
A proof of Finite Family Developments for

Higher-Order Rewriting using a Prefix Property

H. J. Sander Bruggink

Department of Philosophy, Utrecht University
Email: bruggink@phil.uu.nl

Homepage: http://www.phil.uu.nl/~bruggink

Abstract. A prefix property is the property that, given a reduction, the
ancestor of a prefix of the target is a prefix of the source. In this paper we
prove a prefix property for the class of Higher-Order Rewriting Systems
with patterns (HRSs), by reducing it to a similar prefix property of a
λ-calculus with explicit substitutions. This prefix property is then used
to prove that Higher-order Rewriting Systems enjoy Finite Family De-
velopments. This property states, that reductions in which the creation
depth of the redexes is bounded are finite, and is a useful tool to prove
various properties of HRSs.

1 Introduction

Higher-order Rewriting Systems (HRSs), as introduced by Nipkow in 1991 [12,10],
are a powerful tool to study the metatheory of declarative programming lan-
guages, like λProlog and Haskell, on the one hand, and theorem provers and
proof checkers, like Isabelle, on the other. Also, many (extensions of) λ-calculi
can be encoded as instances of HRSs, so that results obtained for HRSs carry
over to other interesting domains.

In this paper, we prove two properties of HRSs where left-hand sides of rule
are restricted to be patterns. First we prove a prefix property, by reducing this
property to a similar prefix property for a λ-calculus with explicit substitutions.
The prefix property says that, given a step, the ancestor of a prefix of the target
is a prefix of the source. Consider, as an example, the (first-order) rewriting
system with the single rule

f(x) → g(f(x), x)

and the step f(h(a)) → g(f(h(a)), h(a)). Now, p = g(f(�), h(�)) is a prefix of the
target. Intuitively, its ancestor is f(h(�)), because

s = f(h(�)) → g(f(h(�)), h(�)) = t

and p is contained in t. And indeed, f(�) is a prefix of the source.
Many different prefix properties are possible: we can, e.g., vary in how the

notions of prefix and ancestor are formalized, and we may impose additional

conditions on the form of the prefixes. Prefix properties are already known for
first-order TRSs [2,14] and (a labelling of) the λ-calculus with β-reductions [2],
and have many applications, such as (head) needed reductions [14, Chap. 8] and
normalization of outermost-fair reductions [14, Chap. 9]. A similar property is
proved in Van Daalen’s Square Brackets Lemma [15].

The second contribution is that we prove Finiteness of Family Developments
(FFD) for HRS, by reducing this property to the prefix property described above.
FFD states that each reduction, in which the “creation depth”, or family, of
function symbols is bounded, is finite. The intuition behind the notion of family
is that in a step C[lσ] → C[rσ], the symbols of r depend on the symbols of l,
and therefore have a higher creation depth, while the symbols in C and σ do
not take part in the step and have the same creation depth in both source and
target. For example, consider the following infinite reduction, using the rewrite
system above. We label the function symbols with their creation depth.

f0(a0) → g1(f1(a0), a0) → g1(g2(f2(a0), a0)) → g1(g2(g3(f3(a0), a0), a0)) → · · ·

Clearly, in this infinite reduction, the creation depth of the f’s grows without
bound. FFD states that restricting the creation depth to a finite number, yields
finite reductions. FFD is a useful tool to prove various properties of rewrite
systems, such as termination (e.g. termination of simply typed λ-calculus follows
from FFD, see Appendix A), existence of standard reductions, etc.

Acknowledgements. I thank Vincent van Oostrom, Delia Kesner and the anony-
mous referees of the RTA 2006 conference for useful remarks on preliminary
versions of this paper.

Note. This is an extended and more detailed version of [4]. Because this technical
report includes additional definitions and lemmas, the numbering of examples,
definitions, theorems and lemmas may differ in some places.

2 Preliminaries

We presuppose knowledge of the simply typed λ-calculus. Here we give a short
overview of Higher-Order Rewrite Systems (HRSs) [10]. In particular, we con-
sider HRSs as HORSs [16] with the simply typed λ-calculus as substitution
calculus. We refer to [14, Sect. 11.2] for a good introduction.

Simple types are generated from a set of base types by the type constructor
→. Let Σ be a signature of simply typed function symbols. We define a preterm
to be a simply typed λ-terms over Σ. We want to consider βη-equivalence classes
of preterms. Since it is well known that β-reduction, combined with restricted η-
expansion (η-reduction), is confluent and terminating, we take βη-normal forms
as unique representatives of the βη-equivalence classes. We define: a term is a
preterm in βη-normal form. In the following, s, t will range over terms (and,
whenever indicated, over preterms as well).

2

A sequence a1, . . . , an will sometimes be written as an, or just a if the length is
not important or clear from the context. Juxtaposition of two sequences denotes
concatenation.

For terms or preterms s, t1, . . . , tn, we write s(t1, . . . , tn) for st1 · · · tn, or, in
the case of terms, the β-normal form thereof. We also introduce the shorthand
λxn.s for λx1. . . . λxn.s. With FV(s) we denote the set of free variables of term
or preterm s, and with Sym(s) the set of function symbols present in the term
or preterm. If λx.a(s) is a term, then a is called the head of that term (a is a
function symbol or variable).

In the class of HRSs that we consider, the left-hand sides of rules are re-
stricted to be local patterns. For patterns, unification is decidable and unique
most general unifiers exist [11]. Local patterns, additionally, are linear (each free
variable occurs at most once) and fully-extended (free variable have all bound
variables in scope as argument). These extra requirements have a similar pur-
pose as the requirement of left-linearity in first-order TRS: they keep matching
local. To match a non-linear pattern, it is possible that subterms outside the
pattern need to be checked for equality; to match a non fully extended pattern,
it is possible that such a subterm must be checked for the non-occurrence of a
variable. Because the notion of pattern depends on what the free variables are,
we need to parametrize the notion with a context of variables, and obtain the
following inductive definition:

Definition 2.1 (Pattern). Let x be a sequence of variables.

(i) A term s is an x-pattern if:
– s = a(s1, . . . , sn) and either a ∈ x ∪ Σ and s1, . . . , sn are x-patterns;

or s1, . . . , sn is η-equivalent to a sequence of distinct variables from x.
– s = λy.s0 and s0 is an xy-pattern.

(ii) A term s is linear outside x, if each free variable which is not in x, occurs
in it at most once. A term s is a fully extended x-pattern, if, in the second
case of the above definition, s1, . . . , sn =η x. A term s is a local x-pattern,
if s is linear outside x and a fully extended x-pattern.

Examples of local patterns are f(x), g(λxy.f(z(x, y))) and h(λx.z(x)). Examples
of non-local patterns are g(λxy.f(y)) (not fully-extended) and h(λx.z(x), λx.z(x))
(not linear). An example of a non-pattern is g(z(a)).

In the following, p, q will range over patterns, and the word pattern (without
the sequence of variables) will refer to a ∅-pattern.

Definition 2.2 (HRS). A rewrite rule (for a signature Σ) is a pair λx.l0 →
λx.r0 of closed Σ-terms of the same type, such that l0 = f(s1, . . . , sn) and l0 is
a local pattern not η-equivalent to a variable. An HRS is a tuple H = 〈Σ, R〉,
where Σ is a signature and R a set of rewrite rules for Σ.

The rewrite relation →H is defined as follows: s →H t if there exist a context
C such that s =β C[l] and t =β C[r], for some rule l → r ∈ R.

For arbitrary rewrite system R, we denote with ։R the reflexive, transitive
closure of →R.

3

Note that there is no substitution in the definition of the rewrite relation,
such as in first-order term rewriting systems (but see also Remark 2.4). The
leading abstractions of the rules take the role of the substitution, as can be seen
in the next example:

Example 2.3. Let the HRS Map, implementing the higher-order function map,
be defined by:

λz.map(λx.z(x), nil) → λz.nil

λzuv.map(λx.z(x), cons(u, v)) → λzuv.cons(z(e(u)), map(λx.z(x), v))

Here, cons and nil are the list constructors, viz. list composition and the empty
list, respectively. The reason for the symbol e is to make the HRS non-collapsing
(see Def. 2.5). A reduction of two Map-steps is the following:

map(λx.f(x), cons(a, nil))
=β (λzuv.map(λx.z(x), cons(u, v)))(λx′.f(x′), a, nil)

→Map (λzuv.cons(z(e(u)), map(λx.z(x), v)))(λx′.f(x′), a, nil)

=β cons(f(e(a)), map(λx.f(x), nil))
=β cons(f(e(a)), (λz.map(λx.z(x), nil))(λx′.f(x′)))

→Map cons(f(e(a)), (λz.nil)(λx′.f(x′)))
=β cons(f(e(a)), nil)

Note how the (underlined) left-hand sides are literally replaced by the (also
underlined) right-hand sides.

