∞ are exactly the same as
the one for µLL but except for the replacement of rule (νrec)
by the simpler rule (ν), see Figure 3. The weakness of the
inference for the greatest fixed-points is compensated by the
fact that we consider derivations having infinite branches.

a) Pre-proofs and finite representations: A µLL∞ pre-
proof is a possibly infinite tree, generated by the inference
rules of µLL∞. Among all µLL∞ pre-proofs, the regular (or
circular, or cyclic) ones are those having finitely many distinct
subtrees. Circular pre-proofs can be represented as finite proof-
trees with back-edges or labels. Such a finite graph (i.e. a
finite tree with back-edges) R can be unfolded to a unique
µLL∞ pre-proof that we call Unfold(R). This unfolding is
of course non-injective and given a pre-proof π, any R such
that Unfold(R) = π is called a finite representation of π. The
necessary technical apparatus on those finite representations is
given in Doumane’s thesis [23]: we shall follow her definitions,
recalling only the most important notions needed below .

But first, let us review examples of µLL∞ derivations,
regular or not. The proof in Figure 4a corresponds to the
function on natural numbers which sends n to (n mod 3). On
the other hand, non-wellfounded derivations can be unsound
in general: for instance one can provide a pre-proof for any
sequent ⊢ Γ (and in particular a pre-proof of the empty sequent
⊢) as in Figure 4b.

b) Thread, progress and validity: In [6], [23], a criterion,
called validity (or progress) condition, is introduced to distin-
guish proper proofs from pre-proofs. We review the criterion
on some example, and refer to [6], [23], [43] for details.

A thread on an infinite branch (Γi)∈ω of a pre-proof π is an
infinite sequence of formula occurrences t = (Fi)k≤i∈ω such
that for any i ≥ k, Fi ∈ Γi and Fi+1 is an immediate ancestor
of Fi. To each infinite branch one associates its set of threads:
it may be empty, a singleton or a finite set (when equating
threads having the same infinite suffix). For instance, the pre-
proof in Figure 4a has only one infinite branch (the rightmost
one) having exactly two threads starting from the root: t1 =
nat, nat, · · · (in red) and t2 = nat⊥,⊥ & nat⊥, nat⊥,⊥ &
nat⊥, · · · (in green) while the pre-proof in Figure 4c has an
infinite branch containing no thread.

When there are only finitely many is such that Fi is
principal in Γi, the thread is stationary: this is the case of
t1 for instance (since nat is never principal in the branch).
Similarly, the right branch of the pre-proof in Figure 4b has,
from the right premise of the cut, one stationary thread for
each formula in Γ together with one non-stationary thread
t3 = µX.X, µX.X, µX.X, · · · . Given a thread t, we denote
by Inf(t) the set of recurring formulas, that occur infinitely
often in t. For instance Inf(t2) = {nat⊥,⊥&nat⊥}. We define
valid (or progressing) threads as those non-stationary threads
t such that Inf(t) has as minimum (wrt. the sub-formula
ordering) a ν-formula. E.g. t2 is a valid thread since nat⊥

is a ν-formula and a subformula of ⊥&nat⊥, while t1 and t3
are not progressing as t1 is stationary and Inf(t3) = {µX.X}.
(We provide details on µLL∞ subformulas and the minimality
invoked above in the long version [26].)

A valid µLL∞ proof (or µLL∞ proof , for short) is a
pre-proof such that all its infinite branches contain a valid
thread. E.g. the pre-proof in Figure 4a is a proof while that of
Figure 4b is not. Indeed, the right-branch of the latter contains
no valid thread: its only non-stationary thread, t3, is not valid.

c) On validity of finite representations: The above
notions of infinite branch, thread and validity on non-
wellfounded proofs readily apply to the regular fragment and
can naturally be adapted to finite representations of circular
proofs. To emphasize that we refer to a finite representation,
we shall in that case (as in [23] where the correspondence is
formally established) speak of an infinite path, a trace (ie. a
sequence of ancestor-related formula occurrences of a finite



π≡3
=

πnat
0

(⊥)
⊢ nat,⊥

πnat
1

(⊥)
⊢ nat,⊥

πnat
2

(⊥)
⊢ nat,⊥ ⊢ nat, nat⊥

(&)
⊢ nat,⊥& nat⊥

(ν)
⊢ nat, nat⊥

(&)
⊢ nat,⊥& nat⊥

(ν)
⊢ nat, nat⊥

(&)
⊢ nat,⊥& nat⊥

(ν)
⊢ nat, nat⊥

(a) π≡3 , valid pre-proof representing mod3.

⊢ νX.X
(ν)

⊢ νX.X
(ν)

⊢ νX.X

⊢ Γ, µX.X
(µ)

⊢ Γ, µX.X
(µ)

⊢ Γ, µX.X
(cut)

⊢ Γ

(b) An invalid pre-proof

⊢νX.X
(ν)

⊢ νX.X
(ν)

⊢ νX.X

(ax)
⊢ νX.X, µX.X

(µ)
⊢ νX.X, µX.X

(cut)
⊢ νX.X

(c) A pre-proof containing no threads

πΓ;G =

πΓ,G;G
σ

⊢ Γ, G,G
(`)

⊢ Γ, G`G
(⊕2)⊢ Γ, 1⊕ (G`G)
(ν)

⊢ Γ, G

(d) A non regular pre-proof

Fig. 4: Some µLL∞ regular derivations

representation) and of a valid trace (corresponding respec-
tively to an infinite branch, a thread and a valid thread). Finite
representations also allow us to consider some sets of branches
having common properties, for instance by considering the
strongly connected component of a finite representation.

d) Cut-reductions: The set of primitive (single step)
reduction rules of µLL∞ are the ones for LL plus the reduction
in Figure 5 together with the corresponding commutation rules
(See Figure 3.2 of [23]). Various cut-elimination theorems
on non-wellfounded proofs are proved in [3], [6], [23] and
especially of µLL∞ itself [45] but the rest of the paper does
not rely on those normalization results.

e) Functoriality: We end this section by stating the
functoriality of µLL∞ which we will use in Section III:

Proposition 1. Let (X,Y1, . . . , Yk) be a list of pairwise dis-
tinct propositional variables containing all the free variables
of a formula F and let

−→
C = (C1, . . . , Ck) be a sequence of

closed formulas. The following rule is admissible in µLL∞:

⊢ ?Γ, A⊥, B
(FF )

⊢ ?Γ, (F [A/X,
−→
C/

−→
Y ])⊥, F [B/X,

−→
C/

−→
Y ]

Proof. The proof is done by induction on the formula F (See
Definition 2.38 of [23] for details). Exponentials do not modify
the proof in any non trivial way [35].

