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Abstract— Regular integer linear-exponential programming
(RegILEP) asks whether a system of inequalities of the form∑

i=1..n

(
ai ·xi + bi · 2xi

)
≤ c, where all coefficients are integers,

has a solution in the integers whose binary representations
belong to some regular set over the alphabet {0, 1}. RegILEP
has recently been proved decidable in EXPSPACE using purely
automata-theoretic techniques. The first contribution of the paper
is a novel decision procedure for RegILEP, which works in a
quantifier elimination fashion: after specifying a total order on
the variables, the procedure gradually excludes the exponential
occurrences of the leading variable and then eliminates the linear
ones. This decision procedure meets the existing EXPSPACE
upper bound for the problem. As a complementary result, we
show that regular integer linear programming for the domain
defined by the regular expression (00∪01)∗ is PSPACE-complete.

Index Terms— arithmetic theories, exponentiation, automatic
structures, quantifier elimination, integer linear programming

I. INTRODUCTION

Integer linear programming feasibility (ILP) is a classical
problem: given a matrix A ∈ Zm×n and a vector b ∈ Zm,
determine whether there exists a solution x ∈ Zn to the system
of linear inequalities A · x ≤ b. Define the problem S-ILP as
ILP, where the variables range over the set S, and let us call
regular integer linear programming (RegILP) the S-ILP for
the sets S of non-negative integers whose binary expansions
are accepted by a DFA over the alphabet {0, 1}, and this DFA
is given as part of the input. Now suppose that we are given
two matrices A,B ∈ Zm×n and a vector c ∈ Zm. Then,
Integer Linear-Exponential Programming feasibility (ILEP)
over S ⊆ N is the problem of the existence of an x such that

A ·x+B · 2x ≤ c,

x ∈ Sn,

where 2x denotes the vector (2x1 , . . . , 2xn). When the binary
expansions of the non-negative integers from the set S are
accepted by a DFA, we obtain regular ILEP (RegILEP). In
this paper, we develop a novel algorithm for deciding RegILEP
and establish the computational complexity of RegILP.

From the logical point-of-view, ILP can be seen as the deci-
sion problem for the positive existential conjunctive fragment
of the first-order theory of the integers Z with addition and
order, which is usually called Presburger arithmetic (PrA).
Indeed, this fragment comprises sentences ∃x.φ(x), where φ
is a conjunction of linear inequalities with integer coefficients.
While ILP can be decided using a variety of techniques [7],

[17], [27], the only known algorithms for RegILEP (with re-
strictions on S) originate from the very recent developments
in the decision procedures for existential Presburger arithmetic
(∃PrA) with the integer base 2 exponentiation 2x : n 7→ ⌊2n⌋,
and its extensions. The algorithms from [1], [8] first specify an
ordering over the variables and then, starting from the leading
variable x, exclude the exponential occurrences 2x (linearisa-
tion) and then eliminate the linear ones x (elimination) in the
same way as in ∃PrA. These algorithms are purely algebraic,
and the algorithm from [8] can decide S-ILEP in NP if the
set S is represented via a formula of ∃PrA with the predicate
V2(x, y), which is true whenever y is the largest power of 2
dividing x. The sets definable using such formulas form a
proper subset in the class of all regular sets [14], [30].

There is only one algorithm for deciding RegILEP in its full
generality, and it comes from the recent breakthrough result by
Draghici, Haase, and Manea [10]. They prove that ∃PrA with
the base 2 exponentiation and regular predicates (called exis-
tential generalised Semënov arithmetic (∃GSA)) is decidable
in EXPSPACE. Here, a predicate R over Nn is regular if there
is an NFA over the alphabet {0, 1}n that recognises exactly the
binary expansions of a ∈ Nn such that R(a). Since this theory
contains all regular predicates, a purely algebraic approach is
clearly not applicable, and the decidability of ∃GSA is proved
via a reduction to the non-emptiness problem for a restricted
version of labelled affine vector addition system with states
(LAVASS). This generalisation of finite automata admits a
representation of the atomic formula (y = 2x), and thus every
formula of ∃GSA can be encoded into a restricted LAVASS.
Since the non-emptiness problem for restricted LAVASS is
decidable in EXPSPACE, ∃GSA is decidable within the same
class. However, the decision procedure is radically different
from the quantifier elimination algorithms for ILEP from [1],
[8], and the restricted LAVASS is a rather complex object for
studying its non-emptiness problem. This stimulates the re-
search on developing a new algorithm that combines algebraic
and automata-theoretic paradigms. Our first main result is a
novel decision procedure for ∃GSA, which gives us a new
proof of the following fact.

Theorem 1. The RegILEP problem is decidable in EXPSPACE.

To highlight the merits of the quantifier elimination ap-
proach compared to the restricted LAVASS, we first informally
describe the main ideas underlying our procedure.



On the top-level, it has two steps, linearisation and elimi-
nation, which are applied to our formulas repeatedly, but now
these steps are inevitably based on automata theory. Elimina-
tion of linearly occurring variables follows the algorithms for
PrA [4], [7], [13]. To illustrate the key ideas of linearisation,
consider the system

R(3 ·2x+2 ·2y +3 ·y+1, 2x+3 ·2y +2)∧ (y+3 < x), (1)

where R is recognised by some {0, 1}2-NFA. System (1) is
first simplified by introducing new linearly occurring variables,
so that in every regular predicate R′ of the simplified system
each coordinate of the NFA that recognises R′ will correspond
to either a linear or exponentiated variable. In particular, the
term 3 · 2x + 2 · 2y + 3 · y + 1 will be replaced by a fresh
variable ŷ1 and 2x + 3 · 2y + 2 by ŷ2. Then, the resulting
system is satisfiable in N if and only if the product A of the
NFAs that recognise its predicates accepts a word of the form
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Since the variables ŷ1 and ŷ2 occur in the system only linearly,
they can be eliminated, and for this reason they are highlighted
in red. The main concern of linearisation will be the blue part
of the runs over such words. While reading the word (2) from
right to left, the NFA A first reaches a transition with the
unique 1 in the coordinate that corresponds to 2y , then reads
(x−y−1) tuples with zeros in the coordinates corresponding
to non-eliminated variables until reaching a transition with
the unique 1 in the coordinate that corresponds to 2x. The
linearisation step updates the final states of A and introduces
new constraints to express the existence of a run in A between
two specific states over a word formed of tuples of zeros with
length equal to (x− y − 1). The description of these lengths
will be obtained via the so-called Chrobak normal form [9],
[12], [26], [31] of NFAs over unary alphabets.

In contrast to [10], our procedure uses standard tools from
automata theory, it can easily be decomposed into independent
subroutines, and it also provides a direct way to generalise it
to work with the real numbers (which seems to be difficult
to do using the restricted LAVASS). By representing tuples
of real numbers as ω-words [3], we obtain the following real-
number version of GSA. Denote by B the set of all predicates
over Rn

≥0 recognisable by Büchi automata. Then the positive
existential theory of the structure ⟨R; 0, 1,+, ⌊·⌋ , 2⌊·⌋,B,≤⟩,
where ⌊·⌋ is interpreted as the floor function, is decidable in
EXPSPACE. Every real variable x is replaced by (u+v), where
u ranges over Z and v is a real variable ranging over [0, 1);
then, 2⌊x⌋ becomes equal to 2u, the variable v occurs in the
formula only linearly. Following [3], the problem is split into
deciding solvability of a system of regular constraints with
integer variables and positive powers of 2 and of a system of ω-

regular constraints with real variables from [0, 1) and negative
powers of 2. Linearising the latter exponentiated variables via
the technique described in the present paper, we reduce our
problem to the decision problem for ∃GSA. Instead of giving
this straightforward generalisation, we prove a complementary
result to Theorem 1, which seems to be more surprising.
As noted in [10, Conclusion], ∃GSA is PSPACE-hard due to
PSPACE-completeness of the NFA intersection non-emptiness
problem [18]. The next theorem strengthens this observation.

Theorem 2. The (00∪01)∗-ILP problem is PSPACE-complete.

The computations of NFAs from the input of the intersection
non-emptiness problem are expressed via a system of linear
inequalities and constraints specifying that the binary expan-
sion of the value of a linear term f(x) is from (00∪01)∗. To
complete the proof, it will be sufficient to notice that every
non-negative integer can be represented as (2x+ y) for some
x and y with binary expansions from the language (00∪01)∗.

The main results reflect the relationships between integer
programming and decision procedures for arithmetic theories.
Let us mention some closely related classical and recent works
before proceeding to our quantifier elimination for ∃GSA.

Existential arithmetic theories and Integer Programming

For an extension ∃PrA, we can define a counterpart in the
world of integer programming. Such problem may require the
variables to take their values from some subset of integers
and/or use specific kinds of constraints.

The undecidability of the Hilbert’s 10th Problem [21] (∃PrA
with multiplication [22]) implies that IP with quadratic con-
straints

∑
i=1..n

(
ai ·xi+bi ·xi2

)
≤ c is undecidable [16]. For

the set of squares Sq = {0, 1, 4, 9, . . . }, we see that Sq-ILP
is expressible in the language of IP with quadratic constraints,
but its decidability status is a long-standing open problem with
only conditional undecidability results known [23]. The deci-
sion procedure for ∃PrA with divisibility [20] is, in essence,
the algorithm that decides solvability in the integers of systems∑

i=1..n

(
ai·xi+

∑
j=1..n bi,j ·(xi mod xj)

)
≤ c. The problem

is decidable in NEXPTIME [19] and is undecidable over the
set Sq [32]. The decision procedure from [19] gave rise to the
decidability in NP of the IP with gcd-constraints [11], where
a system of linear inequalities is supplemented with a system
of constraints gcd(f(x), g(x)) ∼ d for the greatest common
divisor function gcd, linear terms f(x), g(x), d ∈ Z>0, and a
symbol ∼∈{≤,=, ̸=,≥}. A quantifier elimination procedure
for ∃PrA with exponentiation x 7→ 2x and modulo powers of
two operator (x, y) 7→ x mod 2y has recently been applied [8]
to integer linear-exponential programming, which was defined
as

∑
i=1..n

(
ai ·xi+

∑
j=1..n bi,j ·(xi mod 2xj )+ci ·2xi

)
≤ d.

