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Abstract

Probabilistic transition systems, short PTS, are labelled transition systems where each
transition depends on a probability. As in the case of finite automata, we are interested
in analyzing the behaviour of these systems. A method to do this is to define the trace
of a state. While the concept of trace semantics is easy to grasp for finite automata,
the introduction of probabilities complicates the definition of a trace. We need measure
and integration theory to obtain a mathematically sound definition of trace semantics for
PTS with continuous state space and even for discrete PTS without explicit termination.
Instead of defining trace semantics directly, we use a coalgebraic approach: We define two
endofunctors on the category of measurable spaces and measurable functions and prove
that they can be lifted to endofunctors on the Kleisli category of the (sub-)probability
monad. Then we model PTS with and without explicit termination as a coalgebra for this
lifted functor and prove that a final coalgebra exists. The unique homomorphism into the
final coalgebra yields a definition of trace semantics for PTS which is a sub-probability
measure on the set of all finite words in the case of a PTS with explicit termination and a
probability measure on the set of all infinite words for PTS without explicit termination.
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1 Introduction

In theoretical computer science one discipline is the study of (labelled) transition systems
and their behavior. While the conventional definition of labelled transition systems does
not include initial or final states, we will slightly modify the definition to include a
unique initial state and a unique final state. Doing so we can identify labelled transition
systems as a generalization of finite automata. However, for the behavioral analysis of
these systems we will “ignore” the initial state again.

1.1 Labelled Transition Systems

Definition 1.1 (Labelled Transition System (LTS)). A labelled transition system (with
initial and final state), short LTS, is a 6-tuple M := (X,L,⊥,X, ε, R) where

• X is an arbitrary set of states,

• L is a set of labels,

• ⊥ 6∈ X is a unique symbol called initial state,

• X 6∈ X is a unique symbol called final state,

• ε 6∈ A is a unique label called empty label,

• R ⊆ (X∪{⊥})×(L∪{ε})×(X∪{X}) is the transition relation, a ternary relation
linking two states and a symbol from the alphabet.

For states x ∈ X ∪ {⊥} and y ∈ X ∪ {X} and a label l ∈ L ∪ {ε} such that (x, l, y) ∈ R
we write x l→ y and say, that the system can make a transition from the state x to the
state y. Depending on the point of view this transition is either induced by the action l
or the transition generates the symbol l. If there is at least one transition of the form
(⊥, l, y) ∈ R we say that the LTS has (explicit) initialization and analogously we say
that the LTS has (explicit) termination if there is at least one transition of the form
(x, l,X) ∈ R.
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LTS with initial and final state as defined above can be considered to be a generalization
of finite automata: Recall that a non-deterministic finite automaton (NFA) is a 5-tuple
(Q,A, δ, Q0, F ) where Q is a finite set of states, A is a finite set called alphabet, δ : Q×
A → P(Q) is the transition function and ∅ 6= Q0, F ⊆ X are the sets of initial or final
states. Without loss of generalization we assume that ⊥,X 6∈ Q and ε 6∈ A and define

R := {(⊥, ε, x) | x ∈ X0} ∪ {(x, ε,X) | x ∈ F} ∪ {(x, a, y) | x ∈ X, a ∈ A, y ∈ δ(x, a)}.

Then (Q,A,⊥,X, ε, R) is the corresponding LTS. As example we consider the following
NFA:

// 0
a //

b
��

1

a

��

bhh

// 2 a
// 3

The corresponding LTS is:

0
a //

b

��

1

a

��

b





ε

��
// ⊥

ε

??

ε
��

X

2 a
// 3

ε

??

Of course we can also express every deterministic finite automaton (DFA) as LTS in a
similar way.
In this thesis we will consider probabilistic versions of LTS, so-called probabilistic transi-
tion systems. We take a countable setA and define labels of the form L := A×[0, 1]∪[0, 1].
Thus a label is either a tuple (a, p) or simply a real number p between 0 and 1. The
intuitive idea of these systems is, that whenever we are in a state x ∈ X and there is a
transition x

(a,p)→ y or x p→ y to another state y, this transition occurs with probability p.
As we do not restrict the state space X to be a countable set, we must necessarily make
use of measure theory to cope with probabilities.
Although we do not yet have a thorough definition of probabilistic transition systems, let
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us take a look at two “intuitive” introductory examples. The first one is a finite system:

x
1
3 //a, 1

3 55 X

and the second one has a countable state space:

0
a, 1

3 //

1
3

11

1
a, 1

3 //

1
3

++

2
a, 1

3 //

1
3

��

3
a, 1

3 //

1
3

��

4
a, 1

3 //

1
3

��

5
a, 1

3 //

1
3

ss

6
a, 1

3 //

1
3

mm

. . .

X

Both systems do not have explicit initialization and in fact we are going to define proba-
bilistic transition systems without initial states. However, although the examples above
have explicit termination, we will also consider systems withouth explicit termination in
this thesis.