In later examples, the leading abstractions of rewrite rules will be omitted; in
other words, we will write l → r for λx.l → λx.r.

Substitutions are maps from variables to terms. Application of a substitution
σ = [x1 7→ t1, . . . , xn 7→ tn] to a term s is defined as: sσ = (λx1 . . . xn.s)t1 . . . tn
(where this term is, as always, implicitly reduced to βη-normal form). In the
following, ρ, σ, τ, υ will rangle over substitutions. The composition of substitions
σ and τ is denoted by σ ; τ , where sσ;τ = (sσ)τ . A substitution is called linear,
if each free variable occurs in its codomain at most once, i.e. if all terms of its
codomain are linear and have mutually disjoint free variables. A (fully extended)
x-pattern substitution is a substitution of which the codomain consists of (fully
extended) x-patterns.

Remark 2.4. The rewrite relation of Def. 2.2 can alternatively, and more in the
fashion of first-order TRSs, be defined in the following way:

s →H t if s =β C[lσ0] and t =β C[rσ
0]

where λx.l0 → λx.r0 ∈ R and σ is a substitution with Dom(σ) = x. This
alternative definition, however, requires the notion of substitution to be defined,
and therefore we prefer the other one. In the rest of the paper, we will sometimes
implicitly switch definitions.

4

Intuitively, a rewrite rule is collapsing, if it can bring context and subtitution,
or different parts of the substitution, together, i.e. if, after the application of the
rule, a function symbol of the context can be directly connected to a function
symbol of the substitution. This can happen in two specific cases, which we will
use as a definition:

Definition 2.5. A term s is collapsing, if one of the following applies:

– (context-subst): s = x(s1, . . . , sn), where x is a free variable; or
– (subst-subst): s = C[x(s1, . . . , sn)], and for some k, sk = λz.y(t1, . . . , tm),

where C is a context, x is a free variable, and y a free or bound variable.

A rewrite rule λx.l → λx.r is collapsing, if r is collapsing, and an HRS is
collapsing, if at least one of its rules is.

Example 2.6.

– The rules λx.f(x) → λx.x and λz.mu(λx.z(x)) → λz.z(mu(λx.z(x))) are
collapsing due to the (context-subst) condition. Suppose that g(a) is a redex,
and consider the step g(f(a)) →H g(a). This step creates the redex g(a)
without creating one of its function symbols.

– The rule λyz.g(λx.z(x), y) → λyz.f(z(y)) is collapsing due to the (subst-
subst) condition. Supppose that f(a) is a redex. Then the step g(λx.f(x), a) →
f(a) creates the redex f(a) without creating one of its function symbols.

– The rule λyz.app(lam(λx.z(x)), y) → λyz.z(y) is collapsing due to both the
(context-subst) and the (subst-subst) conditions.

An HRS H is terminating, if there are no infinite rewrite chains, i.e. if the inverse
of its rewrite relation ։H is well-founded. Let ⊆ be the subterm relation, i.e.
the reflexive, transitive closure of the smallest relation ⊆1 such that s1 ⊆1 s1s2,
s2 ⊆1 s1s2, s ⊆1 λx.s. We define: ≪H = ևH ∪ ⊆.

Lemma 2.7. ≪H is well-founded if and only if H is terminating.

Proof. Corresponds to [17, Lemma 7 (3)]. ⊓⊔

3 Labelling HRSs with natural numbers

Labelling rewriting systems is a well-known method to formalize the notion of
redex family; see e.g. [8,9]. In this section, we develop a labelling, in the sense of
[18,14], for HRSs, analogous to the labelling for the λ-calculus used by Hyland
[6] and Wadsworth [19]. Each function symbol is labelled by a natural number,
representing the “creation depth” of the function symbol, and the rules are
labelled such that every function symbol of the right-hand side is labelled with
the largest label of the left-hand side plus one.

Definition 3.1 (ω-labelling).

(i) The ω-labelling of a signature Σ is defined as: Σω = {f ℓ | f ∈ Σ, ℓ ∈ N}.

5

(ii) The family of a term s, denoted fam(s), is the largest label of s, i.e.:

fam(s) = max{ℓ | f ℓ ∈ Sym(s)}

(iii) Let s be a term, and ℓ ∈ N a label. Then:

x(s1, . . . , sn)ℓ = x(sℓ
1, . . . , s

ℓ
n)

f(s1, . . . , sn)ℓ = f ℓ(sℓ
1, . . . , s

ℓ
n)

(λx.s0)
ℓ = λx.sℓ

0

(iv) The projection operation |·|ω is the mapping from Σω to Σ given by |f ℓ|ω =
f . The mapping is homomorphically extended to terms.

(v) Let H = 〈Σ, R〉. The ω-labelled version of H is defined as: Hω = 〈Σω, Rω〉,
where Rω consist of all rules l′ → r(fam(l′)+1) such that l → r ∈ R and
|l′|ω = l.

The ω-labelling only labels function symbols, not variables, abstractions or ap-
plications. The reason for this is that we want the ω-labelling of an HRS to
be an HRS itself (otherwise it would not be a labelling in the sense of [18,14]).
Labelling variables is impossible, because α-equivalent terms are identified. La-
belling abstractions and applications is impossible because we have fixed the
(unlabelled) simply typed λ-calculus as substitution calculus.

Example 3.2. The labelled HRS Mapω consists, among others, of the rules:

map0(λx.z(x), nil0) → nil1

map1(λx.z(x), nil1) → nil2

map0(λx.z(x), cons0(u, v)) → cons1(z(e1(u)), map1(λx.z(x), v))

map0(λx.z(x), cons1(u, v)) → cons2(z(e2(u)), map2(λx.z(x), v))

A labelled reduction corresponding to the reduction of Ex. 2.3 is the following:

map0(λx.f0(x), cons0(a0, nil0))

=β (λzuv.map0(λx.z(x), cons0(u, v)))(λx′.f0(x′), a0, nil0)

→Map (λzuv.cons1(z(e1(u)), map1(λx.z(x), v)))(λx′.f0(x′), a0, nil0)

=β cons1(f0(e1(a0)), map1(λx.f0(x), nil0))

=β cons1(f0(e1(a0)), (λz.map1(λx.z(x), nil0))(λx′.f0(x′)))

→Map cons1(f0(e1(a0)), (λz.nil
2)(λx′.f0(x′)))

=β cons1(f0(e1(a0)), nil2)

Notice how only the labels of function symbols involved in the step (i.e. the
underlined ones) are increased.

The following two lemmas provide a correspondence between labelled and unla-
belled reductions:

Lemma 3.3. Let H be an HRS. Hω is orthogonal/collapsing/erasing, if and
only if H is.

6

Proof. By induction on the length we easily prove that sℓ is collapsing, if and
only if s is. ⊓⊔

Lemma 3.4. Let H be an HRS.

(i) If s →H t, then, for each s′ such that |s′|ω = s, there is a t′ such that
s′ →Hω t′ and |t′|ω = t.

(ii) If s →Hω t, then |s|ω →H |t|ω.

Proof. Both items are easily proved by induction on the context of the step. ⊓⊔

4 The Prefix Property

We call p a prefix of term t, if it is a pattern, and there exists a substitution σ

such that pσ = t. Given a step s → t, a subterm q of s is the ancestor of a subterm
p of t, if the symbols of t “trace to” the symbols of s. This notion is formalized
here using labelling together with the rewrite relation: q is an ancestor of p, if
fam(p) ≥ fam(q) and q ։Hω pυ. The substitution υ is necessary because q might
reduce to a “bigger” term than p; typically, υ has only function symbols which
are also in p. Using these formalizations, we prove in this section the following
theorem (proof begins on page 15).

