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Abstract—We study constraint satisfaction problems of non-
rigid structures in a finite and omega-categorical setting. We show
that not having a binary essential polymorphism is a sufficient
criterion for NP-hardness of the constraint satisfaction problem
of a (model-complete) core, as long as its automorphism group
is not the free action of a Boolean group. To understand the
behaviour of low arity polymorphisms, we classify the possible
types of minimal operations above an arbitrary permutation
group. In this, we generalise a classical theorem of Rosenberg
above the trivial group, and significantly improve a result of
Bodirsky and Chen above the automorphism groups of omega-
categorical structures. Finally, we answer three questions of
Bodirsky on binary polymorphisms of infinite templates for
constraint satisfaction problems.

Index Terms—Constraint Satisfaction Problem, minimal oper-
ation, polymorphism, Boolean group, oligomorphic permutation
group, primitive positive interpretation

I. INTRODUCTION

A. Background: polymorphisms of non-rigid structures

For a relational structure B, its Constraint Satisfaction
Problem, CSP(B), is the computational problem of deciding,
given some finite structure A in the same relational language,
whether there is a homomorphism h : A → B. A key insight
of the algebraic approach to Constraint Satisfaction Problems
(CSPs) is that differences in the computational and descriptive
complexity of the CSPs of finite structures stem from structural
differences captured by certain higher-arity symmetries known
as polymorphisms. This is exemplified by the Bulatov and
Zhuk’s proofs [1], [2] of the Feder-Vardi Conjecture [3]: for
a finite structure B, either its polymorphisms only satisfy
“trivial” (height-one) identities, in which case B pp-constructs
all finite structures [4] and so CSP(B) is NP-complete, or B
has a polymorphism satisfying a particular non-trivial identity
(Siggers’ identity [5]), in which case CSP(B) is in P. Many
aspects of the algebraic approach also adapt to the infinite-
domain setting for CSPs of certain countable structures which
are characterised by very rich automorphism groups, known as
ω-categorical structures (Definition II.15). For a subclass of
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these, i.e., first-order reducts of finitely bounded homogeneous
structures, Bodirsky and Pinsker conjectured a complexity
dichotomy similar to that on a finite domain (cf. [6]–[9])
and there is a substantial body of research proving specific
cases [10]–[14].

When studying the CSP of a finite structure B, we can
always reduce to the case of B being a core [15], i.e., such
that every endomorphism is an automorphism. In fact, we can
always find a core B′ with the same CSP as B. When B is
ω-categorical, we can similarly find a structure B′ with the
same CSP which is a model-complete core [16], i.e., such
that the restriction of any endomorphism to any finite set
can be extended to an automorphism. In the finite setting,
another helpful reduction is that CSP(B′) is polynomial-time
equivalent to CSP(B′′), where B′′ is obtained by naming all
elements of B′ [17], and so is rigid, i.e., with no non-trivial
automorphisms.

For this reason, several tools of the algebraic approach in a
finite setting work under the assumption that B is a rigid core.
This presents some challenges in adapting these techniques
to the infinitary setting, since ω-categorical structures are
never rigid. Hence, work on infinite-domain CSPs studies
polymorphisms of structures without assuming their rigidity,
often yielding a better understanding of finite structures as a
by-product [4], [18]. In this paper, we study polymorphisms
of non-rigid (model-complete) cores in a finite and infinite
setting. We will see that the non-rigidity assumption yields
some surprisingly different behaviour from the rigid case.

We call the set of polymorphisms of a structure B its
polymorphism clone, Pol(B). It is well-known that for B
finite or ω-categorical, if all polymorphisms of B are non-
constant and essentially unary, i.e., depend on at most one
variable, then CSP(B) is NP-hard, as B pp-interprets all
finite structures (Definition II.20) [19]–[21]. Hence, for the
purposes of studying the complexity of CSPs on a given class
of structures, we may assume without loss of generality that
the structures we are working with have some polymorphisms
which are essential, i.e. depend on more than one variable.
Several CSP complexity dichotomies begin by studying the
possible behaviours of low-arity essential polymorphisms in
a given class of structures [10]–[12], [22], [23]. Often, this
is part of the so-called “bottom-up” approach: first, show
that for a structure B in the class being studied, if CSP(B)
is not NP-hard (due to pp-constructing all finite structures),



then the polymorphisms of B must exhibit one of a given
list of behaviours. Then, proceed by case-distinctions to show
that structures whose polymorphisms exhibit such behaviours
must have a tractable CSP. This is, for example, Jeavons’ [19]
approach in his algebraic proof of Schaefer’s Theorem [24],
i.e., the complexity dichotomy for CSPs on a two-element
domain, and the strategy adopted by Bulatov [22] in the
complexity dichotomy for CSPs on a three-element domain.
Moreover, most complexity dichotomies in an ω-categorical
setting rely on such a “bottom-up” approach [10]–[12], [23].

B. Motivation: three questions on binary polymorphisms

Our motivation for studying essential polymorphisms
in non-rigid structures begins with three questions of
Bodirsky [8] on binary polymorphisms in ω-categorical struc-
tures. A curious feature of the ω-categorical setting is that,
at least in certain aspects, essential polymorphisms seem to
exhibit better behaviour than what is known to be possible
in arbitrary finite structures. In particular, a standard step in
most infinite-domain dichotomies, including those that avoid
a “bottom-up” approach [14], [25]–[27], relies on showing
that if B has an essential polymorphism, then it also has a
binary essential polymorphism [14], [28], [29]. Whilst this
phenomenon is in general false for finite structures (even on
a two-element domain), it seemed to be ubiquitous in an ω-
categorical setting, leading Bodirsky to ask:

Question 1. (Question 14.2.6 (24) in [8]) Does every count-
able ω-categorical model-complete core with an essential
polymorphism also have a binary essential polymorphism?

Previous authors developed techniques to find such binary
essential polymorphisms [14], [28], [29]. The most general of
these relies on Aut(B) satisfying a strong form of transitivity
known as the orbital extension property (Definition IV.11). The
only hitherto known transitive ω-categorical counterexamples
to this property were imprimitive (i.e., with some non-trivial
equivalence relation invariant under Aut(B)). Thus, Bodirsky
also asked:

Question 2. (Question 14.2.1 (2) in [8]) Does every ω-
categorical structure with primitive automorphism group have
the orbital extension property?

Finally, the existence of a binary essential polymorphism
is often used to deduce (under mild assumptions) the exis-
tence of a binary injective one [10], [14], [28]–[30]. Binary
injective polymorphisms are helpful to reduce CSP(B) to its
injective variant [14], and more generally in most complexity
classifications on an infinite domain [10], [14], [29]. Hence, it
is natural to ask whether the existence of a binary injective
polymorphism can be deduced for ω-categorical structures
with sufficiently easy CSP:

Question 3. (Question 14.2.6 (27) in [8]) Does every ω-
categorical structure without algebraicity that can be solved
by Datalog also have a binary injective polymorphism?

C. Related work: minimal operations

We approach Bodirsky’s questions by investigating the
more general setting of polymorphisms of arbitrary non-
rigid (model-complete) cores. When B is a finite core, if
Pol(B) contains an essential polymorphism, it also contains an
essential one which is minimal above Aut(B) [31] in the sense
that it is of minimal arity such that every other polymorphism
it generates together with Aut(B) and projections generates it
back by composition with elements of Aut(B) and projections
(Definition II.6). Such minimal operations can also be found
whenever B is ω-categorical in a finite relational language [32],
replacing the aforementioned notion of generation by that of
local generation (Definition II.2). From the assumption of
minimality, one can obtain a great deal of information about
the behaviour of a polymorphism. In particular, a classical
theorem of Rosenberg [33] classifies the possible behaviours
(described in Definition II.8) of minimal operations above the
trivial group acting on a finite set:

Theorem I.1 ([33]). Let B be a finite rigid core, and suppose
that Pol(B) contains an essential polymorphism. Then, Pol(B)
contains a polymorphism which is minimal above the trivial
group acting on B and of one of the following types:

1) a binary operation;
2) a ternary majority operation;
3) a ternary minority operation of the form x+ y+ z in a

Boolean group (B,+);
4) a k-ary semiprojection for some k ≥ 3.