This problem was proved to be decidable in NP. It is easy to
show that there is a regular predicate R(u, v, w) such that
z = (x mod 2y) if and only if R(z, x, 2y). Therefore, linear-
exponential systems from [8] are expressible in the language
of ∃GSA. On the other hand, allowing in the system arbitrary
modulo operators (xi mod xj), we obtain an algorithmically
undecidable problem [32].



II. FINITE AUTOMATA AND LINEAR-EXPONENTIAL TERMS

Our first goal is to perform several syntactic transformations
of a given formula of ∃GSA so that the resulting formula will
be equisatisfiable over N and prepared for quantifier elimina-
tion. This section recalls some necessary definitions, notations
and results from automata theory and logic.

A. Regular predicates over non-negative integers

Our decision procedure operates with non-negative integers
N={0, 1, 2, . . . } and regular predicates over Nn. We treat B =
{0,1} as the alphabet of bits and Bn as the alphabet of n-tuples
of bits. The n-tuple of zeros will be denoted by 0 when its size
n is clear from the context. The language (Bn)∗ is the set of all
words of finite length over Bn with the unique empty word ϵ of
length 0. There is a naturally defined surjection J·K from (Bn)∗

to the set Nn. For a word a0a1...at ∈ (Bn)∗, we define

Ja0a1...atK = a0 + a1 · 2 + · · ·+ at · 2t.

For a language L ⊆ (Bn)∗, this function defines a subset of Nn

in the following way: JLK = {JaK : a ∈ L}. Here, the vectors
from JLK are encoded in the least-significant-digit (lsd)-first
binary notation. Observe that J·K becomes bijective if defined
over the language Nn := 0 ∪ (Bn)∗ · (Bn \ 0).

For an alphabet Σ, a non-deterministic finite automaton over
Σ (Σ-NFA) is a 4-tuple A = (Q,S, F,∆), where Q is a finite
set of states; S, F ⊆ Q are, respectively, the sets of initial and
finial states, and ∆ ⊆ Q × Σ × Q is the transition relation.
When ∆ is a function ∆ : Q×Σ→ Q and S is a singleton set,
the automaton A is deterministic (Σ-DFA). A triple (p, a, q)
from ∆ is called a transition of A, and is denoted by p a−→ q.
A run of A from a state p0 to a state pt+1 on an input word
a = a0a1...at from Σ∗ is a sequence of transitions p0

a0−→
p1

a1−→ . . .
at−→ pt+1 such that for every i ∈ [0, t] we have

pi
ai−→ pi+1 ∈ ∆. We say that a word a ∈ Σ∗ is accepted by

a given Σ-NFA A if there is a run of A from a state p ∈ S
to a state q ∈ F on the input a. The set of all words a ∈ Σ∗

accepted by A defines the language L(A).
An n-ary predicate R over N is called regular if there is a

Bn-NFA A such that L(A) = L′ ·0∗ for a language L′ ⊆ Nn

and we have JL(A)K = {a ∈ Nn : R(a)}. In this case we say
that A recognises R. In our paper, each regular predicate R
will be defined via some NFA A = (Q,S, F,∆), and the size
of this predicate is defined as |R| := #Q+#∆, where # is
the cardinality function.

Büchi-Bruyère’s theorem [4], [5] states that a predicate R
over Nn is regular (more precise: 2-regular) if and only if it
is definable in the structure ⟨N; 0, 1,+, V2,≤⟩, where V2(x, y)
is true whenever y is the greatest power of 2 dividing x. For
example, V2(12, y) is true only when y = 4, and x is a power
of 2 exactly when V2(x, x). For our purposes, we only need
some basic tools from the “if” part of the proof from [4]. First
of all, we use the standard B3-NFA for addition (x+ y = z)
and a similar B2-NFA for doubling (2 · x = y) both given in
Fig. 1. The B2-NFA for (x = y) is trivial: it has only one
state q0 (simultaneously initial and final) and two transitions

labelled with
[
0

0

]
and

[
1

1

]
. Using these simple automata we can

construct a conjunction of formulas that defines the predicate
(a · x = y) for a fixed positive integer a. Let a0a1...at be the
binary expansion of a in the lsd-first notation with t ≥ 2, i.e.,
we have Ja0a1...atK = a. Then the desired expression is

a · y = x ⇐⇒ ∃u∃v
[
2 · y = u1 ∧

∧
i=2..t

(2 · ui−1 = ui)∧

(a0 · y + a1 · u1 = v1) ∧
∧

i=2..t−1

(vi−1 + ai · ui = vi)∧ (3)

(vt−1 + at · ut = x )
]
.

We will also need an NFA for (y ≤ z) (projection over the first
coordinate of the NFA from Fig. 1a) and NFAs for constants,
i.e., that recognise the predicate (x= a) for some fixed a∈N.
Such NFAs have a simple form: ⌈log2(a+ 1)⌉+ 1 states and
the same number of transitions, which form a chain labelled
with bits of the binary expansion of a in the lsd-first notation;
the unique final state has a loop labelled with 0.

q0 q1

00
0

 ,
10
1

 ,
01
1

 11
0


10
0

 ,
01
0

 ,
11
1



00
1


(a) NFA for (x+ y = z)

q0 q1

[
0

0

]
[
1

0

] [
1

1

]

[
0

1

]
(b) NFA for (2 · x = y)

Fig. 1: Two basic NFA

Remark 1. The NFAs for the predicates (x+y = z), (y ≤ z),
and (x = a) with a > 0 have a unique final state q0, do not
have transitions p 0−→ q0 for p ̸= q0, and q0 has a unique
predecessor (if defined) for every label.

The NFA for divisibility constraints (d | x− r) may require
exponentially many states in the bit-length of d. In our decision
procedure, we will use a succinct representation of these NFA
via a pair of integers d > 0 and r ∈ [0, d−1] encoded in binary.
We recall the standard construction (see e.g. [2], [15]) to show
that the existence of a transition qk

a−→ ql in the NFA Dd,r for
(d | x− r) can be verified in polynomial time for every a∈B
and k, l∈N encoded in binary. Let d = 2n·m, where m is odd.
Then Dd,r will have n+m states with the initial state qm and
the final state q0. To define the transition function, we compute
the remainder c = r mod 2n and then define the remainder k
such that 2n · k+ c ≡ r (mod m). Let a0a1...an−1 be the lsd-
first encoding of c and let b be the multiplicative inverse of 2
modulo m. The NFA Dd,r has the following transitions: for
i∈ [0, n−2] : qm+i

ai−→ qm+i+1 (reading n−1 least significant
bits of r); then we have qm+n−1

an−1−−−→ qk (after the n-th bit,
the remaining part is congruent to k modulo m); and, finally,
for i ∈ [0,m − 1] there are two transitions qi

0−→ qi·b (mod m)

and qi
1−→ q(i−1)·b (mod m) (the standard NFA for (m | x− k)).



The proof of the following lemma is straightforward.

Lemma 1. For any integers d > 0 and r∈ [0, d− 1] the NFA
Dd,r recognises the divisibility (d | x− r).

In Section IV, we need a description of words recognisable
by a {0}-NFA A, and this can be done by constructing of the
so-called Chrobak normal form [9], [12], [31] of A. Instead of
giving the formal definition of the normal form, we recall the
main property of the algorithm from [26]. Since A is an NFA
over a unary alphabet, the language L(A) can be characterized
in terms of arithmetic progressions describing only the lengths
of words. For a state q of A denote by sl(q) the shortest loop
that can be done in q. Then we have the following lemma.

Lemma 2 (Sawa [26]). Let A = (Q,S, F,∆) be a {0}-NFA
with #Q = n. Define a set C of pairs of non-negative integers
as the union of

• C1: all pairs (c, 0) such that c ∈ [0, n2−1] and A accepts
the string 0c.

• C2: all pairs (c, d) such that there is a run q0
n−1−−−→

d↶
q l−→ qf

in A (where the lengths of paths are written instead of
the words of the corresponding length) for some q0 ∈ S,
q ∈ Q, qf ∈ F , and non-negative integers d = sl(q),
c ∈ [n− 1, n2 − 1] and l = c− (n− 1).

Then L(A) =
⋃

(c,d)∈C

{
0k : k ∈ (c+ d · N)

}
.

This lemma is applied in the linearisation process, which is
described in Section IV.

If a system of regular constraints
∧

i=1..mRi(xi) has only
linearly occurring variables, it can be decided for solvability
in N as follows. Let x be the vector composed of the variables
from x1, . . . ,xm. For i∈ [1,m], define the regular predicates
R′

i(x) such that for all x we have Ri(x)⇔ R′
i(xi). Then, in

terms of binary representations of solutions, we must check
for non-emptiness the intersection of L(A′

1), . . . , L(A′
m) for

NFAs A′
i that recognise R′

i. Non-deterministic Algorithm 1 is
an adaptation of a textbook procedure for the intersection non-
emptiness problem for NFAs (see e.g. [18], where the problem
is proved to be PSPACE-complete). In this algorithm, for every
b ∈ Bk, where k is the size of x, we denote by πAi(b) the
tuple of bits that corresponds to the variables xi in x. This
algorithm works in space polynomial in the size of the system.
Savitch’s theorem gives us the following lemma.