III. CIRCULAR VS FINITARY PROOFS

Relating finitary proof and regular non-wellfounded proofs
[9]–[12], [23], [51] is notoriously difficult. In this section,
we will study the syntactic relation between the circular
µLL∞ proofs and µLL proofs by reviewing and extending
known results about translations between finitary and circular
proofs, in µLL. Their semantical relation will be studied in
Sections IV-B and VI-A.

A. Unfolding µLL proofs to circular proofs

As it is discussed in [23] for a wide class of fixed-point
sequent calculi, provability of a sequent in a finitary sequent

calculus with Park’s rule entails its provability in the associ-
ated non-wellfounded sequent calculus. This can be done by
translating a proof π of the finitary proof system to a circular
proof, Trans (π), in the non-wellfounded proof system. Here,
we straightforwardly adapt the result from Doumane’s thesis
to µLL. (Our version of µLL differs from the µLL calculus
considered in [23] as we use a more powerful (νrec) rule.)

Definition 2 (Trans (π)). We define, by induction on the
structure of a µLL proof π, a µLL∞ pre-proof Trans (π)
deriving the same sequent as π. We show only the (νrec) case
as the other ones are trivially defined homomorphically:

Trans

(
π1

⊢ ∆, A

π2

⊢ ?Γ, A⊥, F [A/X]
(νrec)⊢ ∆, ?Γ, νX.F

)
=

Trans (π1)

⊢ ∆, A

Trans (π2)

⊢ ?Γ, A⊥, F [A/X]

⊢ ?Γ, A⊥, νX.F
(FF )

⊢ ?Γ, (F [A/X])⊥, F [νX.F/X]
(cut)

⊢ ?Γ, ?Γ, A⊥, F [νX.F/X]
(ν)

⊢ ?Γ, ?Γ, A⊥, νX.F
(c)

⊢ ?Γ, A⊥, νX.F
(cut)

⊢ ∆, ?Γ, νX.F

The long version [26] provides details on this definition.
The following is proved similarly to Proposition 2.14 of [23].

Proposition 3. For any µLL proof π ⊢ Γ, Trans (π) is a µLL∞
proof of ⊢ Γ.

B. From circular to finitary proofs

Translating circular proofs to finitary ones is much more
involved: it involves finding the appropriate co-inductive in-
variants for Park’s rule (νrec) by looking at the circular proof,
which does not contain such invariants.

While we do not know of any general translation from
µLL∞ circular proofs into finitary ones, there are however
some proper fragments of µLL∞ for which the structure of
validity conditions is simple enough so as to allow us to
extract invariants. The simplest such fragment corresponds to
Santocanale and Fortier’s setting [28] for circular proofs, that



π
⊢ Γ, F [µX.F/X]

(µ)
⊢ Γ, µX.F

π′

⊢ ∆, F⊥ [νX.F⊥/X
]
(ν)

⊢ ∆, νX.F⊥
(cut)

⊢ Γ,∆

7−→cut

π
⊢ Γ, F [µX.F/X]

π′

⊢ ∆, F⊥ [νX.F⊥/X
]
(cut)

⊢ Γ,∆

Fig. 5: (µ)− (ν) key cut-elimination reduction

is µALL∞ in which any circular proof can be finitized to a
µALL proof. This was partially extended to µLL∞ as well by
Doumane [23] considering a fragment of translatable circular
proofs characterized by the condition that the proof has a
circular representation in which along every infinite path, there
exists a strongly valid trace t, i.e. such that exactly one formula
of each recurring sequent of the circular representation is
visited by t. Such a finitization was first considered in the
study of an interpretation of µMALL in Ludics [5], and then
used for the linear-time µ-calculus [24] and finally stated in
a general way in Doumane’s PhD [23] as the translatability
condition. Below, we relax Doumane’s condition and obtain a
weaker but still sufficient condition to finitize µLL∞ proofs:
we finitize more circular µLL∞ proofs.

Definition 4 (Trace-recurring formulas). Given a circular
representation R, a sequent s in R and a trace t on R,
Rec(t, s) as the set of formula occurrences of s which are
visited infinitely often by t: an occurrence F of s belongs to
Rec(t, s) if there are infinitely many i s.t. ti = (s, j), with F
being the occurrence s(j).

Definition 5 (Strong validity). Let R be a circular representa-
tion and p an infinite path on R. A trace t is strongly valid if
(i) t is valid and if for every sequent s of R which is conclusion
of a ν-rule unfolding the minimal recurring formula of t,
Rec(t, s) is a singleton and (ii) for each back-edge (s, s′) in
R, Rec(t, s) = Rec(t, s′). A finite representation R is strongly
valid, if every infinite path in R admits a strongly valid trace.
A circular pre-proof π is strongly valid if it admits a strongly
valid finite representation.

Example 6. The proof in Figure 6a is strongly valid but not
that in Figure 6b. The circular derivation in Figure 6b defines
a valid proof π∞ with F = µX.((X `G) & (X `H)), G =
νX.(X ⊕ ⊥), H = νX.(⊥ ⊕ X), I = µZ.((Z ` J) ⊕ ⊥),
J = µX.((K ` X) ⊕ ⊥) and K = νY.µZ.((Z ` µX(Y `
X) ⊕ ⊥) ⊕ ⊥). π∞ is an example of a valid circular proof
having a complex validity structure, with three types of infinite
branches, one for each strongly connected component [43].
(See the long version [26] for more details.)

In particular, paths visiting infinitely all sequents of the
finite representation are validated by a trace that progresses
on K but that visits both I , J , and K; we mark in red in
Figure 6b where the strong validity condition is violated.

On the other hand, that the proof of Figure 6a is not strongly
valid for Doumane’s definition of translatability as the only
trace validating a path visiting infinitely all sequents has V
as minimal formula and must visit both occurrences of V
in sequent ⊢ B, V, V , which is forbidden in the criterion

from [23]. (See the long version [26] for more in-depth
discussions of the difference between the two criteria.)

Strong validity is a sufficient condition for finitization:

Proposition 7. If ⊢ Γ has a strongly valid proof in µLL∞, it
is provable in µLL.

In the following, we will show how to build a µLL proof
πfin given any µLL∞ strongly valid proof. We first recall
some results by Doumane that apply independently of the
extension of the criterion. We then explain our finitization
process which generalizes Doumane’s translatability criterion.
Note that, while our construction extends very significantly her
previous results [23], our proof follows the exact same ideas
and does not present much difficulties.

As a consequence, we will mostly focus below on the
definition of ⇑(R) that will be used in the following sections
investigating the semantics of proofs.

Definition 8 (Invariant formula). Let νX.F,Γ be a list of µLL
formulas. The invariant formula IFΓ is νX.(F ⊕ (`Γ)⊥).

