
Electronic Communications of the EASST
Volume X (2011)

Proceedings of the
Tenth International Workshop on

Graph Transformation and
Visual Modeling Techniques

(GTVMT 2011)

Decidability and Expressiveness of Finitely Representable Recognizable
Graph Languages

H.J. Sander Bruggink and Mathias Hülsbusch

13 pages

Guest Editors: Fabio Gadducci, Leonardo Mariani
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Decidability and Expressiveness of Finitely Representable
Recognizable Graph Languages

H.J. Sander Bruggink and Mathias Hülsbusch∗

Universität Duisburg-Essen, Germany
sander.bruggink@uni-due.de, mathias.huelsbusch@uni-due.de

Abstract: Recognizable graph languages are a generalization of regular (word)
languages to graphs (as well as arbitrary categories). Recently automaton functors
were proposed as acceptors of recognizable graph languages. They promise to be a
useful tool for the verification of dynamic systems, for example for invariant checking.
Since automaton functors may contain an infinite number of finite state sets, one
must restrict to finitely representable ones for implementation reasons. In this paper
we take into account two such finite representations: primitive recursive automaton
functors – in which the automaton functor can be constructed on-the-fly by a primitive
recursive function –, and bounded automaton functors – in which the interface size of
the graphs (cf. path width) is bounded, so that the automaton functor can be explicitly
represented. We show that the language classes of both kinds of automaton functor
are closed under boolean operations, and compare the expressiveness of the two
paradigms with hyperedge replacement grammars. In addition we show that the
emptiness and equivalence problem are decidable for bounded automaton functors,
but undecidable for primitive recursive automaton functors.

Keywords: recognizable graph languages, automaton functors, verification, graph
transformation

1 Introduction

In [BK08] automaton functors were introduced as an automaton model to accept recognizable
graph languages, and it was shown that this notion is equivalent to Courcelle’s [Cou90]. Au-
tomaton functors can be seen as a generalization of finite (word) automata to graphs (and other
categories): graphs are decomposed into a sequence of cospans (which, intuitively, can be seen
as graphs with interfaces or external nodes), which are then input into an automaton to decide
whether they are accepted. Such an automaton model for graph languages is useful in practice to
verify properties of graph transformation systems; in [BBK10] for example, automaton functors
were used for invariant checking.

However, in general, automaton functors are infinite structures. For implementation purposes,
we need to impose restrictions to automaton functors in order to ensure that they have finite
representations. In this paper, we will explore two possible such restrictions: primitive recursive
automaton functors (Section 3) and bounded automaton functors (Section 4).

∗ This work was supported by the DFG-project GaReV.

1 / 13 Volume X (2011)

mailto:sander.bruggink@uni-due.de, mathias.huelsbusch@uni-due.de

Decidability and Expressiveness of Finitely Representable Recognizable Graph Languages

In the case of primitive recursive automaton functors, we require that the automaton functor
can be generated “on-the-fly” by a primitive recursive function. Although other computability
classes would be possible (and interesting), the requirement that the function is primitive recursive
ensures that the function is computable and total.

In the case of bounded recursive automaton functors, we bound the size of the interfaces of
the cospans in the decomposition (which amounts to bounding the number of external nodes).
Thereby we bound the pathwidth of the graphs which can be generated. If we bound the interface
size in this way, we can specify finitely many cospans from which all (bounded) cospans can be
composed. Thus, every bounded automaton functor can be explicitly represented.

Of these two restricted forms of automaton functor, we are particularly interested in: a) the
expressive power of the formalisms in relation to each other, and in relation to hyperedge
replacement grammars; and b) what decision problems of the restricted automaton functors are
decidable, and how automaton functors can be constructively combined into other automaton
functors.

This work builds on the works [BK08] and [BK10], which are more theoretically oriented, and
[BBK10], which is more practically oriented and sparked our interest in the implemention of
automaton functors.

2 Preliminaries

In this section we briefly recall some concepts of category theory, recognizable graph languages
and computability theory, mainly in order to fix terminology and notation.