Using an easy generalisation of this result (Theorem II.13),
Bodirsky and Chen [32] classify minimal operations above the
automorphism groups of ω-categorical structures, yielding the
following:

Theorem I.2 ([8], [32]). Let B be an ω-categorical model-
complete core in a finite relational language. Suppose that
Pol(B) contains an essential polymorphism. Then, Pol(B)
contains a polymorphism which is minimal above Aut(B) and
of one of the following types:

1) a binary operation;
2) a ternary quasi-majority operation;
3) a k-ary quasi-semiprojection for some 3 ≤ k ≤ 2r − s,

where r is the number of Aut(B)-orbitals (orbits under
the componentwise action of Aut(B) on pairs) and s is
the number of Aut(B)-orbits.

Again, these operations are described in Definition II.8.
Theorem I.2 has one fewer type of operation than Theorem I.1,
since it does not feature a minority-like operation. We will
see (in Theorem B) that Theorem I.2 can be improved by
excluding type (2) and further characterising type (3).

D. Results

We give counterexamples to all three questions of
Bodirsky [8]. Regarding Question 1, we prove in Subsec-
tion IV-A that it has a positive answer for structures whose
automorphism group have at most two orbits, but a negative



answer in general (Theorem IV.3). In a sense, Question 1
asks whether we can find a binary essential polymorphism
in every ω-categorical model-complete core whose CSP is not
NP-hard for trivial reasons (namely, all polymorphisms being
essentially unary). We prove in Subsection IV-B that we can
find a binary essential polymorphism in most non-rigid finite
cores and all ω-categorical model-complete cores whose CSP
is not NP-hard due to pp-interpreting all finite structures:

Theorem A. Let B be EITHER a finite core such that
Aut(B) is not a Boolean group acting freely on B, OR an
ω-categorical model-complete core. Suppose that Pol(B) con-
tains no binary essential polymorphism. Then, B pp-interprets
all finite structures.

A Boolean group (a.k.a. elementary Abelian 2-group) is
a group where every non-identity element has order 2, and
we include the trivial group among them. A group action is
free if the only group element fixing any point is the identity.
Since pp-interpreting all finite structures implies NP-hardness
of CSP(B) [20], [21], for the purposes of studying CSPs
of ω-categorical structures we may assume without loss of
generality that Pol(B) has a binary essential polymorphism.

Our strategy to prove Theorem A relies on a classification of
the possible behaviours of polymorphisms satisfying a weak
version of minimality (Theorem III.8). In this direction, we
obtain general results (Theorem V.10), which for the settings
relevant to CSPs boil down to the following:

Theorem B. Let B be EITHER a finite non-rigid core OR
an ω-categorical model-complete core in a finite relational
language. Let s be the number of orbits of Aut(B). Suppose
that Pol(B) contains an essential polymorphism. Then, it has
a polymorphism minimal above Aut(B) which is one of:

1) a binary operation;
2) a ternary quasi-minority operation of the form αq for

α ∈ Aut(B), where
• B is finite, Aut(B) is a Boolean group acting freely

on B, and s = 2n for some n ∈ N;
• the operation q is a Aut(B)-invariant Boolean

Steiner 3-quasigroup;
3) a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

The definitions of orbit-semiprojection and Aut(B)-
invariant Boolean Steiner 3-quasigroup are given in Defini-
tions III.2 and V.7, and they correspond to strengthenings of
being a quasi-semiprojection, and being a minority of the form
x+ y + z in a Boolean group respectively.

A surprising feature of Theorem B is that (quasi-)majorities,
item (2) in Theorems I.1 and I.2, cannot exist as minimal for
non-rigid (model-complete) cores. Moreover, intriguingly, the
case of Aut(B) being the free action of a Boolean group
exhibits distinct behaviour from all other group actions in
our study, with case (2) of Theorem B only occurring for
them and when Aut(B) has 2n orbits. Hence, for most non-
rigid structures, there are only two possible types of minimal
essential polymorphisms. Our results improve on Theorem I.2

from [32] in two ways: (i) we show that minimal quasi-
majorities cannot occur, and (ii) for the only remaining type
of operations of arity > 2 (i.e., the quasi-semiprojections), we
specify the behaviour on the orbits and bound their arity by the
number of orbits rather than the number of orbitals. Finally,
no analogue of Theorem B was known on a finite domain.

Going back to Theorems IV.3 and A, not only do they
give us general tools to find binary essential polymorphisms
in ω-categorical structures when studying their CSPs, but
they also go substantially beyond the scope of previous
techniques, which relied on the orbital extension property.
Firstly, the orbital extension property implies transitivity, and
Theorem IV.3 tells us that whenever B is a model-complete
core with transitive automorphism group, if Pol(B) contains an
essential polymorphism, then it also contains a binary essential
one. Moreover, in Subsection IV-C, we give counterexamples
to Question 2, showing that previous techniques could not even
deal with primitive ω-categorical structures:

Theorem C. There are ω-categorical structures whose auto-
morphism group is primitive and without the orbital extension
property. Hence, Question 2 has a negative answer.

Our counterexamples (Definition IV.16) are under the scope
of the Bodirsky-Pinsker conjecture and come from Cherlin’s
recent classification of homogeneous 2-multitournaments [34].

Finally, in Section VI, we give a counterexample to Ques-
tion 3. Hence, whilst for the purposes of CSPs of ω-categorical
structures, we can in general assume that we are working
with structures with binary essential polymorphisms, such
polymorphisms may fail to be injective even in relatively
simple contexts:

Theorem D. There is an ω-categorical structure with no
algebraicity whose CSP is solvable in Datalog, but which has
no binary injective polymorphisms. Hence, Question 3 has a
negative answer.

Our counterexample (Definition VI.7) falls under the scope
of the Bodirsky-Pinsker conjecture and is first-order definable
in an infinite unary structure (i.e., a structure whose all
relations are unary).

E. Overview of the paper
After the Preliminaries (Section II), Section III proves

Theorem III.8, which is the main ingredient for Theorems A
and B. Section IV is dedicated to its consequences. In Sub-
section IV-A, we prove Theorem IV.3, answering negatively
Question 1. In Subsection IV-B, we prove Theorem IV.10,
which implies Theorem A. In Subsection IV-C, we prove
Proposition IV.17, which implies Theorem C. Section V
sketches the proofs for Theorem V.10, which implies The-
orem B. We conclude with Section VI, where we sketch the
proof of Theorem VI.8, which implies Theorem D. Detailed
proofs of all statements can be found in [35].

II. PRELIMINARIES

We use uppercase letters to denote sets A,B,C, etc. We
often work with relational structures and use blackboard bold



capital letters such as A,B,C, etc. to denote them, where A
is a relational structure with domain A, and so on.

A. Closed function clones and minimal operations

We study minimal and almost minimal polymorphisms in ar-
bitrary non-rigid (model-complete) cores through the algebraic
analogue of polymorphism clones, i.e., closed function clones
(Definition II.2). It is well-known that the latter correspond to
the polymorphism clones of relational structures (Fact II.4).
Below, we give some of the basic definitions and results
relevant to the rest of the paper following the discussion of [31]
and [32].

Let B denote a set. For n ∈ N, O(n) denotes the set BBn

of functions Bn → B, and O denotes
⋃

n∈N O(n).

Definition II.1. Let B be a set. A function clone over B is
a set C ⊆ O such that

• C contains all projections: for each 1 ≤ i ≤ k ∈ N, C
contains the k-ary projection to the ith coordinate πk

i ∈
O(k), given by (x1, . . . , xk) 7→ xi;

• C is closed under composition: for all f ∈ C ∩ O(n) and
all g1, . . . , gn ∈ C ∩ O(m), f(g1, . . . , gn), given by

(x1, . . . , xm) 7→ f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)) ,

is in C ∩ O(m).