Proposition 9 ( [23], Prop. 2.15). The following rules are
µLL-derivable:
⊢ ∆ [νX.F/X]

(subst)
⊢ ∆

[
IFΓ /X

] (close)
⊢ IFΓ ,Γ

⊢ ∆, F
[
IFΓ /X

]
(unfold)

⊢ ∆, IFΓ
Moreover, (subst) and (unfold) are circularly derivable in
µLL∞.

In order to show the finitization results, we adopt the
same measures on finite representations size(R) as it is done
Definition 2.45 of [23]:

Definition 10. Let nax(π) and elc(π) be the numbers of
the non-axiom rules in π and the numbers of the elemen-
tary cycles in π respectively. size(π) is defined as the pair
(elc(π), nax(π)), ordered lexicographically.

The finitization process “propagates” the invariant formula
in the circular proof so as to remove back-edges using (close).
We now define the proof pattern, ⇑(R), which performs this
task and will serve to interpret circular proofs:

Definition 11. Let P be a strongly connected finite representa-
tion of a strongly valid proof of ⊢ Γ, νX.F and t be a strongly
valid trace of minimal recurring formula νX.F visiting every
sequent of P infinitely often. Let P be as follows: We define
finite representation ⇑(R) of conclusion ⊢ Γ, F

[
IFΓ /X

]
(for

R the premise of the concluding (ν) of P ) inductively on the
structure of R (disregarding the back-edges from the inductive
tree structure of course) and by case on the last rule. We shall
maintain the following invariant : if S has conclusion sequent
s =⊢ ∆,Σ [νX.F/X] where Rec(t, s) = Σ [νX.F/X] (Σ may



⊢B, V, V
(`)

⊢ B, V ` V
(ν)

⊢ B, V

⊢ B, V, V
(`)

⊢ B, V ` V
(ν)

⊢ B, V
(⊗)

⊢ B ⊗B, V, V
(µ)

⊢ B, V, V

(a) A strongly valid proof.

⊢F,G,H, I, J
(ν)(⊕2)⊢ F,G,H, I, J
(µ)(⊕1)(`)

⊢ F,G,H, I
(µ)(⊕2)(⊥)

⊢ F,G,H, I, J
(`)

⊢ F `G,H, I, J
(ν)(⊕2)(⊥)

⊢ F `G,G,H, I, J

⊢ F,G,H, I, J
(ν)(⊕1)⊢ F,G,H, I, J
(ν)

⊢ F,G,H,K, J
(µ)(⊕1)(`)

⊢ F,G,H, J
(µ)(⊕2)(⊥)

⊢ F,G,H, I, J
(X)

⊢ F,H,G, I, J
(`)

⊢ F `H,G, I, J
(ν)(⊕1)(⊥)

⊢ F `H,G,H, I, J
(&)

⊢ (F `G) & (F `H), G,H, I, J
(µ)

⊢ F ,G,H, I, J

(b) The valid but not strongly valid proof π∞.

Fig. 6

be empty), then ⇑(S) has conclusion ⊢ ∆,Σ
[
IFΓ /X

]
. ⇑(S)

is defined as:
• Base case: that is if s is source of a back-edge. If the

back-edge points to the root i.e. ∆ = Γ,Σ = X then ⇑(S)
is the derivation of the (close) given by Proposition 9.
Otherwise, it points to some other node, in which case
we let the back-edge as is (indeed, by the invariant we
maintain, the target of the back-edge is ⊢ ∆,Σ

[
IFΓ /X

]
).

• If S =

(
R′

l

⊢ ∆l,Σl [νX.F/X] ,Ξl [νX.F/X]

)
l∈L

(r)
⊢ ∆,Σ [νX.F/X]

with Rec(t, s) = Σ [νX.F/X] and Rec(t,⊢
∆l,Σl [νX.F/X] ,Ξl [νX.F/X]) = Σl [νX.F/X]:

(i) if r = (ν) unfolding νX.F (then L = {⋆}, Σ⋆ =

Σ = X and Ξ⋆ = ∅) ⇑(S) =

⇑(R′)

⊢ Γ, F
[
IFΓ /X

]
(unfold)

⊢ Γ, IFΓ
otherwise

(ii) ⇑(S) =


⇑(R′

l)

⊢ ∆l,Σl

[
IFΓ /X

]
,Ξl [νX.F/X]

(subst)
⊢ ∆l,Σl

[
IFΓ /X

]
,Ξl

[
IFΓ /X

]


l∈L
(r)

⊢ ∆,Σ
[
IFΓ /X

]
Thanks to the previous definition, we can now easily prove

Proposition 7. (See details in the long version [26].)

Proof of Proposition 7. The proof goes by induction on
size(π) with a base case when elc(π) = 0: in that case,
π has no back-edge as the finitization is the identity map.
Otherwise, there are two cases: either the finite representation,
R, associated to π is strongly connected as graph or it is not.

▷ Assuming that R is strongly connected. Then, there is an
infinite path p that visits all the sequents of R and an associated
strongly valid trace t of minimal formula νXA. Wlog, assume
that a sequent where the minimal formula of t has been
unfolded, ⊢ Γ⊥, νXA, is the conclusion of R. We are in the
situation of Definition 11.

We can now consider the strongly valid finite representation
⇑(R) of ⊢ Γ⊥, A

[
IAΓ /X

]
. The complexity of the proof ⇑(π)

is strictly less than that of π, since elc(⇑(π)) < elc(π). So,
by induction hypothesis, there is a µLL (finite) proof ρ of

⊢ Γ⊥, A
[
IAΓ /X

]
. In this case, the πfin is defined as follows

where the rightmost proof of ⊢ IAΓ ,Γ⊥ is the derived rule
(close) from Proposition 9 and AI denotes A

[
IAΓ /X

]
.

(ax)
⊢ A⊥

I , AI

ρ

⊢ Γ⊥, AI
(&)

⊢ A⊥ [(IAΓ )⊥/X
]
& Γ⊥, AI

(µ)
⊢ (IAΓ )⊥, A

[
IAΓ /X

]
(ax)

⊢ Γ,Γ⊥
(⊕2)

⊢ A
[
IAΓ /X

]
⊕ Γ,Γ⊥

(ν)
⊢ IAΓ ,Γ⊥

(νrec)
⊢ Γ⊥, νXA

(2)

▷ We now consider the case that R is not strongly connected,
then there are two sequents ⊢ Γ and ⊢ ∆ such that there
is no path from ⊢ Γ to ⊢ ∆. Let R1 be the part of R
which is reachable from ⊢ Γ, and let R2 be obtained from
R by adding an auxiliary rule r on ⊢ Γ and taking the
reachable part from the conclusion of R. R1, R2 respectively
correspond to strongly valid circular proofs π1 and π2. Since
R1 does not have ⊢ Γ among its non-axiomatic rules, we
have nax(R1) < nax(R), and then by induction hypothesis
we have πfin

1 a finitization of π1. By removing ⊢ Γ from R2,
we have nax(R2) < nax(R). Hence, by induction hypothesis,
we have πfin

2 , a finitization of π1. As πfin is simply defined
by plugging two proofs πfin

1 and πfin
2 at the assumption leaf

introduced above.