2.1 Categories and recognizable arrow languages

We presuppose a basic knowledge of category theory. For arrows f : A→ B and g : B→C, the
composition of f and g is denoted (f ;g) : A→ C. The category Rel has sets as objects and
relations as arrows. Its subcategory Set has only the functional relations (functions) as arrows.

Let C be a category in which all pushouts exist. A cospan in C is a pair 〈cL,cR〉 of C-arrows
J −cL�G�cR−K. In such a cospan, J will be called the left or inner interface, while K will be
called the right or outer interface. Composition of two cospans 〈cL,cR〉,〈dL,dR〉 is computed by
taking the pushout of the arrows cR and dL.

Cospans are isomorphic if their middle objects are (such that the isomorphism commutes with
the component morphisms of the cospan). Isomorphism classes of cospans are the arrows of
so-called cospan categories. That is, for a category C with pushouts, the category Csp(C) has the
same objects as C. The isomorphism class of a cospan J−cL�G�cR−K in C is an arrow from J
to K in Csp(C).

In [BK08], an automaton functor, which is an acceptor for recognizable languages of arrows in
a category, was defined as follows:

Definition 1 Let a category C be given.An automaton functor is a functor A : C→ Rel, which
maps every object X ∈ C to a finite set A(X) (the state set of X) and every arrow f ∈ C(X ,Y)
to a relation A(f)⊆A(X)×A(Y), together with, for each object X ∈ C, two distinguished sets
IX
A ⊆A(X) and FX

A ⊆A(X) of initial and final states, respectively.

Proc. GTVMT 2011 2 / 13

ECEASST

An arrow f ∈C(X ,Y) is accepted by an automaton functor A, if 〈s, t〉 ∈ A(f), for some s ∈ IX
A

and t ∈ FY
A. The language LX ,Y (A) of A contains exactly those arrows in C(X ,Y) which are

accepted by it. A language L of arrows from X to Y is a recognizable language if L = LX ,Y (A)
for some automaton functor A. (The subscripts X ,Y of LX ,Y (A) are omitted if clear from the
context.)

The rationale behind the notion of automaton functor is that objects (the arrows of the category)
are decomposed in “smaller” objects, and then read sequentially by the automaton functor, like
in the case of word automata. As such decompositions are in general not unique, the functor
property is needed to make sure the result is independent of the decomposition.

Note, that we will later apply this definition to the category of graphs and restrict ourselves to
discrete interfaces. See Subsection 2.3.

2.2 Graphs

A hypergraph over a set of labels Σ (in the following also simply called graph) is a structure
G = 〈V,E,att, lab〉, where V is a finite set of nodes, E is a finite set of edges, att : E→V ∗ maps
each edge to a finite sequence of nodes attached to it, and lab : E → Σ assigns a label to each
edge. A discrete graph is a graph without edges; the discrete graph with k nodes (which is unique
up to isomorphism) is denoted by Dk. A graph morphism is a structure preserving map between
two graphs. The category of graphs and graph morphisms is denoted by Graph. Recall, that the
monomorphisms (monos) and epimorphisms (epis) of the category Graph are the injective and
surjective graph morphisms, respectively. Unless otherwise indicated, we will identify isomorphic
graphs. Because of this, the collections of all graphs is a set rather than a proper class.

Graphically, nodes are represented by black circles. Edges are represented by a box with the
label of the edge written in it. Open circles on the border of an edge denote “ports”, where the
edge must be connected to a node. For example:

two nodes; a two nodes connected by a a-labeled edge.

A cospan J−cL�G�cR−K in Graph can be viewed as a graph (G) with two interfaces (J and
K), called the inner interface and outer interface respectively. Informally said, only elements of
G which are in the image of one of the interfaces can be “touched”, in the sense that they can be
connected to or fused with other elements. By [G] we denote the trivial cospan ∅→ G←∅, the
graph G with two empty interfaces.

Cospans of graphs are intimately connected with the double pushout approach to graph rewriting
[SS05]. A rewriting rule p = 〈`,r〉 can be defined as a pair of cospans ` : ∅→ L← I and
r : ∅→ R← I with the same outer interface. A graph G rewrites to H by applying rule p if
and only if [G] = ` ;c and [H] = r ;c for some cospan c : I→ K ← ∅ (where K is an arbitrary
graph). This approach to graph transformation is easily seen to be equivalent to the double pushout
approach.