Definition II.2. Given S ⊆ O, ⟨S⟩ denotes the smallest
function clone containing S. It consists of all functions in O
which can be written as a term function using functions from
S and projections. We equip O(n) with the product topology
and then O with the sum topology, where B was endowed
with the discrete topology. We call a function clone C closed,
when it is closed with respect to this topology. Meanwhile,
for S ⊆ O, S denotes the topological closure of S in O. We
have that f ∈ S if for each finite A ⊆ B, there is some g ∈ S
such that g↾A = f↾A. It is easy to see that for S ⊆ O, ⟨S⟩ is
the smallest closed function clone containing S. We say that
S locally generates g if g ∈ ⟨S⟩. Frequently, we will just say
that S generates g since we always work with local generation.

Note that over a finite set the notion of closure defined above
trivialises, and so closed clones correspond to clones.

Definition II.3. Let B be a relational structure. We say that
f : Bn → B is a polymorphism of B if it preserves all
relations of B: for any such relation R,

if

a11
...
ak1

 , . . . ,

a1n
...
akn

 ∈ R, then

f(a11, . . . , a
1
n)

...
f(ak1 , . . . , a

k
n)

 ∈ R .

We call the set of polymorphisms of B the polymorphism
clone of B, and denote it by Pol(B).

Fact II.4 ([36]). The closed function clones on B correspond
to the polymorphism clones of relational structures on B.

Definition II.5. Let D ⊋ C be closed subclones of O. We say
that D is minimal above C if there is no closed clone E such
that C ⊊ E ⊊ D.

Definition II.6. Let C be a closed subclone of O. We say that
an operation f ∈ O \ C is minimal above C if ⟨C ∪ {f}⟩ is
minimal above C and every operation in ⟨C ∪ {f}⟩ \ C has
arity greater than or equal to that of f . For S ⊆ O, we say
that f ∈ O is minimal above S if it is minimal above ⟨S⟩.

A closed function clone D is minimal above C if and only
if there is some operation f on B which is minimal above C
and such that ⟨C ∪ {f}⟩ = D [31]. Moreover, whenever B is
finite and C ⊊ D are closed (necessarily, by finiteness) closed
clones on B, there is a closed closed clone E ⊆ D which
is minimal above C [31]. This is in general not true on an
infinite domain [37], but a version of this fact also holds in
the context that interests us (cf. Fact II.19). Minimal clones
and operations are heavily studied in universal algebra. We
refer the reader to [37] and [38] for reviews of research on
the topic beyond [33].
Notation II.7. We use the symbol ’≈’ to denote identities
which hold universally. For example, instead of

∀x, y ∈ B f(x, y) = f(y, x) ,

we write
f(x, y) ≈ f(y, x) . (1)

Definition II.8. We define some types of operations relevant
to the rest of the paper by the identities that they satisfy:

• a ternary quasi-majority operation is a ternary operation
m such that

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ m(x, x, x) ;

• a quasi-Malcev operation is a ternary operation M such
that

M(x, y, y) ≈ M(y, y, x) ≈ M(x, x, x) ;

• a ternary quasi-minority operation is a ternary operation
m such that

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ m(y, y, y) ;

• a quasi-semiprojection is a k-ary operation f such that
there is an i ∈ {1, . . . , k} and a unary operation g such
that whenever (a1, . . . , ak) is a non-injective tuple from
B,

f(a1, . . . , ak) = g(ai) .

For each of the operations above, we remove the prefix “quasi”
when the operation is idempotent, i.e., satisfies f(x, . . . , x) ≈
x. For example, a ternary majority is a ternary quasi-majority
m which also satisfies m(x, x, x) ≈ x; in the case of a
semiprojection idempotency implies g(x) ≈ x.

Definition II.9. We say that a k-ary operation f is essentially
unary if there is a unary operation g and 1 ≤ i ≤ k such that

f(x1, . . . , xk) ≈ g(xi) .

We say that f is essential if it is not essentially unary. A
function clone C is essentially unary if all of its operations are
essentially unary. It is essential if it has an essential operation.



B. Almost minimality

We obtain Theorem B by classifying minimal operations
above the clone generated by any non-trivial permutation
group (Theorem V.10). Towards this result, we first classify
almost minimal operations above arbitrary permutation groups
(Theorems III.8, V.3, and V.6), where we write G ↷↷↷ B
to denote a group acting faithfully on a set B (with no
assumptions on its cardinality).

Definition II.10. Let C be a closed function clone. The k-ary
operation f ∈ O\C is almost minimal above C if ⟨C ∪ {f}⟩∩
O(r) = C ∩ O(r) for each r < k.

Remark II.11. Unary functions in O \ C are almost minimal.

Lemma II.12. Let C ⊊ D be closed function clones. Then, D
contains some almost minimal operation above C.

Proof: Let f ∈ D \ C be of minimal arity. Any function
that f locally generates together with C belongs to D; hence
if such a function is of strictly smaller arity than f , it also
belongs to C, by the minimality of the arity of f . Thus, f is
almost minimal by definition.

The starting point for our classification of almost minimal
operations above permutation groups is the observation that the
following version of Theorem I.1 of [33] in a non-idempotent
context from [8, Theorem 6.1.42] only uses the assumption of
almost minimality:

Theorem II.13 ([8], [32]). Let C be an essentially unary clone
without constant operations and let f be minimal above C.
Then, up to permuting its variables, f is of one of the following
five types:

1) a unary operation;
2) a binary operation;
3) a ternary quasi-majority operation;
4) a quasi-Malcev operation;
5) a k-ary quasi-semiprojection for some k ≥ 3.

Remark II.14. Inspecting the proof of Theorem II.13 in [8,
§6.1.8], one can see that the only property of minimal
operations being used is almost minimality. In particular,
Theorem II.13 actually gives a classification into five types
of the almost minimal operations above an essentially unary
clone (not containing any constant operations).

C. Finite and ω-categorical structures

We work with finite and ω-categorical relational structures.
Below, we list some basic definitions and facts regarding these.

Definition II.15. For B countably infinite, we say that the
permutation group G ↷ B is oligomorphic if, for each
n ∈ N, it has finitely many orbits in its componentwise action
on n-tuples. A countable structure B is ω-categorical if its
automorphism group Aut(B) ↷ B is oligomorphic.

Examples II.16. The ordered rational numbers (Q, <), the
random graph, and countable vector spaces over finite fields
are all ω-categorical. The first two are also finitely bounded
homogeneous structures (see Definition IV.13).

We refer the reader to [8] and [9] for more on ω-categorical
structures and their CSPs.

Definition II.17. We say that a finite or ω-categorical rela-
tional structure B is a model-complete core if Aut(B) is its
endomorphism monoid.

A finite model-complete core is such that Aut(B) =
End(B) and is just known as a core. For B finite or ω-
categorical, there is always a model-complete core B′ such
that CSP(B) = CSP(B′) [15], [16], which is also finite or
ω-categorical (and finite when B is finite).

Remark II.18. By Definition II.15, if B is ω-categorical and
C is such that Pol(B) ⊆ Pol(C), then C is also ω-categorical.
In particular, by Fact II.4, any closed function clone whose
unary operations are Aut(B) is the polymorphism clone of an
ω-categorical model-complete core with automorphism group
Aut(B).

A good feature of ω-categorical structures in a finite rela-
tional language is that their polymorphism clones will always
contain a minimal operation above their automorphism group
as long as they have any essential polymorphism:

Fact II.19 ([32]). Let B be an ω-categorical structure in
a finite relational language. Let ⟨Aut(B)⟩ ⊊ Pol(C). Then,
Pol(C) contains a minimal operation above ⟨Aut(B)⟩.

Below, we define the notion of pp-interpretability, which is
central to Theorem A. Our proofs rely on an algebraic char-
acterisation of pp-interpretability in finite and ω-categorical
structures [21], [39], which we give in Fact IV.5.

Definition II.20. A formula ϕ is primitive positive if it
only contains existential quantifiers, conjunctions, and atomic
formulas. For m ∈ N, a set S ⊆ Bm is pp-definable in B
if there is a primitive positive formula ϕ such that S equals
ϕ(B), the set of tuples from B satisfying ϕ. We say that a
structure B pp-interprets another structure A if there is a
partial surjective map h : Bd → A for some d ≥ 1 such that
for R ⊆ An a relation of A (including equality and all of A),
the set h−1(R) ⊆ Bnd is pp-definable in B.