Lemma 3. For a system of regular constraints
∧

i=1..mRi(xi)
Algorithm 1 decides its solvability in non-negative integers N
in space polynomial in |R1|+ · · ·+ |Rm|.

This lemma will give the PSPACE upper bound for RegILP
in Section VI, and modifications of Algorithm 1 will help us
to prove two lemmas from Sections III and IV.

B. Existential arithmetic of addition and exponentiation

Presburger arithmetic is the first-order theory of the struc-
ture ⟨Z; 0, 1,+,≤⟩, where all symbols are interpreted in the
usual way. Semënov arithmetic is the first-order theory of the

Algorithm 1 Solvability in N of systems of regular constraints

Input: φ(x1, ..., xn) : system
∧

i=1..mRi(xi), where each Ri

is recognised by the NFA Ai = (Qi, Si, Fi,∆i).
Output: ⊤ if φ has solutions in N, and otherwise ⊥.

1: c←
∏

i=1..m #Qi

2: guess q = (q1, . . . , qm)← from S1 × · · · × Sm

3: while c > 0 do
4: if q ∈ F1 × · · · × Fm then return ⊤
5: else
6: b← guess from Bn, where for every i ∈ [1,m]

there exists pi∈Qi with (qi, πAi
(b), pi)∈∆i

7: p← guess from Q1 × · · · ×Qn such that
(qi, πAi(b), pi) ∈ ∆i

8: q ← p; c← c− 1
9: return ⊥

extension of this structure with the integer base 2 exponenti-
ation 2x : n 7→ ⌊2n⌋, where ⌊·⌋ is the floor function. This, in
particular, means that 2x maps to zero every negative integer n.
Both theories have quantifier elimination in some naturally
defined extensions (see [13], [25] for the former and [24],
[28] for the latter theory).

In this paper we focus on the complexity of the existential
Semënov arithmetic extended with all regular predicates. Over
the integers, a predicate R(x) is called regular if the predicate
x∈{|a| : R(a),a∈Zn} is regular (see Section II-A), where
|a|=(|a1| , ..., |an|). Denote by R the set of regular predicates
over Z represented via the minimal DFAs that recognise them.
Generalised Semënov arithmetic (GSA) is the first-order the-
ory of the structure ⟨Z; 0, 1,+, 2x,R,≤⟩. Terms and formulas
in the language of GSA we call, respectively, GSA-terms
and GSA-formulas. The length |φ| of a GSA-formula φ is
parametric in the size of the predicates R1, . . . , Rm that appear
in φ, i.e., |φ| is the number of symbols required to write down
φ, assuming binary encoding of natural numbers and |Ri| as
the size of each symbol Ri. The existential GSA is decidable
in EXPSPACE [10], however, for two quantifier blocks GSA
is undecidable [6]. We will only deal with the existential frag-
ment (∃GSA). Our goal now is to reduce in non-deterministic
polynomial time the problem of deciding satisfiability in Z
of quantifier-free GSA-formulas to the satisfiability in N of
GSA-formulas in the following normalized form:∧

i=1..m

Ri(2
x1 , x1, . . . , 2

xn , xn), (4)

where the regular predicates Ri are recognised by some NFAs
Ai. Such systems will be called quantifier-free regular linear-
exponential (lin-exp) systems. Notice that each predicate Ri

in (4) has 2n slots for variables, however, we do not require
the NFA Ai to work over the alphabet B2n. For example, the
system may contain the equality (x1+2x2 = x3) recognisable
by the B3-NFA from Fig. 1a. Crucially, the relation (x = 2y)
is not regular [10], and we only assign exponentiated variables
2xj to some coordinates of Ai. The next lemma performs syn-
tactic transformations of ∃GSA-formulas, which are standard
for formulas of Semënov arithmetic [1], [8], [10], [24].



Lemma 4. The decision problem for ∃GSA is reducible in
non-deterministic polynomial time to the problem of solvabil-
ity in N of quantifier-free regular lin-exp systems.

The proof is simple and it is omitted for space reasons. In
the future, by exponentiated variables we assume the expo-
nential terms 2x1 , . . . , 2xn , and the terms 2x1 , x1, . . . , 2

xn , xn
will be called trivial terms over the variables x1, . . . , xn.

III. ORDERED REGULAR LIN-EXP SYSTEMS

This section is preparatory for the (non-deterministic) quan-
tifier elimination procedure described in Sections IV and V.
This procedure takes on input a regular quantifier-free lin-exp
system φ(2x1 , x1, . . . , 2

xn , xn) and operates during its execu-
tion with two sorts of variables called eliminated and free.
For this reason, we introduce regular linear-exponential (lin-
exp) systems φ(ŷ1, . . . , ŷk, 2x1 , x1, . . . , 2

xn , xn), which have
the same definition as quantifier-free regular lin-exp systems,
but the variables are now split into eliminated ŷ1, . . . , ŷk,
occurring in φ only linearly, and free x1, . . . , xn. It is clear that
quantifier-free regular lin-exp systems are just regular lin-exp
systems, where all variables are free.

As usual for decidable extensions of ∃PrA [8], [11], [19],
we will work with systems supplemented with a total order on
the trivial terms over free variables occurring in the system.

A. Orderings

For a regular lin-exp system φ we define a set

Tφ := {2x0 , 2x1 , . . . , 2xn , x0, x1, . . . , xn, 0}

comprising all trivial terms over the free variables of φ and
auxiliary terms 2x0 , x0, and 0. Then, by the ordering for the
set Tφ we assume a quantifier-free regular lin-exp system θ
that is composed of the constraints (s ≥ t) for every s, t ∈ Tφ
specifying a total order on Tφ such that

(i) (t ≥ 0) for every t ∈ Tφ \ {x0} and (0 ≥ x0);
(ii) (2xi ≥ xi) for every i ∈ [1, n];

(iii) (2xi ≥ 2xj ⇐⇒ xi ≥ xj) for every i, j ∈ [0, n].
Here and along the paper, we will represent such ordering θ as
(t0≥ t1≥ . . .≥ t2n≥x0 = 0). It is clear that a regular lin-exp
system φ has solutions in N if and only if there exists an order-
ing θ for Tφ such that (φ∧θ) also has solutions in N. Having
constructed (in non-deterministic polynomial time) an ordering
θ for the set Tφ, we do the following updates in θ to define
a generalised ordering for φ. First, for every free variable x
we add to the ordering θ the constraint P2(2

x) specifying that
2x is a power of 2. The NFA that recognises P2 is trivial: it
has an initial state q0, a final state q1, and three transitions:
q0

0−→ q0, q0
1−→ q1, and q1

0−→ q1. These self-evident constraints
are necessary for the linearisation procedure from Section IV.
Second, for every i, j ∈ [1, n] such that 2xj is the immediate
successor of xi in θ, we

1) introduce a new variable zi;
2) add to θ the regular predicate Rλ(xi, 2

zi) specifying that
2zi is the largest power of 2 less than or equal to xi;

3) insert 2zi into θ between xi and 2xj : xi ≥ 2zi ≥ 2xj .

The NFA that recognises Rλ(u, v) has an initial state q0, a
final state q1, and four transitions: loops in q0 labelled with[
0

0

]
and

[
1

0

]
, a transition with

[
1

1

]
from q0 to q1, a loop with

[
0

0

]
in the state q1. The free variables z1, . . . , zl will be treated
similarly to free variables: iteratively linearised and eliminated.
However, the linearisation step will also rely on the fact that
every such variable z is equal to ⌊log x⌋ for some free vari-
able x. For this reason, we call these variables logarithmic. The
next lemma summarises the transformations described above.
It is used as a non-deterministic subroutine in Algorithm 3.

Lemma 5 (ORDER: specify a generalised ordering θ for a
regular lin-exp system φ). For the system φ we can construct
in non-deterministic polynomial time in |φ| a generalised
ordering θ such that φ is equisatisfiable over N with (φ ∧ θ).

Example 1. Consider a regular lin-exp system

φ := (ẑ ≥ 3· ŷ+x1)∧(ŷ+2x2 = 2x1)∧(x1+x2 = 2x2). (5)

For this system there is the following generalised ordering:

θ1 := (2x2 ≥ x2 ≥ 2z2 ≥ 2x1 ≥ 2x0 ≥ x1 ≥ x0 = 0)∧
P2(2

x1) ∧ P2(2
x2) ∧Rλ(x2, 2

z2),

where z2 is a logarithmic variable for x2. Observe that the
regular lin-exp system (φ ∧ θ1) does not have solutions in
the non-negative integers. Indeed, from θ1 it follows that x1
is either equal to 0 or 1. When x1 = 0, the third constraint
from Equation (5) entails the unsatisfiable equality (x2 = 2x2).
If x1 = 1, then the same constraint implies that either x2 = 0
or x2 = 1. However, from θ1 we see that x2 ≥ 2x1 = 2, and
the system is unsatisfiable. If we choose another ordering

θ2 := (2x1 ≥ 2x2 ≥ x1 ≥ x2 ≥ 2z2 ≥ 2x0 ≥ x0 = 0)∧
P2(2

x1) ∧ P2(2
x2) ∧Rλ(x2, 2

z2),

then the system (φ ∧ θ2) is satisfiable. For example, we can
take z2 = 1, x2 = 3, x1 = 5, ŷ = 24, and ẑ = 100.

The following simple lemma will be useful in Section V.