Remark 2. To keep the presentation simple, we made a
slight simplification on finite representations of circular proofs
referring to finite trees with back-edges which are simpler to
describe, more intuitive and sufficient to explain our results.
Still, the actual representation used for circular representa-
tions is that of a graph with input node, it is for instance
needed to carry out the induction of the previous proof. For
instance, any circular proof can be represented in the graph-
formalism of such that it corresponds to a finite tree with back-
edges. (meaning that for all nodes, all incoming edges but one
are “renaming rules” used in Def 2.30 of [23].)

Remark 3. From Definition 11, we can define πfin from a
strongly valid circular representation of π by induction on
size(π). Notice that the finite proof πfin is not uniquely defined
for a given strongly valid proof: it depends (i) on a choice of a
finite representation of π, (ii) on a set of strongly valid traces



and (iii) on a choice of one strongly valid trace for each
strongly connected component of R.

Notice also that our class of strongly valid proofs obviously
contains all the unfoldings of finitary proofs (already included
in Doumane’s translatable proofs). Notice that the above
method does not apply to π∞ (defined in Figure 6b).

IV. SEMANTICS OF µLL∞ PRE-PROOFS

In this section, we show that one can obtain a categorical
axiomatization of models of µLL∞ pre-proofs by assuming a
Cpo structure on the categorical model of µLL [25].

Definition 12. A categorical model of µLL∞ pre-proofs is a
pair (L,−→L ) where

1) L is a model of linear logic, i.e. a Seely category [42].
2)

−→L = (Ln)n∈N with Ln a class of strong functors Ln →
L, and L0 = Obj(L).

3) all k projection strong functors Lk → L belong to Lk as
well as X ◦ −→

X for X ∈ Ln and Xi ∈ Lk for 1 ≤ i ≤ n.
4) the strong functors ⊗ and & belong to L2, the strong

functor ! belongs to L1 and, if X ∈ Ln, then (X)⊥ ∈ Ln.
5) for all X ∈ L1 the category CoalgL(X) of coalgebras

of the functor X 2 has a final object. Moreover, for any
X ∈ Lk+1, the associated strong functor νX : Lk → L
belongs to Lk.

6) and last, L is a Cpo-enriched category s.t. greatest lower
bounds of any non-empty set exist in each hom-set

Items 1-5 define what is known as a model of µLL [25].
We interpret a formula A with repetition-free sequence−→

X = (X1, . . . , Xk) of fixed-point variables containing all free
variables of A as an element in Lk, called JAK−→

X
by induction

on the formulas in the obvious way, e.g. JA⊗BK−→
X

=
⊗ ◦ (JAK−→

X
, JBK−→

X
) considering ⊗ ∈ L2, and JνX.AK−→

X
=

ν(JAK−→
X,X

) 3. Then one also has JA⊥K−→
X

= (JAK−→
X
)⊥ up to a

natural isomorphism which allows us to define other formulas
by De Morgan duality.

The interpretation a µLL∞ pre-proof π follows the classical
approach of understanding an infinite object as the limit of its
finite approximations. As usual to handle this approximation
we assume to have this rule: (Ω)

Γ for any sequent Γ in
the inference rules of µLL∞, and we interpret (Ω) as the
least element of L(1, 1). The interpretation of our finite
approximations requires semantics of LL rules which is given,
for instance in [42], and we also recall them in the long
version, plus interpretation of the (ν) and (µ) rules:u
v

π

⊢ Γ, F [µX.F/X]
(µ)

⊢ Γ, µX.F

}
~ = JπK

u
v

π

⊢ Γ, F [νX.F/X]
(ν)

⊢ Γ, νX.F

}
~ = JπK

2X is the the underlying functor of the strong functor X.
3We assume that the iso between νF and F (νF ) is always the identity as

this holds in our concrete models. This assumption is highly debatable from
the view point of category theory where the notion of equality of objects is
not really meaningful. It will be dropped in a longer version of this paper.

Definition 13. Let π be a µLL∞ pre-proof of ⊢ Γ, we define
JπK∞ as

⋃
ρ∈fin(π)JρK where fin(π) is the set of all finite sub-

pre-proofs of π (we can do this, thanks to the (Ω) rule), and⋃
is the supremum of the directed subsets in L(1, JΓK).
From now on, we drop the subscript ∞ (as for other models

later on) from notation J K whenever it is clear from context.
The soundness of our semantics follows a general result

on the semantics of any Cauchy sequence of pre-proofs
(Lemma 14): the set of µLL∞ pre-proofs is the metric comple-
tion of finite proofs, a standard in the literature [8], [54], [56],
with respect to the metric on pre-proofs given in Section II.

Lemma 14. Let (πi) be a Cauchy sequence. Then
Jlimn→∞ πiK =

⋃
i

⋂
j>iJπjK.

Proof sketch. The proof amounts to noting that for each finite
approximant π′ of the limit proof limn→∞ πi, there exists an
i such that for all j > i, π′ is a finite sub-pre-proof of all πj .
Hence Jπ′K is less than JπjK for all j > i, so, Jπ′K ⊆ ⋂j>iJπjK
(here ⊆ denotes the partial order on the hom-sets).

Corollary 15. If π and π′ are proofs of ⊢ Γ and π reduces
to π′ by the cut-elimination rules of µLL∞, then JπK = Jπ′K.

A. Rel as a concrete model of µLL∞
Let Reln be the class of all n-ary strong functors F where

F is a locally continuous and strict in the sense that it
maps inclusions to inclusions, and for all

−→
E ,

−→
F ∈ Reln

and all directed set D ⊆ Reln(
−→
E ,

−→
F ), one has F(

⋃
D) =⋃ {F(−→s ) | −→s ∈ D}. We know that (Rel, (Reln)n∈N) is a

model of µLL [25]. Since Rel is a Cpo enriched category
such that any non-empty subset of each hom-set has glb,
(Rel, (Reln)n∈N) is also a model of µLL∞.