III. A THREE TYPES THEOREM WHEN G ↷ B IS NOT THE
FREE ACTION OF A BOOLEAN GROUP

The main result of this section is Theorem III.8, which
classifies almost minimal operations above ⟨G⟩ for G ↷ B
being a faithful group action which is not the free action of
a Boolean group. We use as a starting point Theorem II.13,
which, as pointed out in Remark II.14, gives a coarse classifi-
cation of almost minimal operations above an essentially unary
clone (with no constant operations). Then, we explore in more
detail the consequences of almost minimality for each of the
types of operations of arity > 2. Often, our arguments rely
on showing that certain behaviours cannot be witnessed by an
almost minimal operation of arity > 1 since they would imply
that it generates some non-injective unary operation together
with ⟨G⟩. The latter contradicts almost minimality, as every



operation in G = ⟨G⟩∩O(1) is injective (since it locally agrees
with a permutation).
Remark III.1. We begin by pointing out that the actions of
oligomorphic permutation groups are never free, and so the
results in this section apply to them. To see this, take any
element a ∈ B. The action of the stabilizer of a, Ga on B
still has finitely many orbits by oligomorphicity. Hence, there
are two elements b, c ∈ B such that (a, b) and (a, c) lie in
the same G-orbit. In particular, this means that there is a non-
identity group element fixing a.

Definition III.2. Let G ↷ B. We say that the k-ary operation
f on B is an orbit-semiprojection with respect to the i-th
variable for i ∈ {1, . . . , k} if there is a unary operation g ∈ G
such that for any tuple (a1, . . . , ak) where at least two of the
aj lie in the same G-orbit,

f(a1, . . . , ak) = g(ai) .

Lemma III.3. Let G ↷ B. For k ≥ 3, let f be a k-ary quasi-
semiprojection which is almost minimal above ⟨G⟩. Then, f
is an orbit-semiprojection.

Proof: We may say without loss of generality that there
is a unary operation g such that whenever |{a1, . . . , ak}| < k,

f(a1, . . . , ak) = g(a1) .

Let α ∈ G. For all i < j, the function hi,j,α defined by

(x1, . . . , xk) 7→ f(x1, . . . , xj−1, αxi, xj+1, . . . , xk)

does not depend on xj , and so it depends on only one variable
by the almost minimality of f . Moreover, setting for any ℓ /∈
{1, j} the variable xℓ equal to x1 and applying hi,j,α yields
g(x1), by the property on f assumed above. Thus, the variable
hi,j,α depends on is x1, and

hi,j,α(x1, . . . , xk) ≈ g(x1) .

Whenever (a1, . . . , ak) is any tuple where ai, aj belong to
the same orbit, then aj = αai for some α ∈ G. By the
above, f will return g(a1) on this tuple; hence, f is an orbit-
semiprojection onto x1 as witnessed by g.

Lemma III.4. Let G ↷ B be such that the action of G on B
is not free. Then, no almost minimal function above ⟨G⟩ can
be a quasi-Malcev operation.

Proof: Since the action of G on B is not free, there is
some non-trivial α ∈ G and distinct a, b, c ∈ B such that
α(a) = a, α(b) = c. Suppose by contradiction that M(x, y, z)
is almost minimal and quasi-Malcev, and consider h(x, y) =
M(x, αx, y). If h(x, y) depends on the first argument,

M(a, a, a) = h(a, a) = h(a, b) = M(a, a, b) = M(b, b, b) ,

contradicting injectivity of M(x, x, x) ∈ ⟨G⟩. Similarly, if
h(x, y) depends on the second argument,

M(c, c, c) = M(a, a, c) = h(a, c) = h(b, c)

= M(b, c, c) = M(b, b, b) ,

again contradicting injectivity of M(x, x, x) ∈ ⟨G⟩. Thus,
h(x, y) depends on both arguments, contradicting the almost
minimality of M .

Lemma III.5. Let G ↷ B with G not Boolean. Then, no
almost minimal function above ⟨G⟩ can be a quasi-Malcev
operation.

Proof: Let α ∈ G have order ≥ 3. Since α2 ̸= 1, there
is b ∈ B such that b, α(b) = c, and α2(b) = d are all distinct.
Suppose that M(x, y, z) is almost minimal and quasi-Malcev.
Consider h(x, y) = M(x, y, αx). We have that

h(c, d) = M(c, d, d) = M(c, c, c) = M(b, b, c) = h(b, b) .

By almost minimality, h ∈ ⟨G⟩, and so it equals a unary
injective function of either its first or its second argument.
However, since b, c, d are distinct, this yields a contradiction.

Lemma III.6. Let G ↷ B. Suppose that m(x, y, z) is a quasi-
majority operation which is almost minimal above ⟨G⟩. Then,
for any β ∈ G \ {1}, h(x, y, z) := m(x, βy, z) is a quasi-
Malcev operation such that

h(x, x, x) ≈ m(x, x, x) . (2)

Proof: Note that h is also almost minimal above ⟨G⟩
since m(x, y, z) = h(x, β−1y, z). Hence, the binary function
given by l(x, y) := h(x, x, y) must be in ⟨G⟩ and so essentially
unary. Observe that l(x, y) cannot depend on the first variable.
Otherwise,

m(x, x, x) ≈ m(x, βx, x) ≈ h(x, x, x) ≈ l(x, x) ≈ l(x, βx)

≈ h(x, x, βx) ≈ m(x, βx, βx) ≈ m(βx, βx, βx) ,

which contradicts injectivity of m(x, x, x) ∈ ⟨G⟩. Hence,
l(x, y) depends on the second variable yielding

h(x, x, y) ≈ l(x, y) ≈ l(y, y) ≈ h(y, y, y)

≈ m(y, βy, y) ≈ m(y, y, y) .

From this equation we obtain that h satisfies condition (2). By
symmetry, the same argument applies for h(y, x, x), yielding
that

h(x, x, y) ≈ h(y, y, y) ≈ h(y, x, x) ,

and so that h is quasi-Malcev.

Lemma III.7. Let G ↷ B. Suppose no almost minimal
function above ⟨G⟩ is quasi-Malcev. Then, no almost minimal
function above ⟨G⟩ can be a ternary quasi-majority operation.

Proof: Suppose that m is a ternary almost minimal quasi-
majority above ⟨G⟩. Then, for β ∈ G \ {1}, m(x, βy, z) is
quasi-Malcev and almost minimal above ⟨G⟩ by Lemma III.6.
Since we are assuming there are no quasi-Malcev operations
almost minimal above ⟨G⟩, this yields a contradiction.

Theorem III.8 (Three types theorem). Let G ↷ B be such
that G is not a Boolean group acting freely on B. Let s be
the (possibly infinite) number of orbits of G on B. Let f be



an almost minimal operation above ⟨G⟩. Then, f is of one of
the following types:

1) a unary operation;
2) a binary operation;
3) a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

Proof: We need to consider the five possibilities for f
from Theorem II.13, which gives us a type-classification of
the almost minimal operations above ⟨G⟩ (Remark II.14).
Lemma III.5 and Lemma III.4 tell us that f cannot be a
quasi-Malcev. Moreover, f cannot be a quasi-majority from
Lemma III.7. Finally, if f is a quasi-semiprojection it must be
an orbit-semiprojection from Lemma III.3. Since f is an orbit-
semiprojection, its arity must be ≤ s, where s is the number
of orbits of G.

It is easy to prove that the necessary conditions for the
existence of an orbit-semiprojection as almost minimal in
Theorem III.8 are also sufficient:

Proposition III.9. Let G ↷ B, and let s be the number of
orbits of G on B. Then, for every 2 ≤ k ≤ s, there is a k-ary
orbit-semiprojection which is almost minimal over ⟨G⟩.

Proof sketch: It is easy to prove that an essential orbit-
semiprojection is always almost minimal over ⟨G⟩. So, we
only need to build one. Take an enumeration (Or|r < s) of the
G-orbits on B. Given (a1, . . . , ak) ∈ Bk, set f(a1, . . . , ak) =
a1 if two of the ai are in the same orbit, and otherwise, let
f(a1, . . . , ak) = aj , where aj is the element appearing in the
orbit with the largest index in our ordering.