Lemma 6. Let θ be a generalised ordering for a regular lin-
exp system φ. Then the inequalities in θ have the form either

O1 (2x ≥ 2y ≥ · · · ≥ x0 = 0) or
O2 (2x ≥ x ≥ 2y ≥ · · · ≥ x0 = 0), where the variable y is

the logarithmic variable for x.

Proof. By (ii), the leading term of θ must be an exponentiated
variable. Denote this term by 2x. Due to items (ii) and (iii),
the immediate successor of 2x can be either an exponentiated
variable 2y or x. In the second case, the immediate successor
of x cannot be a linear variable z, because otherwise (by (iii))
the exponential term 2z must be greater than x in θ. Hence, the
successor of x is a term 2y , and, by definition of generalised
orderings, y is the logarithmic variable for x.

In Section IV, exponential terms are excluded from regular
lin-exp systems, and thus an ordering for these systems we
define as follows. Let θ be a generalised ordering for a regular



lin-exp system φ, and let θ′ be the subformula of θ, where all
constraints with terms 2xi , i ∈ [1, n] not featuring in φ are
excluded. Then θ′ is called an ordering for φ.

Example 2. Consider the system φ from Example 1, where
the exponential term 2x1 and the linear occurrences of x2 are
replaced, respectively, with eliminated variables û and v̂:

φ := (ẑ ≥ 3 · ŷ+ x1)∧ (ŷ+2x2 = û)∧ (x1 + v̂ = 2x2). (6)

Now the free variable x1 does not occur exponentiated in φ
and the variable x2 does not occur linearly. An ordering for
φ will, however, have linear occurrences of x2, e.g.

θ′1 := (2x2 ≥ x2 ≥ 2z2 ≥ 2x0 ≥ x1 ≥ x0 = 0)∧
P2(2

x2) ∧Rλ(x2, 2
z2).

If θ is an ordering for φ, then the regular lin-exp system
(φ ∧ θ) is called an ordered regular lin-exp system and will
be denoted by capital Greek letters Φ,Ψ, etc. In the future,
we will often omit the word “ordered” because the presence
of an ordering follows from the notation. Each system Φ can
be regarded as a succinct representation of a B2(n+1+l)-NFA,
where n + 1 and l are, respectively, the numbers of free and
logarithmic variables of Φ. Let us formally define this NFA.

B. NFAs associated with regular lin-exp systems
Let an ordered regular lin-exp system Φ have the form∧

i=1..m

Ri(ŷ1, ..., ŷk, 2
x0, x0, ..., 2

xn, xn, 2
z1, z1, ..., 2

zl, zl), (7)

where ŷ1, ..., ŷk are eliminated, x0, ..., xn are free, z1, ..., zl are
logarithmic variables, and for every i ∈ [1,m] the predicates
Ri in (7) are recognised by NFAs Ai = (Qi, Si, Fi,∆i). For
simplicity of notation, we denote s := 2 · (n + l + 1). Using
the NFAs Ai, the labelled transition system TΦ := (Q,Bs,∆)
associated with the system Φ is defined as follows:

• Q is the Cartesian product Q1 × · · · ×Qm;
• ∆ is composed of the triples (p,a, q) ∈ Q×Bs ×Q for

which there exists a vector b ∈ Bk such that for every
i∈ [1,m] the triple (pi, πAi(b,a), qi) is a transition in ∆i.

To extend the definition of TΦ onto the NFA associated with
the system Φ, we prove the following simple lemma.

Lemma 7. Let Φ be a regular lin-exp system, and let q, q′

be two states of the labelled transition system TΦ. Then the
problem of reachability in TΦ of the state q′ from q via a run
over a word from 0∗ is decidable in space polynomial in |Φ|.

Proof. To decide reachability, we slightly modify Algorithm 1.
First remove line 2 because now q is given as part of the input.
In line 4 we will check the equality q = q′. Finally, in line 6
we now guess a vector b∈Bk and in both lines 6 and 7 replace
πAi

(b) with πAi
(b,0) in order to consider transitions labelled

with the tuple 0 in TΦ.

Remark 2. For an encoded in binary c ≤ #Q given as part of
the input, we can check in space polynomial in |Φ| that q is
reachable from q′ in TΦ via a run over 0c: apply the changes
of Lemma 7, remove lines 1 and 4 and return q= q′ in line 9.

If the algorithm from Lemma 7 returns ⊤ for states q, q′,
then we will say that q′ is 0∗-reachable from q in TΦ. Now the
NFA AΦ associated with (the ordered regular lin-exp system)
Φ is defined as a tuple (Q,S, F,∆), where Q and ∆ come
from TΦ, and the sets of initial and final states are defined
using the NFAs Ai as follows:

• S is exactly S1 × · · · × Sm;
• F is composed of the states q ∈ Q such that (p,a, q)∈∆

with the coordinate of a that corresponds to the leading
exponential term of θ equal to 1, and, moreover, a state
from F1 × · · · × Fm is 0∗-reachable from q in TΦ.

From Lemma 7, we know that checking that q is a final state
of AΦ can be done in space polynomial in |Φ|. The NFA AΦ

can be regarded as the result of projection over the coordinates
that correspond to the variables ŷ1, . . . , ŷk of the product of
NFAs A1, . . . ,Am, and the definition of the set F reflects the
usual problem of cutting the leading zeros in the accepting runs
via the right quotient construction. This is how the existential
quantifiers are eliminated in Büchi-Bruyère’s theorem [4], [5].
To illustrate the definition of AΦ, consider an example.

Example 3. Let Φ = (φ∧θ2) for the regular lin-exp system φ
and the ordering θ2 from Equation (5). Then there is a run in
the B8-NFA AΦ, which reads the assignment from Example 1:
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1

0
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0
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0
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0
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1

0

1
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ẑ = 100
ŷ = 24
2x1 = 32
2x2 = 8
x1 = 5
x2 = 3
2z2 = 2
z2 = 1
2x0 = 1
x0 = 0

• ← •← • ← • ← • ←• ← • ← •
qf q6 q5 q4 q3 q2 q1 q0

The leading exponential term of θ2 is 2x1 . The state q6 is a
final state of AΦ, because qf (which was a final state in the
product of the NFAs from Φ) is 0∗-reachable from q6 and there
is a transition (q5, [1, 0, 0, 0, 0, 0, 0, 0], q6) in ∆. We focus on
the blue columns in Section IV. Notice that the length of the
run from q4 to q6 is equal to 2 = x1 − x2.

Let us prove the main property of the NFA AΦ. In the proof,
we assume that the first k bits of tuples from Bk+s correspond
to eliminated variables ŷ, and the last s bits to free variables
x (occurring both linearly and exponentiated) of Φ. By πz we
denote the projection of a tuple from Bk+s over the coordinates
that correspond to variables from z. The functions πAi

and πz
are extended over words from (Bk+s)∗ in the usual way.

Lemma 8. Let AΦ be the Bs-NFA associated with an ordered
regular lin-exp system Φ. Then we have

JL(AΦ)K = {a ∈ Ns : ∃ŷ.Φ(ŷ,a)}.

Proof. If w∈ (Bs)∗ is accepted by the NFA AΦ, then by the



definition of AΦ there exists a word w′ ∈ (Bk+s)∗ such that
πx(w

′) ∈ w ·0∗ and for every i ∈ [1,m] the NFA Ai accepts
πAi(w

′). Therefore, if a = JwK and b = Jπŷ(w′)K, then the
formula Φ(b,a) evaluates to true and we have ∃ŷ.Φ(ŷ,a).

Conversely, if a∈Ns is such that ∃ŷ.Φ(ŷ,a), then we take
the corresponding values b ∈ Nk of the eliminated variables ŷ
and use the fact that NFAs Ai recognise the regular predicates
from Φ, ensuring the existence of w′∈J(b,a)K−1 accepted by
NFAs Ai for all i∈ [1,m]. From the definition of AΦ it follows
that πx(w′) is accepted by AΦ, and thus a ∈ JL(AΦ)K.

IV. LINEARISATION AND ELIMINATION

The key ingredient in our quantifier elimination procedure
for regular lin-exp systems is the process of linearisation of
free variables. Let us first informally describe its main ideas.

A. Linearisation of the leading exponential term

Given a system Φ = (φ ∧ θ), where 2x is the leading term
of the generalised ordering θ, we are going to construct an
equisatisfiable over N regular lin-exp system Ψ = (ψ∧η) such
that η is θ without 2x and ψ has the same free variables as φ,
but x occurs in ψ only linearly. By Lemma 6, the successor of
2x in θ is either 2y or x so that y is the logarithmic variable
for x, i.e., there is a subformula Rλ(x, 2

y) in θ. Then, the
Bs-NFA AΦ associated with the system Φ accepts the words
that can be described via the following pattern:

0

0

0...
0


∗

·



1

1

B...
B

 ∪

1

0

0...
0



0

0

0...
0


∗ 

0

1

B...
B


 ·


0

0

B...
B


∗

2x

2y

t3...
ts

(8)

Here, the NFA AΦ reads digits from right to left, because the
non-negative integers are represented in the lsd-first notation.
The rightmost column shows the correspondence between the
coordinates in tuples from Bs and the primitive terms over
free variables of Φ. Observe that the length of the fragment
enclosed in parentheses in (8) must be equal to (x − y + 1),
and the length of the blue part is exactly (x−y). Suppose that
in the NFA AΦ there is a transition τ = (p, [1, a,b], q), which
is the last transition in every accepting run (τ is an accepting
transition). Here, q is a final state of AΦ, and the first two
coordinates of the labels correspond to 2x and 2y . Then, the
term 2x is replaced in Φ with a fresh eliminated variable û
and excluded from the ordering θ resulting in a regular lin-exp
system Ψ = (ψ∧η) and an accepting transition τ ′ = (p′, c, q′)
with a final state q′ of AΨ. Then we consider two cases in
each non-deterministic branch that correspond to the value of
the bit a in the transition τ . If a = 1, then we add (x = y)
to ψ and use (p, [1,b], q) as a new accepting transition of AΨ.
Otherwise, if a = 0, we use Lemma 2 to construct a finite set
of pairs C ⊆ N2 to describe the lengths of all runs in AΨ from
q′ to p with transitions labelled with 0. After guessing a pair
(c−1, d) ∈ C, we add the constraint (x−y)∈{c+d·n : n∈N}
to ψ in each non-deterministic branch, and further use τ ′ as a
new accepting transition of the resulting system.