Theorem 4.1 (Prefix Property). Let Hω be the ω-labelling of a non-collaps-
ing HRS, s a term, p a local x-pattern and σ a substitution. If s →Hω pσ,
then there exist a local x-pattern q and a substitution τ , such that s = qτ ,
fam(p) ≥ fam(q), and either:

– q →Hω pυ, for some substitution υ such that υ ; τ = σ; or (trm)
– q = p and τ →Hω σ. (sub)

The theorem states that, given a prefix of the target, its ancestor is a prefix of
the source. There are two possibilities: either the prefix takes part in the step, or
the step occurred fully in the substitution. Note that, in the first case, we do not
only require that its ancestor is a prefix, but also that the suffix stays the same
(except for duplicated subterms). In this regard, the lemma is stronger than e.g.
the prefix property (for the λ-calculus) proved in [2, Prop. 7.4].

Example 4.2. Consider the following Mapω-step (see page 4):

h1(map3(λx.f2(x), cons2(a5, nil
1)) → h1(cons4(f2(e4(a5)), map4(λx.f2(x), nil

1)))

First, let the prefix p = h1(cons4(f2(y1), y2)) of the target be given. The suffix is
then given by σ = [y1 7→ e4(a5), y2 7→ map4(λx.f2(x), nil1)]. Then:

q = h1(map3(λx.f2(x), cons2(y1, z2)))
υ = [y1 7→ e4(z1), y2 7→ map4(λx.f(x), z2)]

τ = [z1 7→ a5, z2 7→ nil1]

7

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��

prl

q

υ
→Hω

τ

s

σ ρ

Fig. 1. The interesting case in the proof of the Prefix Property for HRSs

satisfy the conditions of the (trm) case. Second, let p = h(y) and σ = [y 7→
cons4(f2(e4(a5)), map4(λx.f2(x), nil1)))]. Then:

q = h1(y) and τ = [y 7→ map3(λx.f2(x), cons2(a5, nil1))]

satisfy the conditions of the (sub) case.

The interesting case in the proof of the Prefix Property is the case that the step
s →Hω pσ occurs at the head. In this case we have that s = lρ and pσ = rρ,
for some rule l → r and substitution ρ. This situation is depicted in Fig. 1. We
want to construct an ancestor q that satisfies the (trm) case. It makes sense
to try to do this by adding to the pattern l the parts of p that are not in r.
However, due to the implicit β-conversions, these “parts of p that are not in r”
are not easily obtained. The key observation is that the β-reduction from pσ to
normal form is a variable renaming, because p is a pattern and has only bound
variables as arguments of free variables. The trick is to translate the prefix and
suffix in such a way, that the variable renamings are already carried out (we need
variable capturing, first-order substitutions for this, called graftings), trace the
prefix back over the β-reduction from rρ to normal form, and find the prefix’s
ancestor, which is a prefix of rρ. Now, we are dealing with terms that are exactly
equal, instead of only equal up to β-equality, and now the problem can be solved
by using first-order unification techniques.

The above proof technique suggests that we need to prove a prefix property
for β-reductions in the λ-calculus. This is difficult, however, since the λ-calculus
does not cope well with graftings, because of the global nature of substitution.
For example, let C = (λx.�)a, D = � and s = x. Then C →β D, and C[s] →β a,
because the x in s is captured by the abstraction in the context and substituted
for. However, D[s] = x and thus C[s] 6→β D[s]. To tackle this problem, we use
a λ-calculus with explicit substitutions, a variant of the λx-calculus, and prove
a prefix property for it. Then, we simulate β-equality with this new calculus. In
[5] a similar approach is taken w.r.t. higher-order unification.

4.1 The Prefix Property of the λx-Calculus

We use a variant of the λx-calculus [3], with explicit renamings. The calculus
has both object variables (x, y, z) and metavariables (X, Y, Z). In the following,

8

we will refer to it simply by λx-calculus. The terms of the λx-calculus over some
signature Σ are first-order terms given by the following grammar:

Λx := x | X | f | λx.Λx | ΛxΛx | Λx{x\Λx}

where f ∈ Σ and the object variables are considered as constants or names.
M, N will range over λx-terms. Terms of the form M{x\N} will be called explicit
substitutions, and the {x\N} part of an explicit substitution is called a closure.
With MV(M) we will denote the set of metavariables of M , and with Sym(M)
the set of function symbols of M . The reduction rules of the λx-calculus are:

(λx.M)N →B M{x\N}

x{x\N} →x N

y{x\N} →x y

f{x\N} →x f

(λx.M){x\N} →x λx.M

(λy.M){x\N} →x λz.M{y\z}{x\N}
(M1M2){x\N} →x M1{x\N}M2{x\N}

where x 6= y and z is a fresh object variable. The subcalculus x consists of all
rules except the B-rule. The reduction relations →Bx and →x are the contextual
closures of the above steps. Note that there is no reduction rule for terms of the
form X{x\N}, where X is a metavariable, and thus x-normal forms are charac-
terized by the fact that sequences of closures are only applied to metavariables.

A λx-term is called passive if no metavariable X occurs in a subterm of the
form Xµ(M1, . . . , Mn), where µ is a sequence of closures; it is called linear, if
every metavariable occurs in it at most once. In the following P, Q will range
over linear, passive λx-terms.

Remark 4.3. It is well-known that the λx-calculus is not confluent on terms
containing metavariables, as is witnessed by the following counterexample:

(λx.(λy.Z)Y)X
։Bx (λy′.Z{y\y′}{x\X})Y {x\X}
։Bx Z{y\y′}{x\X}{y′\Y {x\X}}

(λx.(λy.Z)Y)X
։Bx (λx.Z{y\Y })X
։Bx Z{y\Y }{x\X}

At first sight, non-confluence seems problematic, because we’re trying to use the
λx-calculus to simulate the (confluent) λ-calculus. However, the translation to
λ-calculus (see page 13) will remove all closures, and will project normal forms
of the same λx-term to the same λ-term (modulo α-equivalence).

A grafting is a mapping from metavariables to λx-terms. The greek lowercase
letters ζ, η, θ, κ will range over graftings. Applying a grafting ζ to a term M ,
written M [ζ], is defined exactly as first order substitution, i.e.:

x[ζ] = x

X [ζ] = ζ′(X)
f [ζ] = f

(λx.M)[ζ] = λx.M [ζ]
(M1M2)[ζ] = M1[ζ]M2[ζ]

(M{x\N})[ζ] = M [ζ]{x\N [ζ]}

where ζ′(X) = ζ(X), if X ∈ Dom(ζ), and ζ′(X) = X , otherwise. A grafting
is called linear, if every metavariable occurs in its codomain only once, i.e. its

9

codomain consists of linear λx-terms with mutually disjoint metavariables. A
grafting is called passive, if all the terms of its codomain are passive.

Because λx-terms are first-order terms, unification is decidable. In the proof
of the Prefix Property, we need the following property: if two λx-terms are unifi-
able, there exists a most general unifier (mgu). In fact, if we assume the unifiable
terms to be linear and passive, then the mgu applied to one of the terms is a
linear, passive λx-term again:

Lemma 4.4. Let M, N be linear λx-terms, where MV(M)∩MV(N) = ∅, and let
ζ, η be graftings such that M [ζ] = N [η]. There exist graftings ζ0, η0, κ such that
M [ζ0] = N [η0], ζ0 ; κ = ζ, η0 ; κ = η, Sym(ζ0) ⊆ Sym(N), Sym(η0) ⊆ Sym(M).
Moreover, if M (N) is passive, then η0 (ζ0) consists of passive λx-terms.

Proof. Since we consider λx-terms here as first-order terms, the (first part) of
the lemma is essentially an instance of first-order unification.

By assumption, M and N are unified by 〈µ, ν〉 (the assumption that the
metavariables are disjoint allows us to consider ζ and η together as a unifier),
and thus have a most general unifier (mgu). We take 〈ζ0, η0〉 to be this mgu.
The desired κ exists because any unifier is an instance of an mgu.

Assume f ∈ Sym(η0), but f 6∈ Sym(M). Then it must be the case that
f ∈ Sym(ζ0). Since all the subterms of f must be in the graftings too, there exist
graftings ζ′0, η

′
0, κ

′ such that ζ′0 ; κ = ζ0 and η′
0 ; κ = η0. It follows by linearity

that 〈ζ′0, η
′
0〉 is a unifier, contradicting the assumption. For the assumption that

f ∈ Sym(ζ0), but f 6∈ Sym(N), a contradiction is derived through a symmetrical
argument.