Assume the label set Σ is partitioned into a set N of non-terminals and a set T of terminals.
A handle of a non-terminal A ∈ N is a cospan hA : ∅−`�EA �r− J, where J is a discrete graph,
EA = 〈V,E,att, lab〉 is a graph with |V |= ar(A), E = {e}, lab(e) = A and the elements of att(e)
are pairwise unequal, and the morphism r is injective and surjective on nodes. A hyperedge

3 / 13 Volume X (2011)

Decidability and Expressiveness of Finitely Representable Recognizable Graph Languages

replacement grammar (HRG) is a set of rules in which the left-hand side is a handle, together with
a start symbol S ∈ N. The language generated by an HRG G is defined as the reachable graphs
containing only terminals: L(G) = {G = 〈V,E,att, lab〉 | ES ⇒∗ G for all e ∈ E : lab(e) ∈ T}.1
The class of languages expressible by hyperedge replacement grammars is denoted by HR.

We define the category CG as the subcategory of Csp(Graph) which has discrete graphs as
objects and (isomorphism classes of) cospans of graphs with discrete interfaces as arrows. Its
subcategories CGk (for k ∈ N) have as objects only the discrete graphs with less than k nodes,
and as arrows only the cospans which can be decomposed in atomic cospans with interfaces of
size at most k.

2.3 Recognizable graph languages

When we apply Definition 1 to the category of cospans of graphs, we obtain an automaton model
for recognizing graph languages. In [BK08], two important facts about this model were shown:
first, that the model is equivalent to Courcelle’s notion of recognizability [Cou90], in that the two
paradigms recognize the same class of graph languages; and second, that restricting to discrete
interfaces does not change the expressiveness of the model. In view of the latter, we will restrict
to discrete interfaces in the rest of the paper (that is, we use the category CG in the definition
below).

Definition 2 A set of graphs L is a recognizable graph language if there exists an automaton
functor A : CG→ Rel such that L = {G | [G] ∈ L∅,∅(A)}. The class of recognizable graph
languages is denoted by Rec.

Examples of recognizable graph languages are: graphs containing a graph G as a subgraph,
connected graphs, k-colorable graphs (see Example 1), etc.

Example 1 (k-colorability) Let Nk = {0, . . . ,k−1} and G a graph. A k-coloring of G is a function
f : VG → Nk such that for all e ∈ EG and for all v1,v2 ∈ attG(e) it holds that f (v1) 6= f (v2) if
v1 6= v2. The following automaton functor C : CG→ Rel recognizes the k-colorable graphs:

– Every discrete graph J is mapped to A(J), the set of all valid k-colorings of J. Since J is
discrete, this amounts to the entire function space from VJ to Nk: C(J) = NVJ

k .
– For a cospan c : J → G← K the relation C(c) relates two colorings fJ, fK , whenever

there exists a coloring f for G such that f (cL(v)) = fJ(v) for every node v ∈ VJ and
f (cR(v)) = fK(v) for every node v ∈VK .

Specifically we have that C(∅) = {∅} where ∅ is the empty coloring. Then in order to accept all
k-colorable graphs with empty interfaces we take IC(∅) = FC(∅) = {∅}: a cospan ∅→ G←∅
is accepted whenever the two empty mappings are related.

The working of the automaton functor can be understood as follows. The automaton functor
sequentially reads (a decomposition of) the graph. For each new node it encounters, it non-
deterministically chooses a color. The graph is k-colorable if this is possible until the entire graph
has been read.

1 See [Hab92] for a different (but equivalent with respect to expressive power) definition of HRGs.

Proc. GTVMT 2011 4 / 13

ECEASST

n n n

transn fusen vertexn

n n n
a

rotn resn connectn
a

Figure 1: The atomic cospans.

In the context of the decidability results in this paper, we investigate the following decision
problems concerning graph languages:

– Word problem. Given an automaton functor A and a graph G, decide whether G ∈ L(A).
(In the present context, maybe this problem should be called graph problem, but we chose
to stay consistent with the present formal languages literature.)