Algorithm 2 Linearisation of the leading exponential term in
an ordered regular lin-exp system

Input: Φ : regular lin-exp system (φ∧θ) with a generalised
ordering θ; 2x is the leading term of θ and
2y is the second largest exponential term of θ;

τ : transition (p, [1, a,b], q) from Acc(Φ)
Output of branch β: a pair (Ψβ , τβ) of a regular lin-exp sys-

tem Ψβ , where x does not occur exponentiated, and a
transition τβ from Acc(Ψβ).

1: replace in Φ the term 2x with a fresh variable u
2: (Ψ = (ψ ∧ η), τ ′ = p′ c−→q′)← ELIMINATE u in (Φ, τ)
3: if (a = 1) then
4: assert(η does not contain Rλ(x, 2

y))
5: ψ ← ψ ∧ (x = y)
6: else ▷ when a = 0

7: let n be the cardinality of Q, the set of states of AΨ

8: guess (c, q′′)← a pair from [1, n2]×{⋆}∪ [n, n2]×Q
9: c′ ← the minimal integer z > 0 s.t. z−⌊log2(z)⌋ ≥ c

10: if (q′′ = ⋆) then
11: assert(0c−1-reachability of p from q′ in TΨ)
12: if η contains Rλ(x, 2

y) then
13: assert(c′ − ⌊log2(c′)⌋ = c)
14: if c = 1 then guess c′ ← an integer from {1, 2}
15: ψ ← ψ ∧ (x = c′)
16: else
17: ψ ← ψ ∧ (x = y + c)
18: else ▷ when q′′ is a state of AΨ

19: d← the length of the shortest 0∗-loop in q′′

20: assert(0n−1-reachability of q′′ from q′ and
0c−n-reachability of p from q′′ in TΨ)

21: if η contains Rλ(x, 2
y) then

22: ψ ← ψ ∧ (x ≥ c′)
23: else
24: ψ ← ψ ∧ (x ≥ y + c)
25: guess r ← a remainder from [0, d− 1]
26: ψ ← ψ ∧ (d | x− (r + c)) ∧ (d | y − r)
27: τ ← extend τ ′ to be a transition in Acc(ψ ∧ η)
28: return the pair ((ψ ∧ η), τ)

B. Regular lin-exp systems with an accepting transition

As it can be seen from the previous paragraph, during the
linearisation process applied to a system Φ, it is important to
control the last transition with a non-zero label in the accepting
runs of the NFA AΦ=(Q,S, F,∆). Both Algorithms 2 and 3
operate with a pair (Φ,p

a−→q), of an ordered regular lin-exp
system Φ and a transition to a final state q of AΦ. To describe
the main properties of these algorithms, we first define a set

Acc(Φ) := {p a−→q : q ∈ F,a ̸= 0},

and for every transition p
a−→q∈Acc(Φ) we introduce an NFA

AΦ(p
a−→q) = (Q∪{q̂}, S, {q̂},∆′), where ∆′ is the extension

of the transition relation ∆ with p
a−→ q̂ and the loop q̂

0−→ q̂.
The lemma below shows that the NFA AΦ(p

a−→q) recognises
the subset of JL(AΦ)K composed of a∈Ns which are accepted
by AΦ via a run of the form q0

a0−→q1
a1−→ . . .

at−1−−−→p
a−→q.



Lemma 9. For every regular lin-exp system Φ we have
q
L(AΦ)

y
=

⋃
τ∈Acc(Φ)

q
L(AΦ(τ))

y
.

Proof. If a ∈ JL(AΦ)K, then there is a run in AΦ of the form

q0
a0−→ q1

a1−→ . . .
at−1−−−→ p

at−→ q
0−→ . . .

0−→ qf ,

where a = Ja0...atK with at ̸= 0 and qf is a final state of AΦ.
By Lemma 8, we know that ∃ŷ.Φ(ŷ,a), and thus at must have
1 in the coordinate that corresponds to the leading exponential
term of θ. Therefore, since qf is 0∗-reachable from q in TΦ,
the state q is also a final state of AΦ, the transitionτ := p

at−→q
is in Acc(Φ) and the word a0...at is accepted by AΦ(τ).

The converse direction is trivial because for every transition
τ = p

a−→q in Acc(Φ) the final state q̂ of AΦ(τ) is a copy of a
final state q of AΦ, to which we have directed a copy of τ .

Whereas Lemma 8 provides a direct representation of the
set JL(AΦ)K via an existential formula, there is no such rep-
resentation for the set JL(AΦ(τ))K. For the convenience of
subsequent proofs, we rewrite the fact that a ∈ JL(AΦ(τ))K as
∃ŷ.(Φ, τ)(ŷ,a) and the phrase there exists a ∈ N such that
(a, b) ∈ JL(AΦ(τ))K using the formula ∃ŷ.∃x.(Φ, τ)(ŷ, x, b).
With this notation and Lemma 8, we can rewrite Lemma 9.

Lemma 10. For every regular lin-exp system Φ we have

∃ŷ.Φ(ŷ,x) ⇐⇒
∨

τ∈Acc(Φ)

∃ŷ.(Φ, τ)(ŷ,x). (9)

In the informal descriptions from Section IV-A, we replaced
the leading exponential term 2x of the ordering θ with a fresh
eliminated variable û. This operation essentially performs two
steps: replacement of 2x with a free variable u and elimina-
tion of u. Let us now specialise the elimination of linearly
occurring variables onto a pair (Φ, τ).

Lemma 11 (ELIMINATE:free variable xoccurring only linearly
in regular lin-exp system Φ=(φ∧θ) for τ=p

a−→q in Acc(Φ)).
For a fresh eliminated variable x̂, let us define

1: ζ ← the subsystem with x in θ
2: η ← the ordering θ, where ζ is removed
3: ψ ← (φ ∧ ζ)
4: replace in ψ all occurrences of x with x̂

Then Ψ = (ψ ∧ η) is an ordered regular lin-exp system and

∃ŷ.∃x.(Φ, τ)(ŷ, x,z)⇔
∨

τ ′∈A

∃ŷ.∃x̂.(Ψ, τ ′)(ŷ, x̂, z), (10)

where for b = πz(a) the set A is defined as

E1 A := {p b−→q} if b ̸= 0. Otherwise, if b = 0, then
E2 A comprises transitions τ ′= p′ c−→q′ from Acc(Ψ) such

that p is 0∗-reachable from q′ in TΨ.

Proof. Clearly, Ψ is an ordered regular lin-exp system. Also
observe that the NFAs AΦ and AΨ have the same sets of states
because the only difference between the systems Φ and Ψ is
that the variable x has been replaced with x̂. Now consider the
case when a = [a,b] and b ̸= 0. Suppose that there is a ∈ N

such that (a, b) ∈ JL(AΦ(τ))K. Then, in AΦ there is a run

q0

[
a0
b0

]
−−−→ q1−→ . . .

[
ak−1

bk−1

]
−−−−→p

[
a

b

]
−−→q,

where a= Ja0...ak−1aK. Since q is a final state of AΦ, then
due to b ̸=0, q will be a final state of AΨ. Therefore, we have
b∈JL(AΨ(τ

′))K, and the equivalence (10) is proved from left
to right in the case E1. For the converse direction, the fact that
b∈JL(AΨ(τ

′))K means that there is a run in AΦ of the form

q0

[
a0
b0

]
−−−→ q1−→ . . .

[
ak−1

bk−1

]
−−−−→p

[
ak
b

]
−−→q

[
ak+1

0

]
−−−−→ . . .

[
at
0

]
−−→ qf

for a final state qf ofAΦ. But we know that there is a transition
τ=p

a−→q in Acc(Φ), and thus for the integer a=Ja0...ak−1aK
we have ∃ŷ.(Φ, τ)(ŷ, a, b), and the equivalence (10) is proved.

Now let a = [a,b] and b = 0. Then there is a ∈ N such
that (a, b)∈JL(AΦ(τ))K if there is a run in AΦ of the form

q0

[
a0
b0

]
−−−→ q1−→ . . .−→p′

[
ak
bk

]
−−−→q′

[
ak+1

0

]
−−−−→ . . .−→ p

[
a

0

]
−−→ q, (11)

where bk ̸= 0, a=Ja0...ak...aK, and a = 1. Since q is a final
state of AΦ, the state q′ is a final state of AΨ, τ ′ = p′ bk−−→ q′

belongs to Acc(Ψ) and we have b =Jb0...bkK∈JL(AΨ(τ
′))K.

Conversely, if we have b ∈ JL(AΨ(τ
′))K, then we use the

fact that p is 0∗-reachable from q′ in TΦ, which ensures the
existence of a run in AΦ of the form (11). Since τ belongs
to Acc(Φ), for a= Ja0...aK we obtain ∃ŷ.(Φ, τ)(ŷ, a, b), and
the equivalence (10) is proved for the case E2.