As an example, consider the circular proof π≡3 (Figure 4a).
The interpretation of πnat

k in Rel is, up to an iso, the natural
number k, and we denote it by k , i.e Jπnat

k KRel = k. To
compute interpretation of π≡3

, we need to take supremum of
the interpretation of all finite sub pre-proofs. For example,
imagine that in the proof π≡3 above, we do a Ω rule instead
of the back-edge, and called this proof σ. Then we have
JσKRel = {(2, (2, (2, (1, ∗))), (1, (2, (1, ∗))), (0, (1, ∗)))}, so,
up to an iso we have JσKRel = {(2, 2), (1, 1), (0, 0)}. If we
do one more step, then (0, 3) ∈ Jπ≡3

KRel. Hence, Jπ≡3
KRel =

{(n,m) | n = m mod 3}.
Another example of a µLL∞ model is coherence spaces that

we do not discuss further in the present paper.

B. Preservation of the interpretation by unfolding finite proofs

We can now prove that our semantics is preserved via the
operation Trans () (see Section III). Notice that if we associate
a system of equations on the morphisms of the category L to
a circular proof, then the interpretation from Definition 13 is
a solution of the corresponding system of equations.

Theorem 16. Let (L,−→L ) be a µLL∞ model, π a µLL proof.
Then JπK = JTrans (π)K∞ where J K is the semantics in a µLL
model.



Proof sketch. The proof goes by induction on the structure of
π and case distinction on its last rule, using functoriality and
using the universal property of the final coalgebra. Details of
the proof are provided in the long version.

V. SEMANTICS OF µLL∞ PROOFS

In the previous section, we provided the interpretation of
pre-proofs, disregarding proof validity. In this section, we will
provide a refinement of our µLL∞ model based on the orthog-
onality construction given in [34], and show that valid proofs
will be interpreted as morphisms in the orthogonality category
where the orthogonality relation satisfies a property called
focused orthogonality. Nevertheless the model of pre-proofs
given in Section IV is an important step, as the interpretation
of proofs in the more-refined focused orthogonality model will
be the same as their interpretation, considered as pre-proofs,
in the CPO model. Hence, results of the CPO model such as
soundness (Corollary 15) and preservation of semantics can
be applied directly (Theorem 16) to this orthogonality model.

A. Preliminaries on orthogonality categories

We first recall some definitions (see [34] for more details).
Let L be a *-autonomous category with monoidal units 1 and
⊥. An orthogonality relation is a family of subsets ⊥c ⊆
L(1, c) × L(c,⊥) indexed by objects c ∈ L and satisfying
some compatibility conditions with respect to the linear logic
structure [34]. For a subset X ⊆ L(1, c), its orthogonal X⊥

is X⊥ := {y : c → ⊥ | ∀x ∈ X (x⊥cy)}. And dually, for
a subset Y ⊆ L(c,⊥), we have Y ⊥ := {x : 1 → c | ∀y ∈
Y (x⊥cy)}. Finally we denote by D(c) the set {X ⊆ L(1, c) |
X = X⊥⊥}: one can see that D(c) is a complete lattice.
In this paper, we will restrict to the special case where the
orthogonality relation arises from a distinguished subset ‚⊂
L(1,⊥), the pole, as follows: ⊥c := {(x, y) ∈ L(1, c)×
L(c,⊥) | y ◦ x ∈‚}.

We then define the focused orthogonality category [34] as:

Definition 17. The focused orthogonality category O‚(L) of
a category L with ‚⊂ L(1,⊥) has as objects the pairs (c,X)
with c ∈ L, X ∈ D(c), and as morphisms f : (c,X) → (d, Y )
the f : c → d in L s.t. ∀x ∈ X. f ◦ x ∈ Y .

B. Semantics of µLL∞ in O‚(L)
1) Interpretation of formulas: Given a closed µLL∞ for-

mula A, we denote by JAKO‚(L) the interpretation of A in
O‚(L), so that JAKO‚(L) is a pair (JAKL,O(JAKO‚(L)))
where O(JAKO‚(L)) ∈ D(JAKL).

O‚(L) O‚(L)

L L

JAKO‚(L)

U U

JAKL

Let (L,−→L ) be a µLL∞ model
with a pole ‚⊆ L(1,⊥). We know
how to interpret the LL formulas in
O‚(L) using Theorem 54 of [34].
For the fixed-point formulas µXA
and νXA, we know, by induction hypothesis, that JAKO‚(L)

exists and it is lifting of the functor JAKL : L → L in the fol-
lowing sense where U is the forgetful functor, as depicted on
the right. Using Corollary 3.4 of [27], we know that the initial
algebra and final coalgebra of the endofunctor JAKO‚(L) exist,

and we take them respectively as the interpretation of µXA
and νXA 4. (We included the construction of JµXAKO‚(L)

and JµXAKO‚(L) in the long version, as they will be used in
the proof of Lemma 19.)

2) Interpretation of proofs: In section IV, we defined the
interpretation of a pre-proof π of ⊢ Γ as a morphism JπKO‚(L)

in L(1, JΓK). We will prove that if the proof π is a valid proof,
then JπK is a morphism in the orthogonality category O‚(L).
We simplify the notation JAKO‚(L) by JAK

The proof method is similar to the proof of soundness
of LKIDω in [11]. However the system of [11] is classical
logic with inductive definitions, and their proof is for a
Tarskian semantics. We need to adapt that proof in two aspects:
considering µLL∞ instead of LKIDω , and trying to deal with
a denotational semantics instead of a Tarskian semantics. The
adaptation for µLL∞ is somehow done in [23], as there is
soundness theorem for µMALL∞ with respect to the truncated
truth semantics (a Tarskian semantics). So, basically, the main
point of our proof is turning a Tarskian soundness theorem into
a denotational soundness theorem. Following this approach,
the crucial lemma is Lemma 19 which its proofs is essentially
constructing an infinite branch inductively using properties of
orthogonality, and also providing a non-increasing sequence
of ordinals that decreases infinitely often so that it ends the
proof by contradiction.

We first borrowed the following definition from [23].

Definition 18. The marked formulas of µLL∞ are defined as:

A,B, · · · := 1 | 0 | ⊥ | ⊤ | A⊕B | A⊗B | A&B
| A`B | ?A | !B | X | µX.F | ναX.F

(3)

for α an ordinal. A◦ denotes the label-stripped formula A.

In O‚(L), ναX.F is interpreted as (JνX.F ◦KL, Uα); other
marked formulas are interpreted as usual.

To complete the proof of our goal, we need the following
crucial lemma which its proof follows essentially construct-
ing an infinite branch inductively using properties of the
orthogonality, and providing a non-increasing sequence of
ordinals that decreases infinitely often to end the proof by
contradiction. (Full details are provided in the long version.)