– Emptiness problem. Given an automaton functor A, decide whether L(A) =∅.
– Equivalence problem. Given two automaton functors A and B, decide whether L(A) =

L(B).

Even between two fixed interfaces there exist infinitely many cospans. However, we can define a
restricted set of cospans from which any graph can be composed, such that there is a finite amount
of cospans for each pair of inner and outer interface. We call the cospans in this restricted set
atomic cospans. There are different possible sets of atomic cospans; the specific version which is
of use depends on the application. The atomic cospans we present here are similar to the atomic
graphs of [GH97]. They have the advantage that not only every graph, but even every cospan can
be composed from them. A slightly different set of atomic cospans, which ensures that the right
morphism of the cospan is always injective, is presented in [BBK10].

The atomic cospans are presented in Figure 1.2 All atomic cospans are parametrized by the
number of nodes in the inner (left) interface; the connect cospan is additionally parametrized by
the label of the edge.

Cospans (and atomic cospans in particular) can be seen as operations on graphs. When we
consider a graph with one interface J, modeled by a cospan ∅→ G← J, post-composing with
a cospan J→ H← K changes it into a graph with interface K by taking the disjoint union of G
and H and fusing corresponding nodes. The atomic cospans correspond to the following actions:
trans and rot change the positions of the node of the graph in the interface; fuse fuses two nodes
to one; res removes one node from the interface (it stays in the graph); and vertex and connect
add a node and an edge, respectively.

Definition 3
2 The rot cospan is called perm in [BBK10].

5 / 13 Volume X (2011)

Decidability and Expressiveness of Finitely Representable Recognizable Graph Languages

(i) An atomic cospan decomposition of a graph G is a sequence c = c1, . . . ,cn of atomic
cospans, such that cod(ci) = dom(ci+1), for 1 ≤ i < n, and c1 ; · · · ;cn = [G]. If c is an
atomic cospan composition of G, we will write Graph(c) = G.

(ii) The interface size of an (atomic) cospan c : D j→ G← Dk is defined as |c|I = max{ j,k}.
The interface size of an atomic cospan decomposition c is defined as |c|I = max{|c|I | c∈ c}.

In [BBFK11] it is shown that atomic cospan decompositions are tightly related to path decom-
positions. Any atomic cospan decomposition of size k can be converted into a path decomposition
of size k−1 and vice versa.3

3 Primitive Recursive Recognizable Graph Languages

We first study primitive recursive recognizable graph languages. The idea is that the automaton
functor which accepts the language is required to be primitive recursive, that is, given an arrow c,
the relation it maps to can be calculated on-the-fly by a primitive recursive function. Thus, an
automaton functor can be specified as a finite program in some suitable programming language.

Definition 4 A language L is primitive recursive recognizable, if L = L(A) for some primi-
tive recursive automaton functor A : CG→ Rel. The class of primitive recursive recognizable
languages is denoted by PRRec.

Example 2 The automaton functor presented in Example 1 can be calculated on the fly by a
primitive recursive function. That is, there exists a primitive recursive program which, given a
cospan c, calculates the appropriate transition relation.

3.1 Closure properties and decidability

We begin our discussion of primitive recursive graph languages by exploring their closure proper-
ties and decidability, which are both fundamental to their usefulness in practice.

The following two positive results (closure under boolean operations and decidability of the
word problem) are easily proved.

Proposition 1 The class of primitive recursive recognizable languages is closed under union,
intersection and complement.

Proof. It is easily seen, that the constructions used in the proof of Prop. 4.2 of [BK08] are all
primitive recursive, and therefore the compositions are also primitive recursive.

Proposition 2 The word problem for primitive recursive recognizable languages is decidable,
that is, given a primitive recursive automaton functor A and a graph cospan c, it is decidable
whether or not c is accepted by A.

Proof. Since the automaton functor is primitive recursive, an thus computable, we can obtain

3 Although the set of atomic cospan is different, the proofs all work with the form of atomic cospan used here.

Proc. GTVMT 2011 6 / 13

ECEASST

A(c) and check whether it relates an initial with a final state.