IV. CONSEQUENCES OF THE THREE TYPES THEOREM FOR
POLYMORPHISMS OF NON-RIGID MODEL-COMPLETE CORES

In this section, we explore consequences of the three types
theorem (Theorem III.8) for the polymorphism clones of non-
rigid model-complete cores whose automorphism group is not
the free action of a Boolean group on B. As pointed out in
Remark III.1, these include the polymorphism clones of ω-
categorical structures, for which we derive several results.

A. Essential polymorphisms in ω-categorical structures

In this subsection, we prove Theorem IV.3, which states that
Question 1 has a positive answer whenever Aut(B) has ≤ 2
orbits and a negative answer in general.

Definition IV.1. For G ↷ B, we say that a closed function
clone C is a core clone with respect to G if C ∩ O(1) = G.
We simply say that C is a core clone if it is a core clone with
respect to some G ↷ B.

The following Corollary is a trivial consequence of Theo-
rem III.8 and Proposition III.9.

Corollary IV.2. Let G ↷ B.

• Suppose that G has ≤ 2 orbits and it is not a Boolean
group acting freely on B. Then any essential core clone
with respect to G contains a binary essential operation;

• Suppose G has ≥ 3 orbits. Then, there is an essential
core clone with respect to G with no binary essential
operation.

Proof: For the first statement, if C is an essential core
clone with respect to G and G has ≤ 2 orbits, it must contain
a binary essential operation almost minimal above ⟨G⟩ by
Lemma II.12 and Theorem III.8. For the second statement,
if G has ≥ 3 orbits, by Proposition III.9, there is a k-ary
orbit-semiprojection f almost minimal above ⟨G⟩ for k ≥ 3.
Hence, ⟨G ∪ {f}⟩ is a core clone with no binary essential
operation, by definition of almost minimality.

For B finite or ω-categorical, core clones with respect
to Aut(B) correspond to polymorphism clones of model-
complete cores with automorphism group Aut(B). Hence,
from Corollary IV.2, and Remarks II.18 and III.1, we obtain:

Theorem IV.3. Let B be an ω-categorical structure.
• Suppose Aut(B) has ≤ 2 orbits. If B is a model-complete

core and it has an essential polymorphism, then it also
has a binary essential one;

• Suppose Aut(B) has ≥ 3 orbits. Then, there is an ω-
categorical model-complete core C with the same auto-
morphism group as B and which has an essential poly-
morphism but no binary essential polymorphism. Hence,
Question 1 has a negative answer.

B. Finding binary symmetries

In this subsection, we prove Theorem IV.10, which implies
Theorem A. It states that as long as C is a core clone with
respect to a suitable permutation group G ↷ B without
a uniformly continuous clone homomorphism to the clone
P{0,1} of projections on a two-element set (in the sense of
Definition IV.4), it will have a binary essential polymorphism.
For B finite or ω-categorical, Pol(B) having such a clone
homomorphism is equivalent to B pp-interpreting all finite
structures (cf. Fact IV.5 [21], [39]). Hence, Theorem IV.10
implies Theorem A. Moreover, Theorem IV.10 shows an
interesting disanalogy with the case of idempotent clones (i.e.,
core clones above the trivial group), where on any domain
there are clones with no essential binary operations but no
clone homomorphism to P{0,1} (e.g., any clone generated by
a ternary majority).

Definition IV.4. Let C and D be clones with domains C and
D respectively. A map η : C → D is a clone homomorphism
if it preserves arities and universally quantified identities. In
the special case where the domain D of D is finite, we say
that η is uniformly continuous if there exists a finite A ⊆ C
such that f↾A = g↾A implies η(f) = η(g) for all f, g ∈ C.

Fact IV.5. ([21], [39]) Let B be finite or ω-categorical and
A finite. Then, B pp-interprets A if and only if there is a
uniformly continuous clone homomorphism from Pol(B) to
Pol(A). In particular, B pp-interprets all finite structures if
and only if there is a uniformly continuous clone homomor-
phism from Pol(B) to the clone of projections on a two-element
set P{0,1}.



Definition IV.6. Let G ↷ B. Then, by S we denote the closed
clone generated by all orbit-semiprojections:

S := ⟨G ∪ {f | f is an orbit-semiprojection for G ↷ B}⟩ .
Lemma IV.7. Let G ↷ B. There is a uniformly continuous
clone homomorphism from S to P{0,1}.

Proof: Since G ↷ B is non-trivial, let C ⊆ B be a non-
trivial G-orbit (i.e., |C| > 1). Clearly, the map ρ : S → S↾C

sending each operation f to its restriction f↾C to C is a clone
homomorphism since each identity satisfied by operations in
S on B will also be satisfied on a restriction of the domain.
Note next that any such restriction f↾C is essentially unary:
this is clear for orbit-semiprojections and elements of G, and
follows by an easy induction on terms for arbitrary operations
in S. Let τ : S↾C → P{0,1} send each k-ary operation f↾C in
S↾C to the k-ary projection to the ith coordinate πk

i , where i
is the variable on which f depends. This is again easily seen
to be a clone homomorphism. Thus, ξ := τ ◦ ρ is a clone
homomorphism ξ : S → P{0,1}, which moreover is uniformly
continuous: let B′ = {c, d} for distinct c, d ∈ C. For any
f, g ∈ S, f↾B′ = g↾B′ implies that f and g depend on the
same variable, and whence ξ(f) = ξ(g), yielding uniform
continuity.

Definition IV.8. Let C be a function clone. Let ξ : C∩O≤(3) →
P{0,1} be a map preserving arities. The minor extension of
ξ is the map ξ′ : C → P{0,1} defined as follows:

Let f ∈ C be an n-ary operation. Let a := (a1, . . . , an) ∈
{0, 1}n. Write fa(x, y) for the binary operation induced by
f substituting the variable xi with x if ai = 0 and with y
otherwise. We then define ξ′(f)(a) := ξ(fa)(0, 1).

The requirement of ξ being defined on ternary operations
rather than only binary ones stems from the following fact.

Fact IV.9 (Proposition 6.8 in [7]). Let C be a function clone.
Suppose that ξ : C ∩ O≤(3) → P{0,1} is a partial clone
homomorphism (i.e., it preserves arities and identities). Then,
the minor extension ξ′ : C → P{0,1} is a clone homomorphism.

From this, it follows that if a clone exhibits any structure at
all in the sense that it has no clone homomorphism to P{0,1},
then it contains an essential operation of arity ≤ 3 [7]. In our
context, we get the following:

Theorem IV.10. Let G ↷ B be such that G is not a Boolean
group acting freely on B. Suppose that C is a core clone
with respect to G, and that C has no uniformly continuous
clone homomorphism to P{0,1}, the clone of projections on a
two-element set. Then, C contains a binary essential operation
almost minimal above ⟨G⟩.

Proof: Note that if f ∈ C ∩ O(2) ⊋ ⟨G⟩ ∩ O(2), since
C is a core clone with respect to G, the operation f must
be essential and almost minimal, and the desired conclusion
follows. Hence, suppose that C ∩O(2) = ⟨G⟩∩O(2). Then, all
ternary operations in C\⟨G⟩ are almost minimal. In particular,
C ∩ O(3) consists entirely of essentially unary operations and
orbit-semiprojections.

From Lemma IV.7, there is a uniformly continuous clone
homomorphism from S to P{0,1} which, when restricted to C∩
O≤(3) yields a map ξ : C ∩O≤(3) → P{0,1} preserving arities
and identities. Hence, from Fact IV.9, the minor extension of
ξ yields a clone homomorphism ξ′ : C → P{0,1}. It is easy to
see that this is uniformly continuous by observing that given
B′ a two-element set from a G-orbit, if f and g agree on B′,
then they are sent to the same projection.

C. The orbital extension property and its failure

In this subsection, we answer negatively Question 2 by
proving Theorem C, which follows from Proposition IV.17.

Definition IV.11. We say that G ↷ B has the orbital
extension property if there is an orbital (i.e., an orbit of the
componentwise action G ↷ B2) O such that for any u, v ∈ B
there is z ∈ B such that (u, z), (v, z) ∈ O.