For the second part of the lemma, suppose M is passive, but η0(X) is
not. Then N [η0] is not passive, and contains a subterm of the form N0 =
Xµ(N1, . . . , Nn). Because M [ζ0] = N [η0], so does M [ζ0]. There are two pos-
sibilities: if the root application of N0 is in M , then M is not passive, contra-
dicting the assumption; otherwise, N0 must be a subterm of ζ0(Y), for some
Y ∈ Dom(µ0), but then 〈ζ0, η0〉 is not a mgu. Again, a symmetrical arguments
yields the desired result if N is passive, but µ0(X) is not.

Example 4.5. Let:

M = λx.g(f1(X1), X2)
ζ = [X1 7→ a, X2 7→ f2(a)]

N = λx.g(Y1, f2(Y2))
η = [Y1 7→ f1(a), Y2 7→ a]

Then M [ζ] = λx.g(f1(a), f2(a)) = N [η]. We take ζ0 = [X2 7→ f2(Z1)], η0 = [Y1 7→
f1(Z2)] and κ = [Zi 7→ a] to satisfy the conditions of the lemma.

In the next theorem, we prove the Prefix Property for the λx-calculus. P is a
prefix of a λx-term M , if it is a linear, passive λx-term, and there exists a grafing
ζ such that P [ζ] = M . The notion of ancestor is again formalized using labelling
and the rewrite relation; however, because we do not count creation depth in
Bx-reductions, now the labels, or more generally, the function symbols of the
prefix must be the same as those of its ancestor. Just like in Theorem 4.1, a
prefix can either take part in the step, or not, resulting in two cases. Item (ii) is
the extension of the Prefix Property to Bx-reductions.

10

Theorem 4.6 (λx-Prefix Property). Let M be a closed λx-term, P a linear,
passive λx-term and ζ a grafting.

(i) If M →Bx P [ζ], then there exist a linear, passive λx-term Q and a grafting
η such that M = Q[η], Sym(Q) = Sym(P) and either:
– Q →Bx P [κ] where κ is some grafting such that κ ; η = ζ; or (trm)
– Q = P and η →x ζ. (sub)

(ii) If M ։Bx P [ζ], then there exist a linear, passive λx-term Q and a grafting
η such that: M = Q[η], Sym(Q) = Sym(P), Q ։Bx P [κ] where κ is some
grafting such that κ ; η ։Bx ζ.

Proof. (i) By induction on the context of the step M →Bx P [ζ]. In this proof,
let idζ be the identity grafting on the domain of a grafting ζ, i.e. idζ := [X 7→
X | X ∈ Dom(ζ)].

If P = X , then we take Q = X and η = ζ[X 7→ M], satisfying the (sub)
case of the lemma. If the step does not occur at the head of the term, then the
lemma follows simply from the induction hypothesis. Otherwise we look at the
reduction rule which was applied (at the head).

The interesting case is when a closure is distributed over an application:
i.e. M = (M1M2){x\N} →x (M1{x\N})(M2{x\N}) = P [ζ]. Since P is not a
metavariable, P = P1P2, where P1[ζ] = M1{x\N} and P2[ζ] = M2{x\N}. For
P2, there are two possible cases:

(a) If P2 = X , for some metavariable X , then let κ′ = idζ ; [X 7→ Y {x\Z}] and
ζ′ = ζ[X 7→ X, Y 7→ M2, Z 7→ N], where Y, Z are fresh metavariables.

(b) Otherwise, let κ′ = idζ and ζ′ = ζ.

In both cases, P2[κ
′] = Q2{x\R2}, for some passive λx-terms Q2 and R2, and

κ′ ; ζ′ = ζ.
Since P is passive, we know that P1 is not of the form Xµ, where σ is a list

of substitutions. In particular, µ is not empty. Thus, P1 = Q1{x\R1}. Because
P is linear, and the κ′(X) = X for X ∈ MV(P1), P1[κ

′] = P1. Also, because in
case (a), Y and Z are fresh metavariables, and in case (b), ζ′ = ζ, it holds that
P1[ζ

′] = P1[ζ].
Because P is linear, and R1 and R2 are different subterms of P , R1 and R2

are linear and have no metavariables in common. Since R1[ζ
′] = N = R2[ζ

′], we
can apply Lemma 4.4, and obtain graftings ζ1, ζ2, η such that R1[ζ1] = R2[ζ2],
ζ1 ; η = ζ′, ζ2 ; η = ζ′, Sym(ζ1) ⊆ Sym(R2) and Sym(ζ2) ⊆ Sym(R1).

Let R = R1[ζ1] (= R2[ζ2]). Because Sym(ζ1) ⊆ Sym(R2) and Sym(ζ2) ⊆
Sym(R1), Sym(R) = Sym(R1) ∪ Sym(R2). Next, let κi = (κ′ ; ζi)↾FV(Pi), for
i ∈ {1, 2}. Since P is linear, κ1 and κ2 have disjoint domains. Let κ = κ1 ∪ κ2.
We define Q = (Q1Q2){x\R}. Now:

Q = (Q1Q2){x\R} →x (Q1{x\R})(Q2{x\R}) = P1[κ
′ ; ζ1]P2[κ

′ ; ζ2] = P [κ]

Also, suppose X ∈ Dom(κ). There are two subcases. If X ∈ MV(P2), then
(κ ; η)(X) = (κ′ ; ζ2 ; η)(X) = (κ′ ; ζ′)(X) = ζ(X). Otherwise, κ′(X) = X and
ζ′(X) = ζ(X). So κ ; η = ζ.

11

Finally, Sym(P) = Sym(Q1)∪Sym(Q2)∪Sym(R1)∪Sym(R2) = Sym(Q1)∪
Sym(Q2) ∪ Sym(R) = Sym(Q), yielding the result of the (trm) case.

(ii) By induction on the length of the reduction sequence M ։Bx P [ζ]. In the
base case, if M = P [ζ], we take Q = P and η = ζ, satisfying the lemma with κ =
∅. Otherwise, let M ։Bx N →Bx P [ζ]. We apply item (i), obtaining a passive
λx-term P ′ and grafting ζ′ such that M = P ′[ζ′], Sym(P ′) = Sym(P) and either
the (trm) or (sub) case applies. Then we apply the induction hypothesis on the
reduction M ։Bx P ′[ζ′], obtaining a passive λx-term Q and grafting η such that
M = Q[η], Sym(Q) = Sym(P ′) (= Sym(P)), Q ։Bx P ′[κ] for some grafting κ

such that κ ; η ։Bx ζ′. Now we distinguish the following cases:

– (trm) If P ′ →Bx P [κ0], for some κ0 such that κ0 ; ζ′ = ζ, then Q ։Bx

P ′[κ] ։Bx P [κ0 ; κ] and κ0 ; κ ; η ։Bx κ0 ; ζ′ = ζ, as required.

– (sub) If P ′ = P and ζ′ →x ζ, then Q ։Bx P ′[κ] = P [κ] and κ ; η ։Bx ζ′ ։x

ζ, as required. ⊓⊔

Example 4.7. Consider the Bx-reduction:

(λx.g(x, x))(f(a)) ։Bx g(f(a), f(a))

and the prefix P = g(f(X), Y) of the target. The suffix is ζ = [X 7→ a, Y 7→ f(a)].
We can take:

– Q = (λx.g(x, x))(f(Y)),

– κ = [Y 7→ f(X)] and

– η = [X 7→ a],

satisfying the conditions of Theorem 4.6 (ii).

4.2 Translating between Terms, Preterms and λx-Terms

We are now dealing with three types of terms: terms, preterms and λx-terms.
In this subsection we develop the following translating operations between them:

– ·♭ and ·♯ from terms to preterms and back;

– ·⊖ and ·⊕ from preterms to λx-terms and back.

Translating between terms and preterms. We introduce a pair of oper-
ations which interpret terms as preterms, and vice versa: with s♭ (s-flat), we
denote (the unique representative of) the term s, interpreted as a preterm, and
with s♯ (M -sharp), we denote (the βη-normal form of) the preterm s, interpreted
as a higher-order term. These operations naturally generalize to substitutions.
We will call a preterm s a (fully extended//linear/local) x-prepattern, if it is in
βη-normal form, and s♯ is a (linear/fully extended/local) x-pattern.