The main result of this section is that the emptiness, equivalence and finiteness problems for
primitive recursive recognizable graph languages are not decidable.

Theorem 1 The emptiness problem for primitive recursive recognizable languages is not de-
cidable, that is, given a primitive recursive automaton functor A, it is undecidable whether
L(A) =∅.

Proof. It is well known that the satisfiability problem in first-order logic (with equality) is
undecidable, even if we restrict to finite models. We reduce this problem to the emptiness problem,
thus showing undecidability of that.

A model of first-order logic is represented as a graph in the straight-forward way, that is, objects
are represented by nodes and relations by (hyper)edges.

A formula ϕ of first-order logic is easily translated into first-order graph logic, or, which is
more convenient in this case, into a formula ϕ ′ of (the first-order fragment of) the subobject logic
of [BK10]. Using the construction in the beforementioned paper, we can construct an equivalent
automaton functor A, such that G ∈ L(A) if and only if G |= ϕ . Since all constructions are
primitive recursive, this automaton functor is primitive recursive. Now, ϕ is unsatisfiable (that is,
¬ϕ is valid) if and only if L(A) =∅.

Corollary 1 The equivalence problem for primitive recursive recognizable graph languages
(given as primitive recursive automaton functors) is undecidable.

Proof. The language of a computable automaton functor is empty if and only if the automaton
functor is equivalent to a computable automaton functor which accepts the empty language. The
latter is easily given, so that we have reduced emptiness to equivalence. Thus, by Theorem 1, the
equivalence problem for primitive recursive recognizable languages is undecidable.

3.2 Expressiveness

In this subsection, we explore the expressiveness of primitive recursive automaton functors. In
particular, we show that PRRec and HR are incomparable with respect to set inclusion. To this
end, we first state and prove a pumping lemma for PRRec.

First, let a be an arbitrary atomic cospan other than connect. There exists a cospan a′ such that
a ;a′ = id. That is, every atomic cospan except connect can be undone. We will therefore measure
an atomic cospan decomposition c as follows:

|c|A = number of connectA-cospans in c
|c|E = ∑

A∈Σ

|c|A

Lemma 1 Let c be an atomic cospan decomposition, and G =Graph(c). Let G = 〈V,E,att, lab〉.

|c|A = |{e ∈ E | lab(e) = A}|
|c|E = |E|.

7 / 13 Volume X (2011)

Decidability and Expressiveness of Finitely Representable Recognizable Graph Languages

Proof. By the observation that, since interfaces are discrete by definition, connect-cospans add a
single edge to the graph and no other atomic cospan changes the number of edges in the graph.

If we restrict an automaton functor4 to atomic cospans of bounded interface size (see also
Section 4, we obtain a structure which is basically a finite automaton. It is therefore not surprising
that we can prove a similar pumping lemma. Compared to the usual pumping lemma for regular
word languages, the pumping lemma below has an additional quantification (to deal with the
restriction to a bounded interface size) and some notational clutter (to deal with the difference
between graphs and atomic cospan decompositions).

Lemma 2 (Pumping Lemma) Let L be a recognizable graph language. For all k ∈N there exists
a pumping constant n ∈ N such that all atomic cospan decompositions c with |c|I ≤ k, |c|E > n
and Graph(c) ∈ L can be written as c = uvw such that

– |uv|E ≤ n,
– |v|E ≥ 1 and
– for all i, vi is well-defined and Graph(uviw) ∈ L.

Proof. The proof proceeds analogously to the proof of the pumping lemma for regular word
languages. Let an automaton functorA with L(A) = L and a k ∈N be given. We assume, without
loss of generality, that the state sets A(Di), for 0≤ i≤ k, are mutually disjoint.

Let T = {〈q1,a,q2〉 | 〈q1,q2〉 ∈ A(a) for some atomic cospan a}. For t = 〈q1,a,q2〉 ∈ T , we
define src(t)= q1, tgt(t)= q2, ac(t)= a. A path ofA is a sequence t1, . . . , tm, where, for 1≤ i<m,
tgt(ti) = src(ti+1). Clearly, a graph G is accepted by A if and only if there exists a path t1, . . . , tm
such that src(t1) is an initial state, tgt(tm) is a final state and ac(t1) . . .ac(tm) is an atomic cospan
decomposition of G.