Lemma 19. If π is a proof of ⊢ Γ and JπK ̸∈ O((JΓK)), then
1) π has an infinite branch γ = (⊢ Γi)i∈ω such that JπiK ̸∈

O(JΓiK) where πi is the sub-proof of π rooted in ⊢ Γi

2) and there exists a sequence of functions (fi)i∈ω where fi
maps formulas D of Γi to a marked formula fi(D) s.t.
(i) (fi(D))◦ = D, (ii) one can write Γi = Γ′

i, C, (iii)
and there exists x ∈ O(J(fi(Γ′

i))
⊥K) such that JπiK.x ̸∈

O(Jfi(C)K) where Γ′
i = Ai

1, · · · , Ai
ni

and J(fi(Γ′
i))

⊥K =
(Jfi(Ai

1)K)⊥ ⊗ · · · ⊗ (Jfi(Ai
ni
)K)⊥.

Now, we can state and prove our main result of this section.

Theorem 20. If π is a valid proof of the sequent ⊢ Γ, then
JπK ∈ O(JΓK).

4To have a more simple notation, we have only provided the interpretation
of formulas with a single free variable. One can do it for any formulas in the
obvious way.



Proof. Let us assume JπK ̸∈ O(JΓK). We can then apply
Lemma 19 to obtain an infinite branch (⊢ Γi)i∈ω and a
sequence (fi)i∈ω satisfying properties 1 and 2 of Lemma 19.
By the definition of a valid proof, there exists a valid thread
t = (Fi)i∈ω for the infinite branch (⊢ Γi)i∈ω . Let νXF
be the minimal formula of t. So, there are infinitely many
times in t that we use a ν rule to unfold νXF . Let (ik)k∈ω

be the sequence of indices where νXF gets unfolded. Then
νXF in the sequent Γik is a sub-occurrence of νXF in the
sequent Γik′ for k ⩾ k′. By the property 2 of Lemma 19,
fik(νXF ) = ναkX.fik(F ). Therefore, by the property 2 of
Lemma 19 and by the construction of the fi in the proof of
Lemma 19, the sequence (αk)k∈ω is strictly decreasing. This
contradicts the well-foundedness property of the ordinals: we
conclude that JπK ∈ O(JΓK).

We denote by 1O‚(L) the unit (1,O(1)) of the tensor in
the category O‚(L).
Corollary 21. If π is a valid proof of ⊢ Γ, then JπK ∈
O‚(L)(1O‚(L), JΓK).
Proof. Let us assume JπK ̸∈ O‚(L)(1O‚(L), JΓK). So, there is
x ∈ O(1) such that JπK ◦ x ̸∈ O(JΓK). We know that D(1) =
{X ⊆ L(1, 1) | X = X⊥⊥} = {{Id1}}. So, x = Id1, and
JπK ◦ x = JπK ̸∈ O(Γ) which contradicts Theorem 20.

Remark 4. The fact that we have considered focused orthog-
onality is important in our work, as we use it a lot in the
proof of Lemma 19. This assumption is also essential in the
construction of fixed-point in [27].

Remark 5. The category O‚(L) is not necessarily a µLL∞
model in the sense of Definition 12, as it can be a non
cpo-enriched category. We will see an example of this in
Section V-C. Nonetheless, the interpretation of µLL∞ proofs
are the same in both categories, i.e. JπKO‚(L) = JπKL.

We end this section by a corollary about the notion of
bouncing validity, which generalize the validity criterion in
order to take into account axioms and cuts rules [3].

Corollary 22. Let π be a bouncing valid proof of the sequent
⊢ Γ. JπK ∈ O(JΓK).
Proof. By the cut-elimination theorem of bouncing proofs
(Theorem 5.1 of [3]), π will be reduce to a valid cut-free π′.
By Corollary 15, we know that JπK = Jπ′K. Moreover, we have
Jπ′K ∈ O(JΓK) by Theorem 20. Hence JπK ∈ O(JΓK).
C. Valid proofs as total elements

If we consider the category Rel and the pole ‚Rel=
{{id}}, the category O‚Rel

(Rel) is the category of non-
uniform totality spaces (Nuts) studied in [25]. Explicitly,
for a set A and a subset X ⊆ Rel(1, A) = P(A), one has
X⊥ = {u′ ⊆ A | ∀u ∈ X u ∩ u′ ̸= ∅}. An object of Nuts
is a pair E = (|E|, T (E)) where |E| is a set, and T (E) is a
totality candidate on |E|, that is, a ↑-closed subset of P(|E|)
[25]. And we have t ∈ Nuts(E,F ) if t ∈ Rel(|E|, |F |)
and ∀u ∈ T (E) (·tu ∈ T (F )). As a direct consequence of

Theorem 20, the following corollary says that the valid proofs
will be interpreted as total elements.

Corollary 23. If π is a valid proof of the sequent ⊢ Γ, then
JπK ∈ T (JΓK).

The converse of Corollary 23 is not necessarily true: there
are many counterexamples, discussed in the long version.

VI. ON THE SEMANTICS OF CIRCULAR PROOFS

The semantics of the previous section allows us to inter-
pret both general non-wellfounded and circular proofs, but
it presents a drawback: in the case of circular proofs, the
approximation semantics completely disregards the circularity
of the proof objects. In the present section, we will discuss
what are the challenges and how to proceed to achieve those
goals. We will also see that for a fragment of circular proofs,
we can use the circularity of the proof tree to define the
interpretation, following Santocanale’s approach.

One of the main difficulties to extend Santocanale’s ap-
proach to µLL∞ can be seen in the example of π∞ presented
in Figure 6b, page 7. Indeed, Santocanale’s interpretation
method strongly relies on the possibility to identify a thread
by a formula, therefore π∞ falls out of the scope of that
method. Two natural options are either (i) to disregard validity
in interpreting circular proofs, as we did for non-well-founded
proofs in previous sections, or (ii) to constrain the validity
condition to make Santocanale’s method usable. We discuss
the second option below by considering strongly valid proofs
introduced in Section III.

A. Relating the interpretation of strongly valid proofs and
their finitizations

We first want to show that the interpretation of the strongly
valid circular proofs are the same as the interpretation of their
finitizations in any µLL∞ model.

Lemma 24. Let ⊢ Γ⊥, νXA be a µLL provable sequent.
Then there is a unique morphism ϕA ∈ L(JνXAK, JIAΓ K) that
satisfies the following diagram:

JνXAK JAK(JνXAK)

JAK(JIAΓ K)

JIAΓ K JAK(JIAΓ K)⊕ JΓK

ϕA

=

JAK(ϕA)

in1

=

where IAΓ is the invariant formula (see Prop. 9), and in1 is
the first injection.

The proof of this lemma is detailed in the long version.