Lemma 11 will be used as a non-deterministic procedure
which takes on input a pair (Φ, τ) and returns in each branch
a pair (Ψ, τ ′) for some τ ′ ∈ A. Non-determinism is used in
the case E2 to guess τ ′∈A and to check 0∗-reachability of p
from q′ in TΨ using Lemma 7. Importantly, before application
of Lemma 11 in line 2, the replacement performed in Φ =
(φ ∧ θ) by line 1 moves the subsystem P2(u) from θ to φ.

During its execution, Algorithm 2 supplements regular lin-
exp system Ψ = (ψ∧η), which is obtained using Lemma 11 in
line 2, with new equalities (x = c′) and (x = y+c) in lines 5,
15, and 17, or inequalities (x ≥ c′) and (x ≥ y+c) in lines 22
and 24 together with the divisibility (d | x−(r+c)) in line 26.
For (in)equalities we use basic NFAs from Section II-A and
fresh eliminated variables: (x ≥ c′) ⇔ ∃ŷ1(ŷ1 = c′ ∧ ŷ ≤ x)
and (x ≥ y + c)⇔ ∃ŷ1∃ŷ2(ŷ1 ≤ x ∧ y + ŷ2 = ŷ1 ∧ ŷ2 = c).

Introduction of new constraints (denote them by ψ′) changes
the set of states of the NFA associated with the system Ψ, and
the transition p′ c−→q′ ∈ Acc(Ψ) must be updated. To do this,
in line 27 we guess (using Lemma 7) p′′ c−→ q′′ in Acc(ψ′)
and extend the state p′ with p′′ and q′ with q′′. If there is no
such transition in Acc(ψ′), the execution of the branch aborts,
similarly to the unsuccessful assertions that we use in the
pseudocode. Observe that, by Remark 1, for (in)equalities this
extension is unique and can be performed deterministically.

Another remark concerns line 19, where we apply Lemma 2.
By 0∗-loop in q we call a run in TΦ from the state q to q over
a word from 0∗. Combining the binary search with Remark 2,
we obtain the following lemma.



Lemma 12. Let Φ be a regular lin-exp system, and let q be
a state of the labelled transition system TΦ associated with Φ.
Then the length of the shortest 0∗-loop in q can be computed
in space polynomial in |Φ|.

We can now describe the main property of Algorithm 2.

Lemma 13 (LINEARISE: the leading exponential term 2x in a
regular lin-exp systemΦ=(φ∧θ) for τ=p

[1,a,b]−−−→q inAcc(Φ)).
Let the successor of 2x in θ be either 2y or x so that y is the
logarithmic variable for x. If (Ψβ , τβ) is the output of a branch
β ∈ B of Algorithm 2 on input (Φ, τ), then we have

∃ŷ.(Φ, τ)(ŷ, 2x, x, 2y, y,z) (12)

⇐⇒
∨
β∈B

∃ŷβ .(Ψβ , τβ)(ŷβ , x, 2
y, y,z). (13)

Proof. The fact that (2a, a, 2b, b, c) ∈ JL(AΦ(τ))K means that
there is a run in AΦ of the form

q

11
b


←−− p

 0

0

bt


←−−− . . .

 0

0

b0


←−−− q0 (14)

or of the form

q

10
0


←−− p

00
0


←−− . . .

00
0


←−− q′

01
b


←−− p′ . . .

 0

0

b0


←−−− q0, (15)

where τ is the last transition in these runs, the first coordinates
of the labels represent 2a and 2b, respectively, and the blue part
has length a − b. On the other hand, after elimination of the
variable u in ∃ŷ.∃u.(Φ, τ)(ŷ, u, x, 2y, y,z) via Lemma 11, we
obtain a pair (Ψ, τ ′), where τ ′ is equal to either (p, [1,b], q)
for the transition τ from (14), or (p′, [1,b], q′) for the case
(15). The equivalence (10) gives us the proof of the implication
from (12) to (13) if B is the set A from Lemma 11. Let us
add new constraints to Ψ in every non-deterministic branch
so that for every tuple (2a, a, 2b, b, c) that satisfies (12), the
tuple (a, 2b, b, c) will still satisfy (13), but now the converse
direction will also be true.

The case of τ from (14) is easy: we add to Ψ the constraint
(x=y). Indeed, if the tuple (a, 2b, b, c) satisfies (13) and we
have (a=b), then there is a run of the form (14) without the
red row. Since Ψ contains the constraints P2(û) and û ≥ 2y ,
then every transition in this run before τ ′ can be supplemented
with 0 in the coordinate that corresponds to û, and since the
transition τ belongs to Acc(Φ), we can replace τ ′ with τ . This
results in a run in AΦ that recognises the tuple (2a, a, 2b, b, c),
and thus this tuple satisfies (12).

Now consider τ from (15). To rewrite 0a−b−1-reachability
of p from q′ in TΨ=(Q,Bs−1,∆), we apply Lemma 2 to the
unary NFA C = (Q, {q′}, {p},∆′), where (q1,0, q2) ∈ ∆′ if
and only if (q1,0, q2) ∈ ∆. Let the set of pairs C = C1 ∪C2

be the result of application of Lemma 2 to C. Then we have

a− b ∈ {c+ d · n : (c− 1, d) ∈ C, and n ∈ N}. (16)

Since C completely describes the lengths of runs over words
in 0∗ from q′ to p, then there is a pair (c, d) that describes the

length of the run from q′ to p in (15). For the converse, observe
that for τ ′ ∈ A there is a particular NFA Cτ ′ and a set Cτ ′ .
Again, the system Ψ contains the constraints P2(û) and û ≥
2y , and there is a transition τ = (p, [1, 0,0], q) in Acc(Φ).
Therefore, if for τ ′∈Acc(Ψ) a tuple (a, 2b, b, c) is recognised
by AΨ(τ

′) and satisfies the constraint (16) for Cτ ′ , then, from
a run in AΨ(τ

′) that recognises (a, 2b, b, c) we can reconstruct
a run in AΦ(τ) that recognises (2a, a, 2b, b, c).

Summarizing and simultaneously correlating with the pseu-
docode of Algorithm 2, we obtain the following equivalence.
For the transition τ = (p, [1, a,b], q) in Acc(Φ) and a tuple
(a, b, c) we have ∃ŷ.(Φ, τ)(ŷ, 2a, a, 2b, b, c) if and only if one
of the following two alternatives holds:

A (lines 4–5) a=1, (a, 2b, b, c) ∈ JL(AΨ(τ
′))K for the tran-

sition τ ′ = (p, [1,b], q), and a = b.
B (lines 8–26) a=0, there is a transition τ ′∈Acc(Ψ) with

(a, 2b, b, c) ∈ JL(AΨ(τ
′))K and for the set Cτ ′ = C1∪C2

constructed for the NFA Cτ ′ and #Q = n either

B.1 (lines 11–17) there is an integer c ∈ [1, n2] such that
(c− 1, 0) ∈ C1 and (a = b+ c); or

B.2 (lines 19–26) there is an integer c ∈ [n, n2] and a state
q′′ ∈ Q such that (c−1, d) ∈ C2, where d is the length
of the shortest loop in Cτ ′ that can be done in q′′, and
we have (a ≥ b+ c) ∧ (d | a− (b+ c)).

Lines 1 and 2 apply Lemma 11 to produce a pair (Ψ, τ ′) of an
ordered regular lin-exp system Ψ = (ψ∧η) and a transition τ ′

from Acc(Ψ). Our aim is to show that the updates of system
Ψ performed by lines 3–27 indeed introduce the auxiliary
(in)equalities and divisibilities from A and B.

If (a = 1), from E1 we obtain in line 2 τ ′ =(p, [1,b], q).
When x is the successor of 2x in θ and y is the logarith-
mic variable for x (the logarithmic case), then the alternative A
would imply Rλ(a, 2

a), and we rule out this case in line 4.
Otherwise, if 2y is the successor of 2x in θ (the general case),
then in line 5 we define Ψβ = (ψ∧(x = y)∧η), and in line 27
the transition τβ is defined as (the unique) extension of τ ′.
Thus, A holds if and only if (a, 2b, b, c) ∈ JL(AΨβ

(τβ))K.
When (a = 0), the choice between the alternatives B.1

and B.2 is done in line 8. If we have guessed a pair (c, ⋆)
for c ∈ [1, n2], then we check 0c−1-reachability of the state
p from q′ in TΨ and, if successful, add to the system Ψ the
equality (x = y+ c) to rewrite B.1. This is explicitly done in
line 17 for the general case. However, in the logarithmic case
we actually have the equality a− ⌊log2(a)⌋ = c, and we first
compute (in line 9) the minimal z such that z−⌊log2(z)⌋ ≥ c.
If c=1, we take c′ =1; otherwise guess an integer c′∈ [c, 2c]
and check that the inequality is true for z=c′ and is false for
z=c′−1. The only case when the equation x−⌊log2(x)⌋ = c
has two solutions is c = 1: we have either x = 1 or x = 2
(a solution is guessed in line 14). Otherwise, if there is any
solution, then there is only one solution due to the growth of
the functions f(x) = x and g(x) = ⌊log2(x)⌋+c. The system
Ψ is now supplemented with the equality (x = c′). Again,
after the usual extension of the transition τ ′ we obtain that
B.1 holds if and only if (a, 2b, b, c) ∈ JL(AΨβ

(τβ))K.