Let U = {t ∈ T | ac(t) = connecti
a for some i≤ k and a ∈ Σ}. We choose the pumping lemma

constant n = |U |.
Let c = c1, . . . ,cm be an atomic cospan decomposition with |c|I ≤ k, |c|E > n and Graph(c) ∈ L.

By the previous observation, there exists a path t = t1, . . . , tm from an initial to a final state labeled
with the atomic cospans of c. By construction t contains |c|E elements of U . Since |c|E > |U |, one
some of those elements must occur in t twice. Let p and q be the smallest indices (with p 6= q)
such that tp = tq. We take u = ac(t1) . . .ac(tp−1), v = ac(tp) . . .ac(tq−1) and w = ac(tq) . . .ac(tm).

Since p and q are the smallest indices, uv does not contain duplicate connects, so |uv|E ≤ n.
Since ac(tp) = connecta, for some a ∈ Σ, |v|E ≥ 1. Finally, since tp = tq, it must hold that
tgt(tp−1) = src(tp) = src(tq) = tgt(tq−1), and therefore t1 . . . tp−1(tp . . . tq−1)

itq . . . tm must also be
a path from an initial to a final state, for all i ∈ N. Thus Graph(uviw) ∈ L for all i ∈ N.

Theorem 2 The language classes PRRec and HR are not comparable with respect to set
inclusion, that is:

(i) PRRec 6⊆ HR
(ii) HR 6⊆ PRRec

Proof. (i) The class of all graphs is not generated by a HRG (see Theorems IV.3.3, IV.3.4 and

4 Note that this holds for any automaton functor, not only primitive recursive ones.

Proc. GTVMT 2011 8 / 13

ECEASST

IV.3.9 of [Hab92]). On the other hand, it is primitive recursive recognizable by the automaton
functor which maps each cospan c to the complete relation of the respective state sets.

(ii) The (string-)graph language L= {anbncn | n≥ 1} is generated by an HRG (see Example I.3.6
of [Hab92]). As we will show by means of the pumping lemma, it is however not recognizable.
Note that atomic cospan decompositions of any graph in L have a size of at least 2 (two consecutive
nodes must be in an interface at the same time to add the edges). Choose any k ≥ 2, and let n be
the constant given by the pumping lemma. We choose the following atomic cospan decomposition
of G = anbncn:

vertex0,(vertex1,connect2
a,res2)n,(vertex1,connect2

b,res2)n,(vertex1,connect2
c ,res2)n,res1

Since the pumping will take place within the first n connect cospans, it follows together with
Lemma 1 that for all u, v, w satisfying the conditions of the pumping lemma, Graph(uv2w) /∈ L.

4 Bounded Recognizable Graph Languages

Bounded recognizable graph languages are accepted by bounded automaton functors, automaton
functors for graph cospans which are only defined on interfaces of bounded size. By listing the
relations for the atomic cospans (of which there are finitely many for each interface size) it is
possible to explicitly represent this kind of automaton functor.

Definition 5 (Bounded automaton functor)
(i) A k-bounded automaton functor is an automaton functor A, for the category CGk, such

that there exists an automaton functorA′ for CG such thatA(X) =A′(X), for all X ∈CGk,
and A(c) =A′(c), for all c ∈ CGk(X ,Y), where X ,Y ∈ CGk.

(ii) A language L of graph cospans is k-bounded recognizable, if there exists a k-bounded
automaton functor A such that L = L(A). L is bounded recognizable, if it is k-bounded
recognizable for some k ∈ N.
The class of k-bounded recognizable languages is denoted by BReck and the class of
bounded recognizable graph languages by BRec.

Example 3 We can restrict the automaton functor of Example 1 to cospans which are composable
from atomic cospans of size m and less. Now the automaton functor can be represented explicitly
by storing the transition relations for the atomic cospans only.

Note that k-colorable graphs do not have a bounded path width. The result will be that we only
be able to recognize k-colorable graphs with pathwidth less than m, which is a proper sublanguage
of the language of all k-colarable graphs.