Lemma 25. Let π be a strongly connected and strongly
valid proof of ⊢ Γ⊥, νXA where the last inference rule
is the (ν) rule. Then J⇑(π)K∞ is the following morphism:

JΓK JνXAK ≃ JAK(JνXAK) JAK(JIAΓ K)JπK∞ JAK(ϕA)
.



Proof sketch. The proof which goes by induction on the
structure of π and case analysis of the inference rule (r) in
Definition 11 is detailed in the long version.

Theorem 26. Let π be a strongly valid µLL∞ proof. Then
JπK∞ = JπfinK, the interpretations being in any µLL∞ model.

Proof. We can always suppose wlog. that the conclusion of
π is ⊢ Γ⊥, νXA. The proof is by induction on size(π). We
only provide here the case that π is strongly connected, the
full proof is provided in the long version.
▷ If π is strongly connected. Then, there is an infinite path
p that visits all the sequents of π. Let t be a trace of
p, and, without loss of generality, let ⊢ Γ⊥, νXA be the
sequent where the minimal formula of t has been unfolded.
Graphically, π is shown in Figure 7.

Consider now µLL∞ proof ⇑(π) of ⊢ Γ⊥, A
[
IAΓ /X

]
. The

complexity of ⇑(π) is strictly less than that of π, since
elc(⇑(π)) < elc(π). So, by induction hypothesis, there is a
µLL (finite) proof ρ of ⊢ Γ⊥, A

[
IAΓ /X

]
such that JρK =

J⇑(π)K. In this case, πfin is defined as in Equation (2), page 7.
Let f be the interpretation of the proof of ⊢ (IAΓ )⊥, νXA.

The morphism f satisfies the following universal property:

JIAΓ K = JA
[
IAΓ /X

]
K ⊕ Γ JAK(JIAΓ K)

JνXAK = JAK(JνXAK)

⟨Id,JρK⟩

f JAK(f)

By Lemma 25, we have JρK = JAK(ϕA) ◦ JπK, and hence

JIAΓ K JνXAK

JAK(JIAΓ K)⊕ JΓK

JAK(JIAΓ K) JAK(JνXAK)

=

f

=

⟨Id,JAK(ϕA)◦JπK⟩
JAK(f)

Moreover, we have the following diagram by Lemma 24:

JνXAK JIAΓ K

JAK(JIAΓ K)⊕ JΓK

JAK(JνXAK) JAK(JIAΓ K)

ϕA

=

=

⟨Id,JAK(ϕA)◦JπK⟩
JAK(ϕA)

Hence, we have:

JνXAK JIAΓ K JνXAK

JAK(JνXAK) JAK(JIAΓ K) JAK(JνXAK)

ϕA

=

f

=

JAK(ϕA) JAK(f)

So, we have JAK(f ◦ϕA) = f ◦ϕA. By the universal property
of JνXAK, we conclude that f ◦ ϕA = Id.

Since JπfinK = f ◦ in2, Lemma 25 ensures that:

JΓK JνXAK

JAK(JIAΓ K)⊕ JΓK = JIAΓ K

JAK(JIAΓ K) JAK(JνXAK)

in2

JπfinK

=

⟨Id,JAK(ϕA)◦JπK⟩
JAK(f)

As (⟨Id, JAK(ϕA) ◦ JπK⟩) ◦ in2 = JAK(ϕA) ◦ JπK. Hence the
following square commutes:

JΓK JνXAK

JνXAK

JAK(JIAΓ K) JAK(JνXAK)

JπfinK

JπK

=

JAK(ϕA)

JAK(f)

We have JAK(f)◦JAK(ϕA) = JAK(f◦ϕA) = Id, since f◦ϕA =
Id. Therefore, we conclude that JπK = JπfinK.

Remark 6. Although the πfin is not uniquely defined (Re-
mark 3), the interpretation of the finitization, JπfinK, is uniquely
defined in any µLL∞ model, since JπK∞ = JπfinK (Theo-
rem 26). This also holds for any O‚(L) models where L
is just a µLL model, since JπKO‚(L) = JπKL (Remark 5).

B. Interpreting strongly valid circular proofs

Till now, we have two ways to interpret a strongly valid π:
1) In a µLL∞ model: as we did in section IV.
2) In a µLL model: By Proposition 7, one can first finitize

π, and then will interpret the finitized proof πfin.
By Theorem 26, we have seen that these two interpretations
are the same. In this section, we will provide a direct way to
interpret π in a µLL model.

Let (L,−→L ) be a µLL model. We want to interpret a strongly
valid proof π by induction on size(π) in L. The general idea
to interpret any valid circular proof π is first to consider two
cases. If π is not strongly connected, we can always interpret
it by induction on size(π). If π is strongly connected, we
first choose a trace t for an infinite path p that visits all the
sequents of π. Let νXA be the minimal formula of t. We
then choose a sequent ⊢ Γ⊥, νXA such that the formula νXA
has been unfolded. We suppose without loss of generality that
the conclusion of π is ⊢ Γ⊥, νXA. Graphically, π is what
is described in Figure 7. We first discard all the back-edges
from the leaves of π to its root, and close each of the by the
same assumption F . The resulting proof, πF , has the shape
given in Figure 7. If we take a morphism f ∈ L(JΓK, JνXAK)
as the interpretation of F , we have, by induction hypothesis,
the interpretation of πF as a morphism in L(JΓK, JνXAK). So,
considering F as a parameter, one obtains from π a morphism
fπ in L(C⊗!(JΓK ⊸ JνXAK), JΓK ⊸ JνXAK) where we take
C as the parameters coming from the assumptions of π.



⊢ Γ⊥, νXA

FF

Fig. 7: πF

By analyzing the proof of Theorem 26,
we now want to show that the equation
fπ(C ⊗ x) = x has a solution in L, that
is to say a morphism in L(JΓK, JνXAK),
denoted by fix(fπ), such that fπ(C ⊗
fix(fπ)) = fix(fπ). To define fix(fπ),
we first consider the µLL∞ proof ⇑(π)
of ⊢ Γ⊥, A

[
IAΓ /X

]
, and by induction

hypothesis, we have J⇑(π)K. So, we have
⟨Id, J⇑(π)K⟩ ∈ L(JIAΓ K, JAK(JIAΓ K)). By the universal property
of the final co-algebra JνXAK, there is a unique morphism
f ∈ L(JIAΓ K, JνXAK). Finally, we take fix(fπ) as f ◦in2 where
in2 ∈ L(JΓK, JIAΓ K).