1.2 Trace Semantics

Being able to describe dynamic systems, let us now recall a commonly used method
to analyze the behavior of such systems. We take a look at the following two non-
deterministic finite automata (represented as LTS):

// ⊥ ε // x0

a

��

// ⊥ ε // y0

a

~~

a

  
x1

b

~~

c

  

y1

b
��

y2

c

��
x2

ε
  

x3

ε
~~

y3

ε
  

y4

ε
~~

X X

What is the behavior of these automata? One approach to specifying behavior of any
LTS is given by trace semantics: For every state of a LTS we define its trace. In our
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example we can obtain a trace of a state x by considering all paths that lead to the final
state of the automaton and collecting the labels of the transitions along the path. We
get a finite or countable sequence of labels for every such path and call these sequences
words. The trace of a state x (also called language of x in this case) denoted L(x), is the
set of all these words. For our example we have:

L(x0) = {abε, acε} = L(y0),

L(x1) = {bε, cε},

L(x2) = L(x3) = L(y3) = L(y4) = {ε},

L(y1) = {bε}

L(y2) = {cε}

where ε is treated as a special word, the empty word, with the convention that e.g.
abε = ab. Now we are able to specify the behavior of a state x simply by its trace. Note
that via trace semantics we obtain an equivalence relation on the set of the states, the
so-called trace equivalence. Two states are related (and thus have the same behavior) if
and only if their traces are identical. However, note that trace equivalence is a coarse
equivalence as we cannot distinguish the two states x0 and y0 in our example although
there is a difference in the behavior of the automata: While in the first case the automaton
still can make a b- or a c-transition after having made an a-transition, the automaton on
the right hand side makes that choice already during the a-transition. There are other,
finer notions of behavioral equivalence, e.g. bisimulation which can distinguish x0 and
y0. Yet, trace semantics have proven to be worth studying as well and this is what we
are going to do in this thesis.
Although trace semantics can be specified quite easily for finite automata, matters get a
lot more complicated in the case of probabilistic transition systems, especially if the state
space is uncountably infinite or if we consider systems without explicit termination. For
our two previous examples we will see that although the first transition system has a finite
state space while the second one has a (countably) infinite state space, the trace of the
state x of the first transition system is identical to the trace of any of the states n ∈ N0

of the second transition system, both given by the following discrete sub-probability
measure:

∀u ∈ A∗ : P ({u}) =

 1
3n+1 if ∃n ∈ N0 : u = an

0 else
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Even though it is possible to define the notion of a trace of a probabilistic transition
system directly, we will employ a different approach using category theory. In order to
understand the subsequent two sections of this introduction a prior knowledge of category
theory is advisable. Readers who are unfamiliar with category theory may simply read on
in section 1.5. We will provide all the necessary definitions and propositions in chapters
2 and 3 to understand the main results of this thesis.

1.3 Transition Systems as Coalgebra

As for example Bonchi et al. [2011] point out, coalgebras are an appropriate method
to model different types of (labelled) transition systems and analyze their behavior.
However, note that in a coalgebraic representation of a LTS we usually “neglect” explicit
initialization. As a matter of fact this is irrelevant for our considerations on the one
hand because our behavioral analysis is restricted to the behavior of singular states
and on the other hand because our probabilistic transition systems do not have explicit
initialization by definition. Of course, for systems with explicit initialization only the
behavior of reachable states is of interest. Let us now present how to model an LTS as
coalgebra: Given an endofunctor F : C→ C on a category C, a coalgebra is a pair (X,α)

where X, an object of C, represents the state space of the system and α : X → FX,
an arrow of C, specifies the transitions of the system. The endofunctor F determines
the branching behavior of the system. Depending on the choice of the category and the
endofunctor F , a final coalgebra can exist. This final coalgebra is a coalgebra which
is unique up to isomorphism and is defined via the universal property that for every
other coalgebra there is a unique coalgebra homomorphism κ mapping it into the final
coalgebra. In a situation, where a final coalgebra exists and coalgebras are used to model
a transition system, the unique homorphism yields some kind of behavior of the system.
As an example we can model deterministic finite automata in the category Set for the
endofunctor 2 × IdA : Set → Set where A is an alphabet. The final coalgebra is the
set of all languages over the alphabet, P(A∗), and the unique morphism is a function
mapping each state to the language that it accepts (cf. Bonchi et al. [2011]). In this case,
the behavioral equivalence induced by the unique map to the final coalgebra is indeed
trace equivalence. However, if we model non-deterministic finite automata as coalgebras
for the endofunctor 2 × P(Id)A : Set → Set, we obtain bisimularity instead of trace
equivalence. Thus the choice of the category and the endofunctor determines what kind
of behavioral equivalence the final coalgebra (if it exists) describes. As we are interested
in trace equivalence for probabilistic transition systems, we must find an appropriate
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category and a suitable endofunctor. Our approach to find such a category is based on
a paper titled “Generic Trace Semantics via Coinduction” by Hasuo et al. [2007].