4.1 Closure properties and decidability

As in the last section, we start by studying the closure properties and decidability of bounded
recognizable graph languages. Since a bounded automaton functor is basically a large finite
automaton, all well-known constructions from formal (word) language theory still work.

9 / 13 Volume X (2011)

Decidability and Expressiveness of Finitely Representable Recognizable Graph Languages

Proposition 3 The class of bounded recognizable graph languages is closed under union,
intersection and complement. In particular, if L1 ∈ BReck and L2 ∈ BRecm then:

(i) L1∪L2 ∈ BRecmax{k,m}
(ii) L1∩L2 ∈ BRecmax{k,m}

(iii) L1 ∈ BReck

Proof. We first obtain automaton functors which are bound by max{k,m}, for both languages.
These exist by definition. Now we can use the constructions of Prop. 4.2 of [BK08] to obtain a
bounded automaton functor for the new language.

Proposition 4 All of the following decision problems are decidable for bounded recognizable
graph languages (where a bounded recognizable graph language is given as a bounded automaton
functor):

(i) The word problem.
(ii) The emptiness problem.

(iii) The equivalence problem.

Proof. We assume that a bounded automaton functor is given by explicitly listing the transition
relations for the atomic cospans. This means that an automaton functor is given as a finite
automaton labeled with atomic cospans. It is therefore not surprising, that the proof ideas from
automata theory can be used.

(i) Solving the word problem amounts to decomposing the input cospan to atomic cospans and
looking up and composing the respective transition relations, all of which are computable.

(ii) The language of a finite automaton functor is empty if and only if there is no path from an
initial state to a final state. Since the searching space is finite, this is decidable using Dijkstra’s
algorithm.

(iii) We can employ an algorithm similar to finite automata: construct two equivalent, deter-
ministic minimal automaton functors and check if they are isomorphic. The minimization and
determinization procedure of [BK08] also work for bounded automaton functors.

4.2 Expressiveness

We conclude the discussion on bounded recognizable graph languages by exploring their expres-
siveness. Not surprisingly, they form a proper subset of both the primitive recursive recognizable
graph languages and the languages generated by HRGs.

Because we need this result in the proof of Theorem 3, which is in turn needed for an easy
proof of strict inclusion of BRec in Rec, we first show the (not necessarily strict) inclusion.

Proposition 5 BRec⊆ PRRec.

Proof. Follows from the fact that, by definition, BRec =
⋃

k∈N BReck and the fact that a k-bounded
automaton functor can be finitely represented by explicitly storing the transition relations for a
finite set of atomic cospans (see [BBK10]).

Proc. GTVMT 2011 10 / 13

ECEASST

S ⇒ q for all initial states q ∈ A(D0)

q ⇒ ∅ for all final states q ∈ A(D0)

q1 ⇒ q2 if 〈q1,q2〉 ∈ A(transar(q1))

q1 ⇒ q2 if 〈q1,q2〉 ∈ A(rotar(q1))

q1 ⇒ q2 if 〈q1,q2〉 ∈ A(fusear(q1))

q1 ⇒ q2 if 〈q1,q2〉 ∈ A(vertexar(q1))

q1 ⇒ q2 if 〈q1,q2〉 ∈ A(resar(q1))

q1 ⇒ q2

a

if 〈q1,q2〉 ∈ A(connectar(q1)
a)

Figure 2: Rules of the G from the proof of Theorem 3.

Theorem 3 The class of bounded recognizable graph languages is properly contained in the
class of graph languages generated by HRGs; that is BRec⊂ HR.

Proof. The fact that BRec 6= HR directly follows from Proposition 5 and Theorem 2 (ii). It
remains to show that BRec⊆ HR.

Let A be an automaton functor bounded by k. We will construct a (linear) HRG G which
generates the same language. Assume, without loss of generality, that the state sets A(Di) (for
i≤ k) are mutually disjoint. We define the set of non-terminals N as N =

⋃k
i=0A(Di)∪{S}, where

S /∈
⋃k

i=0A(Di).
The rules of the grammar G are presented in Figure 2. Now every execution path of A (starting

from an initial state) corresponds to a derivation of G (starting from S) and vice versa. The only
way to remove a non-terminal in the grammar, is to have a non-terminal labeled with a final state
and apply the second rule. Thus, L(A) = L(G).