Note that having the orbital extension property implies
transitivity of G ↷ B. The automorphism groups of sev-
eral transitive ω-categorical structures, such as the order of
the rational numbers or the random graph, have the orbital
extension property (see [14, Example 20] and [30, Lemma
3.7] for more examples). A transitive ω-categorical structure
whose automorphism group does not have the orbital extension
property is Kω,ω, the complete bipartite graph where both
parts of the partition are countable. As mentioned in the
introduction, the orbital extension property was the main
tool to prove existence of binary essential polymorphisms
previously to Theorems IV.3 and A due to the following fact:

Fact IV.12 ([8], [14], [28], [29]). Let C be a closed function
clone with an essential operation and containing a permuta-
tion group G ↷ B with the orbital extension property. Then,
C contains a binary essential operation.

Below, we give examples of ω-categorical structures whose
automorphism groups do not have the orbital extension prop-
erty in spite of being primitive. Indeed, our examples are
finitely bounded homogeneous structures in a binary language,
and so fall under the scope of the Bodirsky-Pinsker conjec-
ture [6], [7]. Below, we introduce some basic terminology
regarding homogeneous structures (cf. [40]):

Definition IV.13. A countable relational structure is homo-
geneous if every isomorphism between its finite substruc-
tures extends to an automorphism of the whole structure.
Homogeneous structures in a finite relational language are ω-
categorical. For B a relational structure, its age, Age(B), is the
class of finite substructures of B. The ages of homogeneous
structures correspond to classes of finite structures known
as Fraı̈ssé classes which satisfy some combinatorial closure
properties. In particular, given a Fraı̈ssé class F , there is a
(unique up to isomorphism) countable homogeneous structure
B whose age is F , which we call its Fraı̈ssé limit. For
a relational language L and a set of finite L-structures D,
Forbemb(D) denotes the class of finite L-structures such that
no structure in D embeds in them. For L finite, a homogeneous



TABLE I
FORBIDDEN SUBSTRUCTURES FOR S̃(3) AND S(4)

FORBIDDEN INSTANCES OF
STRUCTURE

C(i, j, k) L(i, j, k)

S̃(3) (1, 1, 1), (2, 2, 2) (1, 1, 1), (1, 2, 2), (2, 1, 2)

S(4) (1, 1, 1), (1, 2, 2) (1, 2, 1), (2, 1, 1), (2, 2, 1), (2, 2, 2)

a

b

c1

1 1

L(1, 1, 1)

a

b

c2

1 2

L(1, 2, 2)

a

b

c2

2 1

L(2, 1, 2)

Fig. 1. Forbidden instances of L(i, j, k) in S̃(3).

L-structure B is finitely bounded if there is some finite set
of L-structures D such that Age(B) = Forbemb(D).

The structures which will yield a negative answer to Ques-
tion 2 are homogeneous 2-multitournaments:

Definition IV.14. A 2-multitournament is a relational struc-
ture C in a language with two binary relations

{
1−→,

2−→
}

such
that for any two elements a, b ∈ C, exactly one of

a
1−→ b, b

1−→ a, a
2−→ b, or b 2−→ a

holds. We can think of a 2-multitournament as a tournament
where every arc is coloured of one of two colours.

Cherlin [34, Table 18.1] recently classified the family
of primitive 3-constrained homogeneous 2-multitournaments
(i.e. primitive homogeneous 2-multitournaments whose age is
of the form Forbemb(D), where every structure in D has size
3). We shall see that two such multitournaments do not have
the orbital extension property.
Notation IV.15. For i, j, k ∈ {1, 2} we let C(i, j, k) denote the
2-multitournament of size 3 consisting of an oriented 3-cycle
given by three vertices a, b, c such that

a
i−→ b, b

j−→ c, and c
k−→ a .

Similarly, L(i, j, k) denotes the 2-multitournament of size 3
where the three vertices a, b, c are such that

a
i−→ b, b

j−→ c, and a
k−→ c .

Definition IV.16. The homogeneous 2-multitournaments
S̃(3) and S(4) are given by the Fraı̈ssé limit of the
classes of 2-multitournaments omitting embeddings of the 2-
multitournaments on three vertices described by Table I.

Proposition IV.17. The automorphism groups of the homo-
geneous 2-multitournaments S̃(3) and S(4) do not have the
orbital extension property.

Proof: We run the proof for S̃(3) since the proof for S(4)
is virtually identical. There are four possible orbits of pairs for
which the orbital extension property could hold. These orbitals
of S̃(3) are described by the formulas:

x
1−→ y, y

1−→ x, x
2−→ y, and y

2−→ x .

Suppose the orbital extension property holds with respect to
the orbital O. Let u, v ∈ S̃(3) be such that u 1−→ v. Then, O
can be neither of the form x

1−→ y nor y 1−→ x since then there
would be some z ∈ S̃(3) such that u, v, z forms a copy of
L(1, 1, 1), which is forbidden. This can be seen by inspecting
Figure 1. Similarly, O cannot be of the form x

2−→ y or y 2−→ x

since S̃(3) omits L(1, 2, 2) and L(2, 1, 2). Hence, there is no
orbital for which the orbital extension property holds.

As pointed out earlier, S̃(3) and S(4) are binary finitely
bounded homogeneous structures with primitive automor-
phism group [34]. In particular, they are ω-categorical being
homogeneous in a finite language. Thus, they yield a coun-
terexample to Question 2, proving Theorem C.

V. MINIMAL OPERATIONS OVER PERMUTATION GROUPS

The techniques and ideas underlying Theorem III.8 can be
pushed to classifying almost minimal and minimal operations
above arbitrary permutation groups. In this section, we discuss
these additional results and sketch the main proofs. Our main
result, Theorem V.10, which implies Theorem B, classifies
minimal operations above arbitrary permutation groups.

A. Almost minimal operations over permutation groups

We can also classify the almost minimal functions above
the clone locally generated by a Boolean group acting freely
on a set. It is easy to prove that freeness of G ↷ B yields
that ⟨G⟩ = ⟨G⟩, and hence we shall write only ⟨G⟩.

For |G| > 2, a new type of almost minimal function is
possible, which we call a G-quasi-minority:

Definition V.1. Let G ↷ B. We say that a ternary operation
m is a G-quasi-minority if for all β ∈ G,

m(y, x, βx) ≈ m(x, βx, y)

≈ m(x, y, βx) ≈ m(βy, βy, βy) . (3)

We say that a G-quasi-minority is a G-minority if it is
idempotent.

Meanwhile, we can show that as long as |G| > 2, there
cannot be almost minimal quasi-majorities:

Lemma V.2. Let G ↷ B where |G| > 2. Then, there is no
quasi-majority almost minimal above ⟨G⟩.

Proof: Suppose by contradiction that m is a quasi-
majority almost minimal above ⟨G⟩. Since |G| > 2, take
α, β ∈ G \ {1} distinct. Lemma III.6 implies m(x, γx, z) ≈
m(z, z, z) ≈ m(z, γx, x) for any γ ∈ G\{1}. Let u be a new
variable. Setting x = u, γ = α, z = βu in the first identity
yields m(u, αu, βu) ≈ m(βu, βu, βu); on the other hand,
setting x = βu, z = u, γ = α ◦ β−1 in the second identity



yields m(u, αu, βu) ≈ m(u, u, u), contradicting injectivity of
the map x 7→ m(x, x, x).

Hence, for the case of G ↷ B being the free action
of a Boolean group of size > 2, we obtain the following
classification of almost minimal operations:

Theorem V.3 (Boolean case). Let G ↷ B be a Boolean group
acting freely on B with s-many orbits (where s is possibly
infinite) and |G| > 2. Let f be an almost minimal operation
above ⟨G⟩. Then, f is of one of the following types:

1) a unary operation;
2) a binary operation;
3) a ternary G-quasi-minority;
4) a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

Proof sketch: Given Lemma III.3, Lemma V.2, and
Theorem II.13, we only need to consider the behaviour of
almost minimal quasi-Malcev operations. One can prove that
these must be G-quasi-minorities when |G| > 2.

In the only remaining case of the group Z2 acting freely
on B, there are two more types of almost minimal operations;
these actually generate each other.