As we saw, the interpretation of π, described above, depends
on some choices such as choosing the validating trace t and
choosing the sequent ⊢ Γ⊥, νXA. We do not know whether
changing those parameters, we obtain the same interpretation.
Nevertheless, we can prove that if those µLL models are built
on top of a µLL∞ model (as Nuts is for instance), then the
semantics does not depend on our choice of parameters:

Theorem 27. Let (L,−→L ) be a µLL∞ model, and π be a
strongly valid proof. Then JπfinKO‚(L) = JπKO‚(L).

Proof. We know that JπKO‚(L) = JπKL and JπfinKO‚(L) =
JπfinKL. By Theorem 26, we have JπKL = JπfinKL. Hence we
have JπfinKO‚(L) = JπKO‚(L).

Thanks to Theorem 27 and Theorem 26, the interpretation
function described above is well-defined for both the O‚(L)
model and the µLL∞ model, respectively.

Remark 7. Notice that, as it is mentioned in Remark 5, not
all focused orthogonality categories are µLL∞ models.

Finally, as a concrete case of Theorem 27, we have the
following direct corollary on the Nuts.

Corollary 28. If π is strongly valid, JπfinKNuts = JπKNuts.

VII. CONCLUSION

In this paper, we studied the non-wellfounded proof system
µLL∞ and provided a denotational semantics of µLL∞ in a
Curry-Howard perspective.

We first gave the definition of a µLL∞ model based on a
µLL model, and proved that the semantics is preserved via a
possibly infinite reduction sequence of cut-elimination rules.
We studied the focused orthogonality construction to capture
the syntactic validity criterion. Although the interpretation
of proofs in both models of orthogonality category O‚(L)
and L are the same, one can obtain more information by
looking at the interpretation in O‚(L). Benefiting from a
finite representation of the circular proofs, we have provided
a parameterized interpretation of strongly valid proofs in any
µLL model (not only µLL∞ models), and shown that the
semantics is independent of the parameters in the case of
focused orthogonality categories. We also investigated the
syntactical translations between finitary and circular proofs
as follows: (i) we extended Doumane’s finitization results

showing that, compared to [23], the wider class of strongly
valid circular proofs can be finitized and (ii) we proved that the
semantics is preserved both in the finitization procedure and in
the translation from finitary proofs to circular ones, bringing
evidence of the computational soundness of these translations.

a) Related works: Considering Santocanale & Fortier’s
semantics [28], [44], on the one hand, we have extended the
categorical axiomatizations to treat non-wellfounded proofs
in full linear logic (while they modeled only the additive
fragment). On the other hand, we only benefit from the finitely
presentable structure to model strongly valid circular proofs
and not all valid circular proofs (but note that in the additive
fragment considered by Santocanale and Fortier, every valid
circular proof is strongly valid due to the simplicity of their
sequent’s structure). Extending this is a future work.

Das and Curzi studied in [19] the computational expressivity
of functions on natural numbers in µLJ and LL, and they
showed that all systems of µLJ, µMALL, circular µLL∞ rep-
resent the same functions on natural numbers. However, their
work is different from ours in the following two respects. First,
their semantical approach is based on the computability (or
realizability) semantics which consists in interpreting proofs as
computational objects such as recursive functions or λ-terms
and formulas with sets of such objects, while our denota-
tional semantics interprets proofs in a mathematical domain
quotienting computational invariants by this interpretation.
(See [30] for further discussions on the comparison of these
two traditions). Secondly, they have only treated the case of
first-order function on natural numbers and do not treat other
data types such as lists, streams, nor higher-order functions.
Our semantics, on the contrary, makes no restrictions on the
type/formulas of µLL we model.

b) Future works: A natural question consists in seeking a
complete denotational model of µLL∞ in the sense of Girard
and Streicher [32], [52]. This could be useful to tackle the
Brotherston-Simpson’s conjecture for µLL (saying that induc-
tive proofs and circular proofs have the same provability) as
well as a proof-relevant/denotational version of the conjecture:

Conjecture 1 (Semantical Brotherston-Simpson’s conjecture).
Let π be a circular µLL∞ proof of ⊢ Γ. There exists a µLL
(finite) proof π′ of ⊢ Γ such that JπK = Jπ′K.

We also expect to extend Theorem 27 to any µLL model:

Conjecture 2. Let π be a strongly valid proof. Then JπfinK =
JπK where the interpretations of proofs are in any µLL model.

It is not possible for a non-terminating program of type
nat ⊸ nat to have a total interpretation in Nuts. A natural
(but difficult) question is whether this can be lifted to all
µLL∞ types. The same was asked by Girard for second-order
types [30] almost 40 years ago; it is still an open problem.

Finally, one can notice that our proof of corollary 22 heavily
relies on the syntactic results of cut-elimination and we wonder
if we can obtain a direct and syntax-independent proof of
Theorem 20 for bouncing validity which needs a semantical
treatment for that setting.
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second ordre, Comptes Rendus Mathematique 334 (2002), no. 2, 93–
96.

[15] Antonio Bucciarelli and Thomas Ehrhard, On phase semantics and
denotational semantics: the exponentials, Annals of Pure and Applied
Logic 109 (2001), no. 3, 205–241.

[16] Samuel R. Buss, Handbook of proof theory, Elsevier, 1998.
[17] Pierre Clairambault, Least and greatest fixpoints in game semantics,

Foundations of Software Science and Computational Structures (Berlin,
Heidelberg) (Luca de Alfaro, ed.), Springer Berlin Heidelberg, 2009,
pp. 16–31.

[18] , Strong functors and interleaving fixpoints in game semantics,
RAIRO Theor. Informatics Appl. 47 (2013), no. 1, 25–68.

[19] Gianluca Curzi and Anupam Das, Computational expressivity of (circu-
lar) proofs with fixed points, 38th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2023, Boston, MA, USA, June 26-29,
2023, IEEE, 2023, pp. 1–13.

[20] Anupam Das, Abhishek De, and Alexis Saurin, Decision problems
for linear logic with least and greatest fixed points, 7th International
Conference on Formal Structures for Computation and Deduction, FSCD
2022, August 2-5, 2022, Haifa, Israel (Amy P. Felty, ed.), LIPIcs, vol.
228, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 20:1–
20:20.

[21] Christian Dax, Martin Hofmann, and Martin Lange, A proof system for
the linear time µ-calculus, FSTTCS, 2006.

[22] Farzaneh Derakhshan and Frank Pfenning, Circular proofs as session-
typed processes: A local validity condition, Logical Methods in Com-
puter Science Volume 18, Issue 2 (2022).

[23] Amina Doumane, On the infinitary proof theory of logics with fixed
points, Ph.D. thesis, Paris Diderot University, 2017.

[24] Amina Doumane, David Baelde, Lucca Hirschi, and Alexis Saurin,
Towards completeness via proof search in the linear time µ-calculus:
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