Now consider the case when we have guessed in line 8 a
pair (c, q′′) for an integer c ∈ [n, n2] and a state q′′ ∈ Q.
Using Lemma 12, we compute d in line 19 and then check
0n−1-reachability of q′′ from q′ and 0c−n-reachability of q
from q′′ in TΨ using Remark 2. To rewrite B.2, we must add
to Ψ the inequality (x ≥ y+c) and divisibility (d | x−(y+c)).
Again, in the logarithmic case we rewrite the inequality using
the equivalent one (x ≥ c′). By guessing a remainder of y
modulo d in line 25, the divisibility (d | x−(y+c)) is split into
(d | x− (r+ c))∧ (d | (y− r)) and added to Ψ in line 26. In
line 27, τβ is defined as an extension of τ ′ using the simple
NFAs for (in)equalities and divisibilities added to Ψ. Now B.2
holds if and only if (a, 2b, b, c)∈JL(AΨβ

(τβ))K.

V. MASTER PROCEDURE

This section describes Algorithm 3, which combines Lem-
mas 11 and 13 to decide solvability in N of a regular lin-exp
system φ. After a simple elimination of the variables occurring
only linearly in φ (line 1) and specification of a generalised
ordering θ (line 2), there are two cases depending on the two
alternatives for θ described in Lemma 6. In both cases, Algo-
rithm 3 performs linearisation and elimination of the variable x
(lines 7–8). However, if the inequalities in θ have the form O2,
we also eliminate the logarithmic variable y, which is handled
differently from the free ones. Namely, after line 8, the system
Ψ will have only exponential occurrences of y except for the
divisibility (d | y−r), which was added by line 7 (see line 26
of Algorithm 2). Now consider the following equivalences:

∃y.(Ψ(2y, z) ∧ (d | y − r)) ⇐⇒
∃y.∃y′.(Ψ(y′, z) ∧ (y′ = 2y) ∧ (d | y − r)) ⇐⇒ (17)
∃y′.(Ψ(y′, z) ∧ ∃y.((y′ = 2y) ∧ (d | y − r))).

The variable y′ now occurs only linearly in Ψ, and the extra
existential formula ∃y.((y′ = 2y) ∧ (d | y − r)) represents a
regular predicate on y′, which is recognised by a simple NFA.
This predicate will be denoted by Rd,r, and in our system it
will be represented via a pair of integers (d, r) encoded in
binary. The corresponding NFA has d+1 states {q0, . . . , qd};
it has transitions qi

0−→ q(i mod d)+1 for every i ∈ [1, d], and
also qr+1

1−→ q0 with a loop q0
0−→ q0. Its initial state is q1 and

its final state is q0. For example, consider Fig. 2.

q1

q2

q3 q0

q4q5

0 0

0

0

0

1

0

Fig. 2: NFA for R5,2(y
′) := ∃y.((y′ = 2y) ∧ (5 | y − 2))

It is clear that the NFA that recognises Rd,r has the same
properties as the simple NFAs from Remark 1. After these
preliminary remarks, let us proceed to the proof of correctness
of Algorithm 3.

Algorithm 3 Solvability in N of regular lin-exp systems

Input: φ(2x1 , x1, . . . , 2
xn , xn) : regular lin-exp system.

Output: ⊤ if φ is satisfiable in N, and otherwise ⊥.
1: replace in φ each variable x occurring only linearly with x̂
2: Φ =(φ∧θ)← ORDER trivial terms over free variables of φ
3: guess τ ← a transition from Acc(Φ)
4: while φ contains an exponentiated variable do
5: 2x ← leading exponential term of θ
6: 2y ← second largest exponential term in θ
7: (Ψ, τ ′)← LINEARISE the term 2x in (Φ, τ)
8: (Φ, τ)← ELIMINATE the variable x in (Ψ, τ ′)
9: if the subformula Rλ(x, 2

y) occurs in Ψ then
10: let (d | y − r) be the divisibility with y in Φ
11: replace in Φ the term 2y with a fresh variable y′

12: Φ← Φ ∧Rd,r(y
′)

13: τ ← extend τ to be a transition in Acc(Φ)
14: (Ψ, τ ′)← ELIMINATE the variable y′ in (Φ, τ)
15: (Φ, τ)← ELIMINATE the variable y in (Ψ, τ ′)

16: return (τ = q0
[1,0]−−→q for an initial state q0 of AΦ)

Lemma 14. Let φ(2x1 , x1, . . . , 2
xn , xn) be the regular lin-exp

system given on input to Algorithm 3. Then, φ has solutions
in N if and only if Algorithm 3 returns ⊤.

Proof. The first lines are preparatory: line 1 replaces each free
variable x occurring only linearly in φ with a fresh eliminated
variable x̂, and line 2 applies Lemma 5 to specify a generalised
ordering θ for φ. For simplicity, assume that there are still n
free variables in Φ = (φ∧ θ). In line 3, we guess a transition
τ from Acc(Φ) in order to work with the pair (Φ, τ) relying
on Lemma 10. The next claim is a simple observation, which
is easy to prove. It ensures that we can always call Algorithm 2
in line 7 and linearise logarithmic variables in lines 10–13.

Claim 1. For i∈ [1, n], the i-th iteration of the while loop in
line 4 of Algorithm 3 starts with the variables (Φ, τ) storing a
regular lin-exp system (φ ∧ θ) and a transition in AΦ, where
1. Φ has no linear occurrences of logarithmic variables; 2. θ is
a generalised ordering for φ; 3. τ is a transition from Acc(Φ).

Now, applying Lemma 10, we obtain the equivalence

∃ŷ.Φ(ŷ,x) ⇐⇒
∨

τ∈Acc(Φ)

∃ŷ.(Φ, τ)(ŷ,x). (18)

Each non-deterministic branch works with its particular pair
(Φ, τ), and every iteration of the while loop updates the values
of the variables (Φ, τ). Denote by Bi the set of all non-
deterministic branches after i iterations of this loop. Each
branch is represented via a sequence of guesses of transitions
and integers (encoded in binary). Every branch βi+1 ∈ Bi+1

can be decomposed as βi+1 = βiβ
′ for some βi ∈ Bi. Our

aim now is to prove that for every i ∈ [0, n] we have

∃ŷ.∃x.∃y.(Φ, τ)(ŷ, 2x1, x1, ..., 2
xi, xi, 2

y1, y1, ..., 2
yj, yj , z)

⇐⇒
∨

β∈Bi

∃ŷβ.(Φβ , τβ)(ŷβ, z),

where x=x1, ..., xi are free variables, y=y1, ..., yj for j ≤ i



are logarithmic variables for x, and z comprises the remaining
variables of Φ. We prove this equivalence by induction on i.

The base case i = 0 is trivial: the formula ∃ŷ.(Φ, τ)(ŷ,x)
remains unchanged. Now suppose that the equivalence is true
for some i − 1 ≥ 0. Let us fix some branch β ∈ Bi−1.
By Lemma 13, after line 7 we obtain

∃ŷβ .(Φβ , τβ)(ŷβ , 2
xi , xi, 2

y, y, z)

⇐⇒
∨

γ∈Bβ

∃ŷγ .(Ψγ , τγ)(ŷγ , xi, 2
y, y, z), (19)

where y is either xi+1 or the logarithmic variable yj+1 for xi.
Line 8 eliminates the variable xi in each system Ψγ for the
transition τγ . Applying Lemma 11, we obtain a regular lin-exp
system Ψ′

γ such that

∃ŷγ .∃xi.(Ψγ , τγ)(ŷγ , xi, 2
y, y, z)

⇐⇒
∨

τ ′∈Aγ

∃ŷγ .∃x̂i.(Ψ′
γ , τ

′)(ŷγ , x̂i, 2
y, y, z). (20)

Induction hypothesis combined with the equivalences (19)
and (20) completes the proof of the case when the inequalities
in the ordering of Φβ have the form (2xi≥2xi+1≥θ′). Indeed,
for β′ = γτ ′ we have Φββ′ := Ψ′

γ and τββ′ := τ ′.
Now consider the case when the inequalities in the ordering

of Φβ have the form (2xi≥xi≥2yj ≥θ′), where the variable
yj is logarithmic for xi. By Claim 1, 2yj does not occur lin-
early in Φβ . Hence, its only linear occurrence of Ψ′

γ comes
from the divisibility (dγ | yj − rγ). We apply (17) to obtain

∃ŷγ .∃x̂i.∃yj .(Ψ′
γ , τ

′)(ŷγ , x̂i, 2
yj , yj , z)

⇐⇒ ∃ŷγ .∃x̂i.∃y′j .∃yj .(Ψ′′
γ , τ

′′)(ŷγ , x̂i, y
′
j , yj , z),

(21)

where Ψ′′
γ is defined as the conjunction of Ψ′

γ , where 2yj is
replaced with y′j , and Rdγ ,rγ (y

′
j). The variable yj now only

occurs in (dγ | yj−rγ), and we did not excluded this constraint
from Ψ′′

γ for the presentational convenience only. The transi-
tion τ ′′ is the extension of τ ′ obtained in line 13. It remains to
apply Lemma 11 twice. In line 14 we eliminate y′j in Ψ′′

γ for
τ ′ ∈Acc(Ψ′′

γ). In the next line we eliminate the variable yj .
This elimination actually only decrements the dimension of the
NFA associated with the system. By Lemma 11, we obtain

∃ŷγ .∃x̂i.∃y′j .∃yj .(Ψ′′
γ , τ

′′)(ŷγ , x̂i, y
′
j , yj , z)

⇐⇒
∨

δ∈Bβ′

∃ŷδ.(Ψδ, τδ)(ŷδ, z), (22)

where ŷδ comprises the variables ŷγ , x̂i, ŷ
′
j , ŷj . It remains to

notice that for β′′ = β′δ we have Φββ′′ := Ψδ and τββ′′ := τδ .
After n iterations of the while loop, we obtain

∃ŷ.∃x1...∃xn.∃y1...∃yl.
[

(Φ, τ)(ŷ, 2x1 , x1, ..., 2
xn , xn, 2

y1 , y1, ..., 2
yl , yl, 2

x0 , x0)
]

⇐⇒
∨

β∈Bn

∃ŷβ.(Φβ , τβ)(ŷβ, 2
x0 , x0).