Definition V.4. Let G ↷ B. Then, we say that m(x, y, z) is
an odd majority if m is a quasi-majority such that for all
γ ∈ G \ {1},

m(y, x, γx) ≈ m(x, γx, y) ≈ m(x, y, γx) ≈ m(y, y, y) . (4)

Definition V.5. Let G ↷ B. The ternary operation M is an
odd Malcev if M is a quasi-Malcev such that for all γ ∈
G \ {1},

M(x, y, x) ≈ M(x, x, x) , (5)
M(y, γx, x) ≈ M(x, γx, y) ≈ M(x, x, x) , (6)
M(x, y, γx) ≈ M(γy, γy, γy) . (7)

Theorem V.6. Let Z2 ↷ B freely with s-many orbits (where
s is possibly infinite). Let f be an almost minimal operation
above ⟨Z2⟩. Then, f is of one of the following types:

1) a unary operation;
2) a ternary G-quasi-minority;
3) an odd majority;
4) an odd Malcev (up to permutation of variables);
5) a k-ary orbit-semiprojection for 2 ≤ k ≤ s.

Proof sketch: Again, we use Theorem II.13 as a starting
point. Firstly, using Lemma III.6, one can prove that an almost
minimal quasi-majority has to be an odd majority. Then, one
can prove that an almost minimal quasi-Malcev operation
which is not a Z2-quasi-minority has to be an odd Malcev.
Finally, it is easy to see that any binary almost minimal
operation above ⟨Z2⟩ has to be an orbit-semiprojection.

Odd majorities and odd Malcev operations above Z2 are in
a sense dual of each other, since an odd majority m(x, y, z)
always generates an odd Malcev m(x, γy, z) for γ ∈ Z2 \{0}
and vice versa. Moreover, almost minimal odd majorities and
odd Malcev operations always exist over ⟨Z2⟩.

B. Back to minimality

We can actually prove that there are no minimal odd
majorities or odd Malcevs. This allows us to treat uniformly
all Boolean groups acting freely on a set when classifying
minimal operations above ⟨G⟩ (as opposed to almost minimal
operations). Moreover, we are able to prove that minimal G-
quasi-minorities exhibit considerable structure:

Definition V.7. Let G ↷ B. A G-invariant Boolean Steiner
3-quasigroup is a symmetric ternary minority operation q also
satisfying the following conditions:

q(x, y, q(x, y, z)) ≈ z ; (SQS)
q(x, y, q(z, y, w)) ≈ q(x, z, w) ; (Bool)

for all α, β, γ ∈ G, q(αx, βy, γz) ≈ αβγq(x, y, z) . (Inv)

Idempotent symmetric minorities satisfying (SQS) are
called Steiner 3-quasigroups or Steiner Skeins in the literature
and have been studied in universal algebra and design the-
ory [41]–[44]. When they further satisfy (Bool), they are called
Boolean Steiner 3-quasigroups, since they are known to be
of the form q(x, y, z) = x+y+z in a Boolean group (B,+).
The condition (Inv) is novel and adds further constraints on
the behaviour of q: it must induce another Boolean Steiner 3-
quasigroup on the G-orbits which is related to q in a particular
way. Indeed, we can characterise G-invariant Boolean Steiner
3-quasigroups in much detail, yielding the following theorem:

Theorem V.8 (minimal operations, Boolean case). Let G ↷ B
be a non-trivial Boolean group acting freely on B with s-
many orbits (where s is possibly infinite). Let f be a minimal
operation above ⟨G⟩. Then, f is of one of the following types:

1) a unary operation;
2) a binary operation;
3) a ternary minority of the form αq where q is a G-

invariant Boolean Steiner 3-quasigroup and α ∈ G;
4) a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

Furthermore, all G-invariant Boolean Steiner 3-quasigroups
on B are minimal, and they exist if and only if s = 2n for
some n ∈ N or is infinite.

Proof sketch: Starting from Theorem V.3 and V.6, the
key step is realising that if m is a G-quasi-minority, then

m′(x, y, z) := m(x, y,m(x, y, z))

has to be an orbit-semiprojection (not necessarily essential)
with respect to its last coordinate. Since orbit-semiprojections
can only generate other orbit-semiprojections in their same
arity, if m is minimal, m′ has to be essentially unary, and we
can prove that m′(x, y, z) ≈ z, yielding (SQS). With some
additional work, we can also prove (Bool) and (Inv). Hence,
(3) follows, since every G-quasi-minority is of the form αq,
where q is a G-minority and α ∈ G. Equation (Inv) implies
that m induces a Boolean Steiner 3-quasigroup on the G-orbits.
Since these correspond to minorities of the form x + y + z
on a Boolean group, s has to be either 2n for some n ∈ N



or infinite. Moreover, for such choices of s, we can always
construct a G-invariant Boolean Steiner 3-quasigroup.

Finally, we need to deal with the case of Z2. In this context,
we can prove that if m is an idempotent odd majority, then
for γ the non-identity element in Z2,

m⋆(x, y, z) := m(x, γm(x, y, z),m(γx, y, z))

is a G-minority. But if m was minimal, m⋆ would also be
minimal, and so it would be a G-invariant Boolean Steiner
3-quasigroup. We can prove that the latter cannot generate a
majority together with G, yielding that neither odd majorities
nor odd Malcev operations (which generate odd majorities)
can be minimal.

Generalising a classical result of Pálfy [45] on the existence
of minimal semiprojections, we also get the following:

Theorem V.9 (Pálfy’s Theorem for orbit-semiprojections).
Let G ↷ B with s-many orbits with B finite or of the
form Aut(B) ↷ B for B ω-categorical in a finite relational
language. Then, for all 2 ≤ k ≤ s, there is a k-ary orbit-
semiprojection minimal above ⟨G⟩.

The various results mentioned in this section are then
summarised in Theorem V.10:

Theorem V.10 (Minimal operations over permutation groups).
Let G ↷ B be a non-trivial group acting faithfully on B with
s many orbits (where s is possibly infinite). Let f be a minimal
operation above ⟨G⟩. Then, f is of one of the following types:

1) a unary operation;
2) a binary operation;
3) a ternary quasi-minority operation of the form αq for

α ∈ G, where
• G is a Boolean group acting freely on B;
• the operation q is a G-invariant Boolean Steiner

3-quasigroup;
4) a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

Moreover, in case (3), such operations exist if and only if
s = 2n for some n ∈ N or is infinite. In case (4), if B is finite
or G = Aut(B) for B ω-categorical in a finite relational
language, we have that a minimal k-ary orbit semiprojection
exists for each 2 ≤ k ≤ s.

Given Fact II.19, Theorem B is simply a special case of
Theorem V.10.

Example V.11. Theorem V.10 can help us classify the minimal
operations above permutation groups in concrete examples.
Consider the free action Z2 ↷ {0, 1}. From Theorem V.6,
in this case the only possible minimal operations are either
unary or quasi-minorities. The two constant operations on
{0, 1} are clearly minimal above ⟨Z2⟩. Meanwhile, both non-
constant unary operations on {0, 1} are in ⟨Z2⟩ and so cannot
be minimal above it. Finally, note that x+ y + z (modulo 2)
is the only Z2-invariant Boolean Steiner 3-quasigroup. Hence,
this operation and its translate (1− (x+ y + z)) are the only
minimal quasi-minorities above ⟨Z2⟩.

VI. SOLVABILITY IN DATALOG WITHOUT BINARY
INJECTIONS

In this final section, we give a counterexample to Question 3
by sketching the proof of Theorem VI.8, which implies
Theorem D. Datalog is a logic programming language which
captures many standard polynomial-time algorithms used in
the context of CSPs. Indeed, solvability in Datalog of a CSP
corresponds to solvability by k-consistency algorithms for
some k [46], [47]. We refer the reader to [47] for a discussion
of Datalog in an ω-categorical setting and for the definition of
a Datalog program. In this section, we use an algebraic charac-
terisation of solvability in Datalog for a particular class of ω-
categorical structures [48], thus avoiding the need to formally
introduce the syntax and semantics of Datalog. Question 3
asks whether, for ω-categorical structures, having sufficiently
easy CSP (i.e., CSP solvable in Datalog) implies the existence
of a binary injective polymorphism under tame assumptions.
Without the restriction to Datalog, some first-order reducts of
(Q, <) have CSP solvable in polynomial time (though not
in Datalog) but have no binary injective polymorphisms (cf.
Theorem 1.4 in [49] and Claim 4.8 in [50]).