12

Translating between preterms and λx-terms. We introduce the operations
·⊖x and ·⊕, which map λ-terms to λx-terms1, and vice versa, as follows:

y⊖
x = Y if y 6∈ x

x⊖
x = x if x ∈ x

f⊖
x = f

(λy.s)⊖x = λy.s⊖xy

(s1s2)
⊖
x = (s1)

⊖
x (s2)

⊖
x

M⊕ = (M↓x)
⊕
N

(Y σ)⊕N = y

x⊕
N = x

f⊕
N = f

(λy.M)⊕N = λy.M⊕

(M1M2)
⊕
N = M⊕

1 M⊕
2

Note that ·⊕ also normalizes the term to x-normal form and removes explicit sub-
stitutions, and that, for each preterm s and sequence of variables x, (s⊖x)⊕ = s.
The operations above are naturally generalized to translations between substi-
tutions and graftings.

Lemma 4.8. Let M, N be λx-terms. M ։Bx N if and only if M⊕ ։β N⊕.

Proof. (⇒) and (⇐) are proved by induction on the length of the reductions
M ։Bx N and M⊕ ։β N⊕, respectively. ⊓⊔

Although the above lemma suggests that Bx-reduction in the λx-calculus can eas-
ily simulate β-reduction, there is still a problem: ·⊕ does not distribute properly
over grafting application. The problem is similar to the problem given on page 8.
Consider the λx-term M := (λx.f(Y))a and grafting ζ := [Y 7→ x]. Now M [ζ]⊕ =

(λx.f(x))a, M⊕ = (λx.f(y))a. ζ⊕ = [y 7→ x]. Note that (M⊕)(ζ
⊕) = λz.f(x), be-

cause substitutions are capture-avoiding, and thus M [ζ]⊕ 6=β (M⊕)(ζ
⊕).

The solution is to add as arguments to the free variables of the preterms as
many (bound) variables as necessary (or more) to make the distribution work.
In the example above we would have s = (λx.f(y(x)))a and σ = [y 7→ λx.x].
Now, s and σ are, in a way that will be formalized in the next definition, similar
to M and ζ, but now M [ζ]⊕ =β sσ.

Definition 4.9. Let M be a λx-term and ζ a grafting. A tuple 〈s, σ〉 of preterm
and substitution is a λ-extension of 〈M, ζ〉 if there are graftings θ1, θ2 such that:

– s = M [θ1]
⊕ and σ = (θ2 ; ζ)⊕;

– for each X ∈ MV(M), θ1(X) = X(z) and θ2(X) = λz.X, where z is a list
of variables containing at least the bound variables of M in scope that occur
in ζ(X) (in arbitrary order).

The notion of λ-extension is, again, naturally generalized to graftings and sub-
stitutions as the first component of the tuples.

1 Actually, the operation ·

⊖

x
is not a mapping, because α-equivalent preterms preterms

are identified as usual, and thus identical preterms can be mapped to different λx-
terms. This is not a problem in practice, and can be fixed in theory by considering
only preterms in “α-normal form”, e.g. by consecutively numbering the bound vari-
ables from left to right.

13

Lemma 4.10. Let 〈s, σ〉 be a λ-extension of 〈M, ζ〉. Then:

(i) sσ =β M [ζ]⊕;
(ii) for each λx-term N such that M ։Bx N , sσ =β N [ζ]⊕.

Proof. (i) Follows from the fact that for all X ∈ MV(M) it holds that

(θ1 ; θ2)↓x(X) = X{z1\z1} · · · {zn\zn}

and thus sσ =β M [θ1 ; θ2 ; ζ]⊕ =β M [ζ]⊕.
(ii) Assume that M ։Bx N . We take t = N [θ1]

⊕ and show: (a) s ։β t;
and (b) tσ =β N [ζ]⊕. Claim (a) follows from Lemma 4.8 and the fact that
M [θ1] ։Bx N [θ1], because M ։Bx N by assumption. For (b) we must observe
that, by definition, if N1{x\N2} is a subterm of N , then for all X ∈ MV(N1), x

does only occur bound in θ2 ;ζ, and thus pM [θ1]↓x[(θ2 ;ζ)↓x]q = pM [θ1 ;θ2 ;ζ]↓xq,
where pKq denotes K with all explicit substitutions removed, for arbitrary K.
Therefore tσ =β N [θ1 ; θ2 ; ζ]⊕ =β N [ζ]⊕, and since s ։β t by (a), sσ =β N [ζ]⊕,
as required. ⊓⊔

The lemma works, because the arguments of the free variables in the term and
the leading abstractions in the substitution, take over the role of the explicit
substitutions, as can be seen in the following example:

Example 4.11. Let M = (λx.(λy.Z)b)a be a λx-term, and ζ = [Z 7→ f(x, y)] a
grafting. Now, according to Def. 4.9, 〈s, σ〉, where s = (λx.(λy.z(x, y))b)a and
σ = [z 7→ λxy.f(x, y)] is a λ-extension of 〈M, ζ〉, with, θ1 = [Z 7→ Z(x, y)] and
θ2 = [λxy.Z]. We check both cases of Lemma 4.10:

(i) sσ = (λx.(λy.(λxy.f(x, y))(x, y))b)a =β (λx.(λy.f(x, y))b)a = M [ζ]⊕.
(ii) Let N = Z{y\b}{x\a}. Then M ։x N . Let t = z(a, b). Now tσ =β

f(a, b) = M [ζ]⊕. Since s =β t, this means that sσ =β M [ζ]⊕, as required.
(Note that the ·⊕ operation also reduces to x-normal form.)

Translating patterns. Now we define a translation between pairs of prepat-
terns and presubstitutions, on the one hand, and linear, passive λx-terms and
graftings on the other. Because the notion of pattern is parametrized by a se-
quence of variables, the translation operations are so as well.

Definition 4.12. Let P+
x , a mapping which maps pairs of linear, passive

λx-terms containing no explicit substitutions and graftings to pairs of local x-
prepatterns and substitutions, be defined as follows:

P+
x 〈Y, [Y 7→ M]〉 = 〈y(x), [y 7→ λx.M⊕]〉

P+
x 〈y(Pn), ζ〉 = 〈y(pn), σ〉 if P+

x 〈Pi, ζ↾Pi〉 = 〈pi, σ↾pi〉
P+

x 〈f(Pn), ζ〉 = 〈f(pn), σ〉 if P+
x 〈Pi, ζ↾Pi〉 = 〈pi, σ↾pi〉

P+
x 〈λy.P, ζ〉 = 〈λy.p, σ〉 if P+

xy〈P, ζ〉 = 〈p, ζ⋆〉

where ζ↾P denotes the restriction of grafting/substitution ζ to the metavariables/-
variables of λx-term/preterm P . With P−

x we denote the inverse of P+
x .2

2 Like ·

⊖

x
, the P−

x
operation is not actually a mapping, but this is no problem for the

same reason. See footnote 1.

14

As usual, we generalize the above operations to (local pattern) substitutions and
(linear, passive) graftings, in the obvious way. Note that the first element of the
result of P−

x 〈·, ·〉 and P+
x 〈·, ·〉 does not depend on the second.

Lemma 4.13. Let P be a linear, passive λx-term and ζ a grafting, both con-
taining no explicit substitutions. Then P+

x 〈P, ζ〉 is a λ-extension of 〈P, ζ〉, for
arbitrary list of variables x.

Proof. By the fact that all bound variables in scope are added as arguments to
the free variables. ⊓⊔

Example 4.14. Consider the linear, local λx-terms P = f(λxy.g(Z, x)) and Q =
map(λx.Z, nil), and the grafting ζ = [Z 7→ f(x)]. Then:

P+
∅
〈P, ζ〉 = 〈f(λxy.g(z(x, y), x)), [z 7→ λxy.f(x)]〉

P+
∅
〈Q, ζ〉 = 〈map(λx.Z(x), nil), [z 7→ λx.f(x)]〉

4.3 Proof of the Prefix Property

We repeat the text of Theorem 4.1, for convenience:

Theorem 4.1 (Prefix Property). Let Hω be the ω-labelling of a non-collaps-
ing HRS, s a term, p a local x-pattern and σ a substitution. If s →Hω pσ,
then there exist a local x-pattern q and a substitution τ , such that s = qτ ,
fam(p) ≥ fam(q), and either:

– q →Hω pυ, for some substitution υ such that υ ; τ = σ; or (trm)
– q = p and τ →Hω σ. (sub)

Proof. In the course of this proof we use letters subscripted with a ⋆ (e.g.
s⋆, P⋆, σ⋆ . . .) to denote preterms and presubstitutions. Letters without ⋆-subscript
denote terms and substitutions on the term level, or λx-terms and graftings.