Here, the only coordinates of the NFA AΦβ
associated with

the system Φβ = (φβ , θβ) correspond to the terms 2x0 and x0,
and the ordering θβ now has the form (2x0≥x0=0). From the

definition of the final states of AΦβ
, it follows that in order to

check that (1, 0) ∈ JL(AΦβ
(τβ))K, we must check that τβ is

a transition of the form (q0, [1, 0], q) in AΦβ
for some initial

state q0. The evaluation of this condition is returned as the
output of the non-deterministic branch β.

To establish the computational complexity of Algorithm 3,
we estimate the growth of the size the pair of a regular lin-exp
system and a transition stored in the variables (Φ, τ). Recall
that we represent the divisibility constraint (d | x− r) and the
predicate Rd,r using the binary expansions of d and r, and that
a state q of AΦ = (Q,S, F,∆) stores a tuple from Q, where
the states that correspond to the automata for these predicates
are represented via the binary representations of their numbers.
For this reason, |τ | ≤ |Φ|+ 4 · n+ |Φ| ≤ 6 · |Φ|, and we are
now going to consider only the systems in Φ.

Lemma 15. Let Φi be the regular lin-exp system stored in
the variable Φ of Algorithm 3 after i ∈ [0, n] iterations of the
while loop, where Φ0 is defined in line 2. Denote by mi the
number of constraints in Φi and by si the number of states in
AΦi . Then, assuming m0≥1 and s0≥2, for i∈ [1, n] we have

mi ≤ m0+6 · i; si ≤ 25
i+1

·s5
i

0 ; |Φi| ≤ i ·5i+2 ·m0 · |Φ0|.

This lemma is proved by induction on i. Only notice that at
each iteration of the while loop we add at most 6 constraints
due to lines 7 (where we call Algorithm 2) and 12. Within
Algorithm 2, we can add at most 5 constraints: three simple
regular constraints to rewrite (x ≥ y + c) in line 24 and two
divisibilities in line 26. We can now prove our first theorem.

Proof of Theorem 1. By Lemma 4, the problem of deciding a
formula ξ of ∃GSA is reducible in non-deterministic polyno-
mial time to the problem of solvability in N of a quantifier-free
regular lin-exp system φ. By Lemma 14, the solvability can
be decided via Algorithm 3. In this algorithm, line 1 does not
change the size of the formula; by Lemma 5, line 2 constructs
an equisatisfiable ordered regular lin-exp system Φ0 in time
polynomial in |φ|. The while loop then works with the pairs
(Φ, τ) of a regular lin-exp system Φ and a transition τ of
AΦ = (Q,S, F,∆). The size of τ is at most 6 · |Φ|, and
by Lemma 15, the size of Φ after the n-th iteration of this loop
is bounded by n·5n+2·m0·|Φ0|, which is at most n·5n+2·|Φ0|2
because m0 is the number of constraints in Φ0. By Lemmas 11
and 13, we see that each line of Algorithm 3 is performed in
space polynomial in the size of the system currently stored
in the variable Φ. Therefore, this non-deterministic algorithm
works in exponential space in |Φ0|, and thus ξ can be decided
in non-deterministic exponential space in |ξ| and by Savitch’s
theorem, ∃GSA is decidable in EXPSPACE.

VI. REGULAR ILP COMPLEXITY

The proof of Theorem 1 implies that ∃GSA is decidable in
PSPACE for every fixed number of applications of exponentia-
tion in the formula. Let us show PSPACE-hardness already for
the positive existential conjunctive fragment of ∃GSA without
exponentiation and for a fixed regular predicate.



Proof of Theorem 2. The PSPACE upper bound follows from
Lemmas 3 and 4. Let us prove PSPACE-hardness.

We are going to construct a polynomial-time reduction from
the intersection non-emptiness problem for NFAs over B =
{0, 1}, a well-known PSPACE-complete problem [18]. Recall
that we take on input B-NFAs A1, . . . ,An and ask whether the
intersection L(A1)∩· · ·∩L(An) is non-empty. Our first step is
an adaptation of the existential representation of computations
of non-deterministic finite automata from [29]: for every Ai

there exists an existential formula ∃y.φi(x,y) in the language
of PrA with bitwise AND operation & such that

JL(Ai)K = {x ∈ N : ∃y.φi(x,y)}.

Here we allow the NFA Ai to accept any string in a0...at ·0∗,
where Ja0a1...atK = x. Bitwise AND has its natural semantics,
e.g., 23&13 = 101112 & 011012 = 001012 = 5. Having this
function, the bitwise precedence relation x ⪯ y for x, y ∈ N is
defined as x& y = x. For example, we have 5 ⪯ 13 because
5&13 = 01012 & 11012 = 01012 = 5. The description from
[29] is not in the form of a conjunction of positive atomic
formulas. Let us show that this can nevertheless be achieved.

Let A = (Q,S, F,∆) be a B-NFA, where the set of states
is Q = {q0, . . . , qs}. For convenience of notation, assume that
Q = [0, s] and S, F ⊆ [0, s], i.e., that these sets contain the
numbers of states instead of the states themselves. Let us also
treat ∆ as a transition function that maps a pair from Q×B to
a subset of Q. For a ∈ B, it is convenient to denote by fa(x, t)
the term (t− x− 1) if a = 0 and the variable x if a = 1. In
the formula below, this alias is used only when t is a power
of 2 greater than x; therefore, f0(x, t) is just a 2-complement
of the binary expansion of x supplemented with some number
of leading zeros. Then the desired formula is

x ∈ JL(A)K ⇐⇒ ∃t.∃q.
[
t&(t− 1) = 0 ∧ (x < t)∧ (23)∧

0≤i<j≤s

(qi & qj = 0) ∧ (q0 + · · ·+ qs = 2 · t− 1)∧ (24)

(1 ⪯
∑
i∈S

qi) ∧ (t ⪯
∑
i∈F

qi)∧ (25)

∧
(i,a)∈Q×B

2 ·
(
qi & fa(x, t)

)
⪯

( ∑
j∈∆(i,a)

qj

)]
. (26)

Constraint (23) restricts t to be a power of 2 greater than x;
the variable t corresponds to the length of an accepting run of
A on a binary expansion of x. The variables in q = (q0, ..., qs)
accumulate the positions of each state in this accepting run.
By (24), the vector q describes a sequence of states of length
log(t) + 1, and by (25) this sequence starts in an initial state
of A and terminates in one of its final states. The sums in (25)
are actually bitwise ORs because by (24) the variables for the
states are pairwise disjoint. Constraints (26) are responsible for
the transitions inA: each time a non-deterministic computation
on input x reaches qi and reads a symbol a, in the next step
the computation will be in a state from ∆(qi, a). If a sequence
of states satisfies (25) and (26), then it is an accepting run of

A on input (a binary expansion of) x.
It is clear that the size of the constructed formula φ(x, t, q)

is polynomial in |A|. Conjoining these descriptions for the
automata A1, . . . ,An, we obtain

L(A1) ∩ · · · ∩ L(An) ̸= ∅ ⇐⇒ ∃x∃y
∧

i=1..n

φi(x,y), (27)

where the vector y comprises the variables from the existential
descriptions of the languages L(Ai).

Our next goal is to replace the expressions z = x&y using
a positive conjunctive formula in the language of PrA with a
regular predicate R(x) defined as x ∈ J(00 ∪ 10)∗K. Since in
the definition of the function J·K we used the lsd-first notation,
this will mean that in the msd-first notation the variable x can
be represented using a string from (00 ∪ 01)∗; for example,
R(5) is true because 0101 ∈ (00 ∪ 01)∗. First observe that it
is sufficient to define x& y = 0 because we have

z = x& y ⇐⇒ (x− z)& z = 0 ∧ x&(y − z) = 0

∧ z ≤ x ∧ z ≤ y.

The first equality says that for every 1 in the binary expansion
of z, there is 1 at the same position in x; the next equality
requires that there does not exist a position i in the binary
expansions of x, y, and z such that the tuple of bits [xi, yi, zi]
is either [1, 1, 0] or [1, 0, 1]. Now consider the formula

x& y = 0 ⇐⇒ ∃u.∃v.∃z.∃t.
[
R(u) ∧R(z) ∧R(u+ z)∧

R(2v) ∧R(2t) ∧R(2v + 2t)∧

x = u+ v ∧ y = z + t
]
.

We have introduced two pairs of disjoint non-negative integers
(u, z) and (v, t), where 1 can occur only at even positions of
u, z, and at odd positions of v, t. Indeed, if u and z have 1

in the same position n, which must be even, then their sum
will have 1 in the odd position n+ 1, and thus the constraint
R(u+z) will not be satisfied. Observe that every non-negative
integer x can be represented as a sum u+ v for some u and
v satisfying R(u)∧R(2v): the variable u represents the even
bits of x and 2v is responsible for the odd ones.

When all bitwise ANDs in Equation (27) are excluded using
these definitions, the size of the resulting system is linear in
the size of the initial system. After introduction of new non-
negative integer variables for each term in the scope of R,
we obtain a system of linear equalities and inequalities where
some variables satisfy R while the other variables are from N.
For each x ranging over N we introduce a pair of variables
(u, v) such that R(u) ∧R(2v) and replace all occurrences of
x with the sum (u+ v). Equalities and strict inequalities can
be excluded in the usual way: (x = y)⇔ (x ≤ y) ∧ (y ≤ x)
and (x < y)⇔ (x+ 1 ≤ y). This completes the proof.
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