Our counterexample (Definition VI.7) is first-order definable
in an infinite unary structure. The CSPs of infinite unary
structures (and structures definable in them) have been studied
in detail with a complexity dichotomy proved in [51, Theorems
1.1 & 1.2] and a descriptive complexity analysis given in [48,
Theorem 5.1]. The latter characterises solvability in Datalog
for first-order reducts of unary structures (including structures
first-order definable in unary structures) as being witnessed
by a particular class of (canonical) polymorphisms known as
pseudo-WNU operations (Definition VI.4). We will use this
description for our proof of Theorem D.

The idea behind our counterexample is that any structure on
the Boolean domain {0, 1} with a minimum operation among
its polymorphisms has CSP solvable in Datalog (because it
contains WNU operations in all arities [52], [53]). So, we
“blow-up” the points of the original structure to the structure D
consisting of disjoint unary predicates P0 and P1 with infinite
domain. At this point we want to consider a function m acting
as a minimum on these predicates. The challenge is balancing
the requirement that m should generate a very rich clone (so
that structures that have it as a polymorphism are solvable
in Datalog), whilst also ensuring it does not generate any
non-injective unary operation or any injective binary operation
(which would break the requirements for a counterexample).
This leads us to the set of operations M defined below.

Definition VI.1. By D we denote the first-order structure with
domain the disjoint union of two copies of N in the language
with two unary predicates {P0, P1}, where each predicate
names one of the two disjoint copies (which we also call P0

and P1).

Definition VI.2. For i ∈ {0, 1}, let Inji be the set of injections
Pi → Pi and BInji be the set of binary injections P 2

i → Pi.
Define M to be the set of binary operations m : D2 → D



such that, for some g0 ∈ BInj0, g1 ∈ BInj1, and α, β ∈ Inj0
such that α, β, and g0 have disjoint images, we have,

m(x, y) :=


gi(x, y) if x, y ∈ Pi for i ∈ {0, 1};
αx if x ∈ P0, y ∈ P1;

βy if y ∈ P0, x ∈ P1.

So, m acts as a binary injection on each Aut(D)-orbit and
if its inputs are from different orbits, it selects the one in P0

(and moves it by an appropriate injection of P0).

As mentioned earlier, solvability in Datalog for structures
first-order definable in unary structures is witnessed by canon-
ical pseudo-WNU operations. Below we define these terms.

Definition VI.3. Let G ↷ B. We say that an n-ary operation
f : Bn → B is canonical with respect to G (or G-canonical)
if for all k ≥ 1, all k-tuples a1, . . . , an ∈ Bk, and all
α1, . . . , αn ∈ G, there is β ∈ G such that

f(α1a1, . . . , αnan) = βf(a1, . . . , an) , (8)

where f and α are applied componentwise.

Note that the definition of a canonical function in (8)
says that the G-orbit of the k-tuple f(a1, . . . , an) is entirely
determined by the G-orbits of the k-tuples a1, . . . , an. In
particular, writing Tk for the space of G-orbits of k-tuples
on B, the G-canonical function f induces an n-ary operation
ξGk (f) on Tk defined as follows [6]: for O1, . . . , On ∈ Tk, let
ξGk (f)(O1, . . . , On) be given by the orbit of f(a1, . . . , an) for
some/all ai ∈ Oi.

Definition VI.4. An n-ary operation w : Bn → B is called
a weak near-unanimity operation (WNU) if for any two
tuples z1, z2 ∈ {x, y}n containing exactly one instance of y,
we have

w(z1) ≈ w(z2) .

So, for example, a ternary WNU operation w satisfies

w(x, x, y) ≈ w(x, y, x) ≈ w(y, x, x) .

Definition VI.5. Let G ↷ B. We say that w : Bn →
B is a pseudo-WNU operation modulo G if for any
z1, z2 ∈ {x, y}n containing exactly one instance of y there
are αz1

, βz2
∈ G such that αz1

w(z1) ≈ βz2
w(z2).

Lemma VI.6. Let C be a model-complete core in a finite
language with automorphism group Aut(D) and with Pol(C)∩
M ̸= ∅. Then, CSP(C) is solvable in Datalog.

Proof sketch: First, one needs to prove that any m ∈ M is
Aut(D)-canonical. Then, letting g := ξ

Aut(D)
2 (m), it is easy to

prove that g(x, g(x, y)) ≈ g(x, y) on T2. For n ≥ 3, consider
the operation on T n

2 given by

wn(x1, . . . , xn) := g(x1, g(x2, . . . , g(xn−1, xn) . . . )) .

The identity g(x, g(x, y)) ≈ g(x, y) implies that wn is a weak
near unanimity operation. Now, suppose that m ∈ M∩Pol(C),
and let C be the clone of canonical functions in Pol(C).

We just proved that ξ
Aut(D)
2 (C) contains WNU operations

of all arities ≥ 3. From [6, Proposition 6.6], this implies
that Pol(C) contains pseudo-WNU canonical polymorphisms
modulo Aut(D) for all n ≥ 3. From [48, Theorem 5.1], this
is equivalent to CSP(C) being solvable in Datalog.

Definition VI.7. We define the following relations on D:

r(x, y, z) := (P1(x) ∧ P1(y)) → P1(z);

p(x, y) := (x = y ∧ P0(x)) ∨ (P1(x) ∧ P1(y)) .

Consider the first-order structure D′ := (D;P0, P1, r, p, ̸=).

We say that an ω-categorical structure B has algebraicity
if for some finite A ⊆ B, some orbit of the stabilizer of A,
Aut(B)A, on B \A is finite.

Theorem VI.8. The structure D′ satisfies the following:
1) D′ is a finitely bounded homogeneous structure with no

algebraicity and Aut(D′) = Aut(D);
2) D′ is a model-complete core;
3) M ⊆ Pol(D′), and so CSP(D′) is solvable in Datalog;
4) D′ has no binary injective polymorphisms.

Proof sketch: Since D′ is obtained by expanding D
by definable relations, Aut(D′) = Aut(D) and (1) holds.
Meanwhile, (2) follows from the endomorphisms of D′ pre-
serving ̸= and the Pi (for i ∈ {0, 1}). For (3), one needs
to check that ̸=, p, and r are preserved by all functions in
M. As M ⊆ Pol(D′), solvability in Datalog follows from
Lemma VI.6. Finally, (4) can be deduced from the fact that
Pol(D) preserves P0, P0, r, and p.

Theorem VI.8 implies Theorem D since D′ is ω-categorical
being homogeneous in a finite relational language.

VII. CONCLUSION

Adapting terminology introduced by Bodirsky and
Bodor [54], we call a finite or oligomorphic permutation
group G ↷ B stubborn if every (model-complete) core with
automorphism group G pp-interprets all finite structures, and
so has an NP-hard CSP in virtue of its automorphisms alone. A
stronger property than stubbornness is being collapsing: ⟨G⟩
is the only function clone whose unary operations are exactly
G. We know that several finite permutation groups satisfying
strong forms of primitivity, including Sn ↷ {1, . . . , n} for
n ≥ 3, are collapsing (cf. [55]–[57]). However, stubbornness
has not been investigated systematically so far. We therefore
suggest the following question at the intersection of group
theory and clone theory:

Question VII.1. Which (finite or oligomorphic) permutation
groups are stubborn?

Due to Theorem A, an investigation of Question VII.1
should go through the study of the possible behaviours of
binary minimal operations above different permutation groups
(cf. [58]). In the meantime, we ask:

Question VII.2. Which permutation groups are such that
the only binary operations minimal above them are orbit-
semiprojections?
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[28] M. Bodirsky and J. Kára, “The complexity of equality
constraint languages,” Theory of Computing Systems,
vol. 43, pp. 136–158, 2008.

[29] M. Bodirsky and M. Pinsker, “Minimal functions on the
random graph,” Israel Journal of Mathematics, vol. 200,
no. 1, pp. 251–296, 2014.

[30] M. Bodirsky and J. Greiner, “The complexity of combi-
nations of qualitative constraint satisfaction problems,”
Logical Methods in Computer Science, vol. 16, 2020.
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