We prove the theorem by induction on the context of the step s →Hω pσ.
If p has a variable as head, then the (sub) case is trivially satisfied. If the step
does not occur at the head, then the result follows easily from the induction
hypothesis.

So, assume s = lρ and pσ = rρ, for some rule λx.l → λx.r ∈ R and substi-
tution ρ. We cast everything down to the preterm level, i.e.: s⋆ := s♭, l⋆ := l♭,
ρ⋆ := ρ♭, r⋆ := r♭, p⋆ := p♭ and σ⋆ := σ♭. Furthermore, let 〈P, ζ〉 := P−

x 〈p⋆, σ⋆〉.
Now, by definition, P is a linear, passive λx-term, and P [ζ]⊕ =β pσ⋆

⋆ . P [ζ] is a
Bx-normal form and r

ρ⋆

⋆ =β pσ⋆

⋆ =β P [ζ]⊕, so r
ρ⋆

⋆ ։β P [ζ]⊕, and from this and
Lemma 4.8 it follows that:

R[µ] ։Bx P [ζ]

where R := (r⋆)
⊖
x and µ := (ρ⋆)

⊖
x . Now, we can apply the λx-Prefix Property

(Theorem 4.6, ii) and obtain a linear, passive λx-term P ′, with Sym(P ′) =
Sym(P), and graftings η, κ such that:

P ′[η] = R[µ], P ′ ։Bx P [κ] and κ ; η ։Bx ζ

15

Because of the first equality above, we can apply Lemma 4.4 and obtain a linear,
passive grafting µ′ and graftings η′, κ with Sym(η′) ⊆ Sym(R) and Sym(µ′) ⊆
Sym(P ′), such that:

P ′[η′] = R[µ′], η′ ; κ = η and µ′ ; κ = µ

Now the only thing we have to do, is translate the obtained λx-terms and graft-
ings to terms and substitutions, using the techniques developped in the previous
subsection. This is not hard, in principle, but a cumbersome operation.

Let 〈ρ′⋆, τ⋆〉 := P+
∅
〈µ′, κ〉. Then ρ′⋆ is a local pattern substition, and by

Lemma 4.13, 〈ρ′⋆, τ⋆〉 is a λ-extension of 〈µ′, κ〉. Because the object variables

of r⋆ and ρ′⋆ are disjoint, it follows that 〈r
ρ′

⋆

⋆ , τ⋆〉 is a λ-extension of 〈R[µ′], κ〉
and thus of 〈P ′[η′], κ〉. Let θ be the grafting such that ρ′⋆ = (µ′ ; θ)⊕ and let
η′′ := η′ ; θ. Next, let 〈P ′

⋆, η
′′
⋆ 〉 := P+

x 〈P
′, η′′〉. By definition, there exists a graft-

ing θ′ such that P ′
⋆ = P ′[θ′]⊕, and because P ′ ։Bx P [κ] it is the case that

P ′
⋆ = P [κ ; θ′]⊕. Now, let 〈P⋆, κ⋆〉 := P+

x 〈P, κ ; θ′〉. Since P⋆ does not depend on
κ ; θ′, P⋆ = p⋆. We know now that P κ⋆

⋆ =β P [κ ; θ′]⊕ =β P ′[θ′]⊕ =β P ′
⋆.

Finally, we take: q⋆ = l
ρ′

⋆

⋆ , υ⋆ = κ⋆ ; η′′
⋆ . Then:

– q⋆ is a local x-prepattern, because l⋆ is a local x-prepattern and ρ′⋆ is a local
pattern substitution;

– r
ρ′

⋆

⋆ =β P ′
⋆
η′′

⋆ =β P
κ⋆;η′′

⋆

⋆ =β pυ⋆

⋆ ;

– s⋆ = l
ρ⋆

⋆ =β l
ρ′

⋆
;τ⋆

⋆ =β qτ⋆

⋆ ;
– υ⋆ ; τ⋆ =β κ⋆ ; η′′

⋆ ; τ⋆ =β σ⋆;
– fam(p⋆) = fam(P ′) = fam(P ′[η′]) = fam(R[ρ′]) ≥ fam(l◦[ρ

′]) = fam(q⋆),
where the second equality holds because Sym(η′) ⊆ Sym(r), all labels in
r are the same, p and r have at least one symbol in common because r is
non-collapsing, and thus Sym(η′) ⊆ Sym(p).

Now we take q := q
♯
⋆, υ := υ

♯
⋆ and τ := τ⋆ to satisfy the (trm) case. ⊓⊔

5 Finite Family Developments

In this section we apply the prefix property of the previous section to prove that
all family developments of HRSs are finite. We restrict our attention to non-
collapsing HRSs first. In the next section, we will describe a way to generalize
the result to collapsing HRSs as well.

Families are formalized by labelling all function symbols with natural num-
bers, as defined in Def. 3.1. We prove that the resulting system is terminating
if we restrict the labels to some finite bound. The proof is inspired by the proof
by Van Oostrom [17]. The differences between this proof and the one by Van
Oostrom are the following:

– We use a different method of labelling. Our labelling has the property that
one step of the labelled HRS corresponds exactly to one step in the original.
Also, our notion of labelling is an instance of the abstract notion of labelling
put forth in [18,14].

16

– In Van Oostrom’s paper, the proof of Lemma 15 is omitted. Here, we give
a proof of that lemma (adapted for the different method of labelling) by
reducing it to the Prefix Property.

Lemma 5.1. Let Hω be the labelling of a non-collapsing HRS, s be a term,
p a local pattern, ℓ ∈ N a label and τ and σ substitutions such that for any
x ∈ Dom(σ), σ(x) has a function symbol labelled with ℓ as head. If sσ ։Hω pτ ,
then either:

– fam(p) ≥ ℓ; or (int)
– s ։H pυ, for some υ such that υ ; σ ։Hω τ . (ext)

Proof. By induction on the length of the reduction sσ ։Hω pτ . If the length
is 0, there are two cases: if a subtitution υ exists such that s = pυ, then the
conditions of the (ext) case are trivially satisfied; otherwise, we show (int) by
induction on p, using the assumption on the structure of σ in the base case.

Otherwise, suppose sσ ։Hω s′ →Hω pτ . By Theorem 4.1, there exist a local
pattern q and substitution σ′ such that s′ = qσ′

, fam(p) ≥ fam(q) and either
(trm) q ։Hω pυ′

and υ′ ; σ′ = τ ; or (sub) p = q and σ′ ։Hω τ . Applying the
induction hypothesis to sσ ։Hω qσ′

yields that one of the following cases must
apply:

– (int) fam(q) ≥ ℓ, but then fam(p) ≥ ℓ by transitivity of ≥.
– (ext) s ։Hω qυ and υ ; σ ։Hω σ′, for some substitution υ. We distinguish

the following cases:
• (trm) s ։Hω qυ ։Hω pυ′;υ and υ′ ; υ ; σ ։Hω υ′ ; σ′ = τ .
• (sub) s ։Hω qυ = pυ and υ ; σ ։Hω σ′ ։Hω τ .

In both cases the (ext) case of the lemma is satisfied. ⊓⊔

Theorem 5.2. Let Hω be the labelling of a non-collapsing HRS, and let R :
s1 →Hω s2 →Hω · · · be a Hω-reduction. R is finite, if and only if there is a
ℓmax ∈ N such that fam(si) ≤ ℓmax for all si.

Proof. (⇒): Trivial, because a finite reduction has a finite amount of labels.
(⇐): We prove the theorem by showing that Hω = 〈Σω, Rω〉 is terminating if

we restrict it to rules l → r ∈ Rω where fam(r) ≤ ℓmax. By the fact that an HRS
is terminating if and only if rσ is terminating for every right-hand side r and
terminating substitution σ [17, Lemma 8], it suffices to show termination of (sℓ)σ,
for every non-(subst-subst)-collapsing3, term s, label ℓ ∈ N and terminating
substitution σ. We do this by induction on (ℓmax − ℓ).