Theorem 4 The class of bounded recognizable languages is properly contained in the class of
primitive recursive recognizable languages; that is BRec⊂ PRRec.

Proof. The fact that BRec⊆ PRRec was proven in Proposition 5. The fact that the inclusion is
proper follows from Theorem 2 (i) and Theorem 3.

11 / 13 Volume X (2011)

Decidability and Expressiveness of Finitely Representable Recognizable Graph Languages

5 Conclusion

In this paper we considered two restrictions of automaton functors for graphs that make them
representable in a finite way, and as such implementable: primitive recursive automaton functors,
which can be generated on-the-fly by a primitive recursive function, and bounded automaton
functors, in which the interface size of the graphs is bounded.

We showed that the graph language classes accepted by both kinds of automaton functor
are closed under the boolean operations and that the word problem of both kinds is decidable.
However, of bounded automaton functors the emptiness and language equivalence problems are
decidable, while these problems are undecidable for primitive recursive automaton functors. In
particular, language equivalence and language inclusion (which reduces to the emptiness problem
via closedness under union and complement) are important for automated verification of graph
transformation systems.

Another difference between primitive recursive and bounded automaton functors is that bounded
automaton functors can be explicitly represented, which is convenient when we want to apply
certain algorithms on them, for example for calculating the simulation relation on the states of the
automaton [BBK10]. However, explicitly representing automaton functors requires a lot of space.
Empirical evidence suggests that for interesting automaton functors the number of states grows
exponentionally with respect to the maximal interface size.

How the expressiveness of the two paradigms is related to other common paradigms for the
specification of graph languages, is summarized in the following diagram. Besides the language
classes already mentioned in this paper, the diagram contains FOL and MSOL, the graph languages
expressible by first-order logic and monadic second-order logic [Cou90] (for graphs equivalent
with logic of subobjects [BK10]), respectively. An arrow from A to B means that every graph
language expressible by A can also be expressed by B.

BRec PRRec Rec

MSOLFOL

HR

As is clear from the diagram, primitive recursive automaton functors are strictly more expressive
than bounded automaton functors. Which of the representations is more convenient in practice
depends on which of the above properties one needs for a given application.

Bibliography

[BBFK11] C. Blume, S. Bruggink, M. Friedrich, B. König. Treewidth, Pathwidth and Cospan
Decompositions. In Proc. of GT-VMT ’10. 2011.

[BBK10] C. Blume, S. Bruggink, B. König. Recognizable Graph Languages for Checking
Invariants. In Proc. of GT-VMT ’10. Electronic Communications of the EASST. 2010.

Proc. GTVMT 2011 12 / 13

ECEASST

[BK08] S. Bruggink, B. König. On the Recognizability of Arrow and Graph Languages. In
Proc. of ICGT ’08. Pp. 336–350. Springer, 2008. LNCS 5214.

[BK10] S. Bruggink, B. König. A Logic on Subobjects and Recognizability. In Proc. of
IFIP-TCS ’10. Springer, 2010.

[Cou90] B. Courcelle. The Monadic Second-Order Logic of Graphs I. Recognizable Sets of
Finite Graphs. Information and Computation 85:12–75, 1990.

[GH97] F. Gadducci, R. Heckel. An inductive view of graph transformation. In Proceedings
of WADT ’97. Pp. 223–237. 1997.

[Hab92] A. Habel. Hyperedge Replacement: Grammars and Languages. Springer, 1992.

[SS05] V. Sassone, P. Sobociński. Reactive systems over cospans. In Proc. of LICS ’05.
Pp. 311–320. IEEE, 2005.

13 / 13 Volume X (2011)

	Introduction
	Preliminaries
	Categories and recognizable arrow languages
	Graphs
	Recognizable graph languages

	Primitive Recursive Recognizable Graph Languages
	Closure properties and decidability
	Expressiveness

	Bounded Recognizable Graph Languages
	Closure properties and decidability
	Expressiveness

	Conclusion