Let (sℓ)σ be a minimal non-terminating term. Since it is minimal, we can
assume that this infinite reduction contains at least one head step, and s =
a(s1, . . . , sn), so sℓ = a′((sℓ

1)
σ, . . . , (sℓ

n)σ). By minimality, the sℓ
i are termina-

ting. We distinguish the following cases:

3 We drop the (context-subst) condition of Def 2.5, because subterms of non (context-
subst)-collapsing terms can be (constext-subst)-collapsing, meaning that an infinite
reduction from a minimal counter example might not contain a head step.

17

– If a is the function symbol f , then a′ = f ℓ. Since the first head step strictly
increases the label, termination follows from the induction hypothesis.

– If a is a variable, then it must be in the domain of σ (otherwise, a head step
would not be possible, contradicting minimality). Suppose:

σ(a) = λx.b(t1, . . . , tm)

and thus (sℓ)σ = b(tσ
′

1 , . . . , tσ
′

m), where σ′ = [x1 7→ sℓ
1, . . . , xn 7→ sℓ

n]. We
prove the lemma by a nested induction on the order ≪Hω starting from
σ(a). We distinguish the following cases:
• Suppose b = f ℓ′ . Then an infinite reduction from (sℓ)σ looks like:

f ℓ′(tσ
′

1 , . . . , tσ
′

m) ։Hω f ℓ′(t1, . . . , tm) = lτ →Hω (rℓ′′)τ ։Hω · · ·

where l → rℓ′ ∈ Rω. Since a is a variable and s is not (subst-subst)-
collapsing, we know that the sℓ

i have function symbols labelled with ℓ as
head, and we can apply Lemma 5.1 to lτ :
∗ (int): fam(l) ≥ ℓ: It follows by the fact that, by construction, ℓ′′ =

fam(l)+1, that ℓ′′ ≥ ℓ. Thus, by the outermost induction hypothesis,
(rℓ′′)τ is terminating, contradicting the assumption that s is not.

∗ (ext): aσ ։Hω lυ and υ ; σ′ ։Hω τ : We know that:

aσ ։Hω lυ →Hω (rℓ′′)υ and (rℓ′′)(υ;σ) ։Hω (rℓ′′)τ

Since the left reduction consists of at least one step (the last one),
(rℓ′′)υ is terminating by the nested induction hypothesis. By the right
sequence and the fact that σ′ is terinating, this yields termination of
(rℓ′′)τ , contradicting the assumption that s is not..

• Suppose b is a variable, it must be in the domain of σ. Suppose b = xi,
and si = λy.c(u1, . . . , ul). Then (sℓ)σ = c(u1, . . . , ul)

(σ;τ) where τ =⋃
1≤i≤m[yi 7→ tσ

′

i]. Now σ is terminating by assumption, and the tσ
′

i are
terminating by the nested induction hypothesis, so σ ; τ is a terminating
substitution. Since c(u1, . . . , ul) is a proper subterm of s, termination of
c(u1, . . . , ul)

(σ;τ) follows by minimality. ⊓⊔

6 Dealing with Collapsing HRSs

In the previous sections we restricted our attention to non-collapsing HRSs. Both
the Prefix Property and FFD do not hold for collapsing HRSs, as is witnessed
by the following two counterexamples:

Example 6.1 (Prefix Property). Consider the collapsing HRS Mu:

mu(λx.z(x)) → z(mu(λx.z(x))

and the following Muω-step:

mu3(λx.f2(x)) →Muω f2(mu4(λx.f2(x)))

It is easy to check that the prefix p = f2(u) of the target of the step has no
ancestor q that satisfies the requirements of the Prefix Property (Theorem 4.1).

18

Example 6.2 (FFD). Consider the collapsing HRS Lam :

app(lam(λx.z(x), y)) → z(y)

Then one Lamω-step is the following:

app1(lam1(λx.app1(x, x)), lam1(λx.app1(x, x)))

→Lamω app1(lam1(λx.app1(x, x)), lam1(λx.app1(x, x)))

So we see that Lamω has a one-step cycle, and thus an infinite reduction with
bounded labels.

The problem in both cases is that, because of applying a collapsing rule, a
function symbol can be directly connected to a previously unconnected function
symbol from the context or substitution, or to the root of the term, without the
rule leaving any trace in between, in the form of a label. This can be remedied
by including “empty” function symbols, named ǫα, for each base type α, in the
right-hand sides of rules, and “saturating” the left-hand sides of rules with those
empty function symbols. The same approach is taken for the first-order case in
[14, Chap. 8].

Definition 6.3 (ǫ-lifting).

(i) The ǫ-lifting Σǫ of a signature Σ, consists of all function symbols of Σ,
and, for each base type α, a function symbol ǫα : α → α.

(ii) The ǫ-lifting of a term s of type α, written sǫ, is defined as follows:

x(s1, . . . , sn)ǫ = ǫα(x(sǫ
1, . . . , s

ǫ
n)))

f(s1, . . . , sn)ǫ = f(sǫ
1, . . . , s

ǫ
n)

(λx.s0)
ǫ = λx.sǫ

0

(iii) The projection operator | · |ǫ maps Σǫ-terms to Σ-terms by removing all
ǫα-symbols.

(iv) The set of ǫ-saturations of a pattern p, denoted by Satǫ(s), is defined as
Satǫ(p) = Satǫ

out(p), where:

Satǫ
out(x(yn)) = {x(yn)}

Satǫout(f(pn)) = {f(qn) | qi ∈ Satǫ
in(pi)}

Satǫ
out(λx.p0) = {λx.q0 | q0 ∈ Satǫ

in(p0)}

Satǫ
in(x(yn)) = {x(yn)}

Satǫ
in(f(pn)) = {ǫm

α (f(qn)) | m ∈ N, qi ∈ Satǫ
in(pi)}

Satǫ
in(λx.p0) = {λx.q0 | q0 ∈ Satǫ

in(p0)}

where α is the type of p, and ǫm
α (p) is inductively defined by ǫ0α(p) = p,

ǫm+1
α (p) = ǫα(ǫm

α (p)).
(v) The ǫ-lifting of an HRS H = 〈Σ, R〉 is defined as Hǫ = 〈Σǫ, Rǫ〉, where

Rǫ =
⋃

l→r∈R

{l′ → rǫ | l′ ∈ Satǫ(l)}

19

The ǫ-liftings of the two counter examples introduced earlier in this section do
not have the same problems as their originals:

Example 6.4. The ǫ-lifting of Mu (types of ǫ’s omitted):

mu(λx.z(x)) → ǫ(z(ǫ(mu(λx.ǫ(z(ǫ(x)))))))

A (Muǫ)ω step corresponding to the step of Ex. 6.1 is:

mu3(λx.f2(x)) →(Muǫ)ω ǫ4(f2(ǫ4(mu4(λx.ǫ(f2(ǫ(x)))))))

Take the corresponging prefix p = ǫ4(f2(y)). Now, the Prefix Property is satisfied
with q = mu3(λx.f2(x)), τ = ∅ and υ = [z 7→ ǫ4(mu4(λx.ǫ(f2(ǫ(x)))))].

Example 6.5. The ǫ-lifting of Lam consists of (among others) the following rules:

app(lam(λx.z(x), y)) → ǫ(z(ǫ(y)))
app(ǫ(lam(λx.z(x))), y) → ǫ(z(ǫ(y)))

app(ǫ(ǫ(lam(λx.z(x)))), y) → ǫ(z(ǫ(y)))

Then a (Lamǫ)ω-step corresponding to the step of Ex. 6.2 is the following:

app1(lam1(λx.app1(x, x)), lam1(λx.app1(x, x)))

→(Lamǫ)ω ǫ2(app1(ǫ2(lam1(λx.app1(x, x))), ǫ2(lam1(λx.app1(x, x)))))

Now, all redex patterns have a maximum label of 2, instead of 1.

We can show that ǫ-lifting does not interfer with rewriting:

Lemma 6.6. Let H be an HRS and Hǫ its ǫ-lifting. Then:

(i) Let s, t be H-terms such that s →H t. For each Hǫ-term s′ such that |s′|ǫ =
s there exists a unique Hǫ-term t′ such that |t′|ǫ = t and s′ →Hǫ t′.

(ii) Let s, t be Hǫ-terms. If s →Hǫ t, then |s|ǫ →H |t|ǫ.

Proof. (i) is proved by induction on the step, noting that the type of the ǫ’s
prohibits them from interferring with β-equivalence, and (ii) follows from the
facts that, for each s, there is an s′ ∈ Satǫ(s) such that sǫ matches a subterm of
s′, and that, for any term t, if t ∈ Satǫ(s), then |t|ǫ = s.

Proposition 6.7. For any HRS H, its ǫ-lifting Hǫ is a non- collapsing HRS.

Proof. It is easy to see, that for all collapsing terms s, sǫ is non-collapsing. ⊓⊔

Theorem 6.8 (FFD). Let (Hǫ)ω be the ǫω-labelling of an HRS, and let R :
s1 →(Hǫ)ω s2 →(Hǫ)ω · · · be a (Hǫ)ω-reduction. R is finite, if and only if there is
a ℓmax ∈ N such that fam(si) ≤ ℓmax for all si.

Proof. By Prop. 6.7 and Theorem 5.2. ⊓⊔

20

7 Applications and Further Research

The Prefix Property and Finite Family Developments are useful tools for proving
various properties of HRSs. For example, an alternative proof of termination of
the simply typed λ-calculus (encoded as an HRS) uses FFD. Also, in a work in
progress by the author, FFD is used to prove the termination of a higher-order
standardization procedure. This result can be used to formalize the notion of
equivalence of reductions, in a similar way as is done in [14].

For future research, it might be interesting to further investigate the relation
between FFD and the Dependency Pair method [1],one of the most powerful
(first-order) termination techniques of today, both in the higher-order and first-
order case. Since FFD and the Dependency Pair method both essentially depend
on the same principle, that an infinite reduction must have an unbounded cre-
ation depth, it the author’s conjecture that FFD, or the Prefix Property, can be
used to design a higher-order Dependency Pair method.

A Termination of the Simply Typed λ-Calculus

The most well-known proof of termination of the simply typed λ-calculus is the
proof using strong computability due to Tait [13]. Here we present a termination
proof of an HRS which encodes the simply typed λ-calculus, using the Finite
Family Developments result of the present paper.4

The HRS we consider has an infinite number of rules. Let α, β range over
(codes of) types, and let the following signature be given:

Tα : term → term
app : term → term → term
lam : (term → term) → term

The simply typed λ-calculus can be encoded as the following HRS, Lam→:

app(Tn
α→β(lam(λx.Z(x))), Y) → Tβ(Z(Tα(Y)))

for every n > 0, where fn(s) is defined (here) as: f0(s) = s and fn+1(s) =
f(fn(s)). Termination of Lam→ is proved in Prop. A.3. But first, we show
that the HRS encodes the simply typed λ-calculus in the following sense: every
reduction in the simply typed λ-calculus can be lifted to a Lam→-reduction. For
this, we use the following map h, which maps each simply typed λ-term to a set
of possible Lam→-encodings of it:

h(xα) = {Tn
α(x) | n > 0}

h(fα) = {Tn
α(f) | n > 0}

h(λxα.Mβ) = {Tn
α→β(lam(λx.s)) | s ∈ h(M), n > 0}

h(Mα→βNα) = {Tn
β(app(s, t)) | s ∈ h(M), t ∈ h(N), n > 0}

4 It is noted in [7, p. 31] that termination of simply typed λ-calculus follows from
termination of the Hyland–Wadsworth-labelling, a variation of which we use to for-
malize FFD.

21

It follows directly from the definition that h(M) 6= ∅, for all simply typed λ-terms
M . Additionally, we show that the map h commutes over substitution:

Lemma A.1. h(M [x 7→ N]) = h(M)[x 7→ h(N)].

Proof. By induction on M .

We have the following correspondence between the simply typed λ-calculus and
Lam→:

Lemma A.2. If M →β N and s ∈ h(M), then there is a t ∈ h(N) such that
s →Lam→ t.

Proof. By induction on the derivation of M →β N . The interesting case is if the
β-step occurs at the head, i.e.:

M = (λxα.M1)M2 and N = M1[x 7→ M2]

By definition, this means that s = Tn
β(app(Tm

α→β(lam(λx.t1)), t2)), where ti ∈
h(Mi), for i ∈ {1, 2}, and m, n > 0. Now:

s → Tn+1
β (t1[x 7→ Tα(t2)]) ∈ h(N)

where the last inclusion follows from Lemma A.1 and the facts that Tn+1
β ∈

h(M1) because t1 ∈ h(M1), and Tα(t2) ∈ h(M2) because t2 ∈ h(M2).

Termination of Lam→ cannot be proved by any higher-order termination tech-
nique that I know of. However, it does follow from Finite Family Developments:

Proposition A.3. Lam→ is terminating.

Proof. Note that Lam→ is non-collapsing, and consider the ω-labelling of Lam→,
which consists of rules of the form:

appℓ(((Tk
α→β)n(lamj(λx.Z(x))), Y) → T

p
β(Z(Tp

α(Y)))

where ℓ, j are labels representing the creation depth of the symbols, k is a se-
quence of n such labels and p = max(ℓ, k, j). The symbols of the form Tα will
be called type symbols.

Let the height of a type be defined as follows: ht(a) = 1 (where a is a base
type); ht(α → β) = max(ht(α), ht(β))+1. Now we can define the value of a type
symbol as Val(Tℓ

α) = ℓ+ht(α) and the value of a term as Val(s) = max{Val(f) |
f ∈ Sym(s)}. Now, a simple induction on the context of the step reviels that, if
s →Lam→ t, then Val(s) ≥ Val(t).

Let R : s0 → s1 → s2 → · · · be an arbitrary Lam→-reduction. Because
Val(si) ≥ Val(sj) if i < j, the value of every term in R is less or equal to Val(s0),
and thus every symbol occurring in the reduction has a creation depth less than
or equal to Val(s0). Therefore, by Finite Family Developments (Theorem 5.2),
R is finite.

22

References

1. Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236(1–2):133–178, 2000.

2. Inge Bethke, Jan Willem Klop, and Roel de Vrijer. Descendants and origins in
term rewriting. Information and Computation, 159(1–2):59–124, 2000.

3. Roel Bloo. Preservation of Termination for Explicit Substitution. PhD thesis,
Technische Universiteit Eindhoven, 1997.

4. H. J. Sander Bruggink. A proof of finite family developments for higher-order
rewriting using a prefix property. In RTA, 2006.

5. Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher order unification via
explicit substitutions. Information and Computation, 157(1–2):184–233, 2000.

6. J.M.E. Hyland. A syntactic characterization of the equality in some models of the
λ-calculus. Journal of the London Mathematical Society, 12(2):361–370, 1976.

7. J. W. Klop. Combinatory Reduction Systems. PhD thesis, Utrecht Univ., 1980.
8. Jean-Jacques Lévy. Réductions correctes et optimales dans le λ-calcus. PhD thesis,

Université Paris VII, 1978.
9. Luc Maranget. Optimal derivations in weak lambda-calculi and in orthogonal term

rewriting systems. In POPL, 1991.
10. Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their conflu-

ence. Theoretical Computer Science, 192:3–29, 1998.
11. Dale Miller. A logic programming language with lambda abstraction, function

variables and simple unification. Journal of Logic and Computation, 1(4), 1991.
12. Tobias Nipkow. Higher-order critical pairs. In LICS, 1991.
13. W. W. Tait. Intensional interpretation of functionals of finite type I. Journal of

Symbolic Logic, 32:198–212, 1967.
14. Terese. Term Rewriting Systems. Number 55 in CTTCS. CUP, 2003.
15. D.T. van Daalen. The language theory of Automath. PhD thesis, Technische

Universiteit Eindhoven, 1980.
16. Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD

thesis, Vrije Universiteit Amsterdam, 1994.
17. Vincent van Oostrom. Finite family developments. In RTA, 1997.
18. Vincent van Oostrom and Roel de Vrijer. Four equivalent equivalences of reduc-

tions. ENTCS, 70(6), 2002.
19. C. P. Wadsworth. The relation between computational and denotational properties

for Scott’s D∞-models of the λ-calculus. SIAM Journal on Computing, 5, 1976.

23