1.4 Main Aim of this Thesis

The main aim of this thesis is to show that probabilistic transition systems can be
modelled as a coalgebra (XT , α

[) in the Kleisli category of a monad T for the lifting
F of an endofunctor F : Meas → Meas on the category of measurable spaces. For an
arbitrary alphabet A we take:

• F = A × IdMeas + 1 and T = S (the sub-probability monad) for probabilistic
transition systems with termination and

• F = A × IdMeas and T = P (the probability monad) for probabilistic transtion
systems without termination.

Moreover, we prove that a final coalgebra exists in both cases if A is a finite alphabet
and use the unique arrow tr[ mapping (XT , α

[) to the final coalgebra to define the trace
tr(x) of a state x:

• For probabilistic transition systems with termination, tr(x) is a sub-probability
measure on the set of all finite words A∗.

• For probabilistic transition systems without termination, tr(x) is a probability
measure on the set of all infinite words Aω.

The obtained results coincide with the results for discrete probabilistic transition systems
given by Hasuo et al. [2007].

1.5 Structure of this Thesis

This thesis contains a total of five chapters. Below is a short overview of the contents of
the chapters.

Chapter 2 In this chapter we present the mathematical basics needed for the subsequent
chapters. Most of the presented results are well-known and taken from standard
literature of the respective area.

Chapter 3 The measurable spaces form a category together with measurable functions.
In preparation for the main part of this thesis we take a closer look at this cat-
egory and prove that it has finite products and coproducts. For the latter we
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also develop the necessary measure-theoretic background. Finally, we present the
(sub-)probability monad.

Chapter 4 This is the main part of this thesis. We first define σ-algebras on the sets
of words allowing us to consider them as measurable spaces. Then we provide
distributive laws for the endofunctors A × IdMeas and A × IdMeas + 1 and the
(sub-)probability monad, model probabilistic transition systems as coalgebra in
the Kleisli category of the (sub-)probability monads and prove that in certain cases
a final coalgebra exists which yields a suitable definition of a trace for probabilistic
transition systems. Finally we apply the results to a few examples.

Chapter 5 In the last chapter we will summarize the results we have obtained and give
a reference to further literature related to our topic. Additionally, we will present
open questions the thesis at hand has not answered.
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2 Mathematical Basics

2.1 Set Theory

We assume basic knowledge about sets and common set-theoretic results. However, we
will recall some of the definitions and introduce the notation used within this document.

Definition 2.1 (Notation and Special Sets). We denote by 1 the singleton set, a set
with only one element. Whenever needed we will denote its element by X. Furthermore
we will use the following notation:

• For an arbitrary set X we denote the set of all subsets of X, the powerset, by
P(X).

• For arbitrary sets A,B the symbol ⊂ shall denote strict set inclusion, i.e. A ⊂ B

implies that A 6= B. For non-strict inclusion we will use the symbol ⊆. The same
applies for ⊃ and ⊇ and for the usual order on the (extended) reals denoted by
<,≤, >,≥.

• For arbitrary sets A,B we define their set theoretic difference to be A \B = {x ∈
A | x 6∈ B}.

• N is the set of natural numbers starting with 1, N0 is the set of natural numbers
including 0.

• R is the set of real numbers, R+ and R− are the sets of non-negative or non-positive
real numbers.

• R := R ∪ {−∞} ∪ {+∞} is the set of extended real numbers, equipped with the
usual extensions1 of arithmetic operations on R. We recall only the most important
convention, namely: 0 · ±∞ = ±∞ · 0 := 0.

1For further reference cf e.g. to [Elstrodt, 2007, pp. 104f.].
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• For real intervals we use the following notation

]a, b[ := {x ∈ R | a < x < b} ∀a, b ∈ R

[a, b] := {x ∈ R | a ≤ x ≤ b} ∀a, b ∈ R

]a, b] := {x ∈ R | a < x ≤ b} ∀a ∈ R,∀b ∈ R

[a, b[ := {x ∈ R | a ≤ x < b} ∀a ∈ R,∀b ∈ R

and accordingly we define intervals of extended reals.

• For a total function f : X → Y we denote for A ∈ P(X) and B ∈ P(Y ) the image of
A by f(A) := {f(x) | x ∈ A} and the pre-image of B by f−1(B) := {x ∈ X | f(x) ∈
B}. For A ⊆ P(X) and B ⊆ P(Y ) we define accordingly f(A) := {f(A) | A ∈ A}
and f−1(B) := {f−1(B) | B ∈ B}.

Definition 2.2 (Characteristic Function). Let X be an arbitrary set, A ⊆ X. The
characteristic function of A is the function

χA : X → {0, 1}, x 7→

1, x ∈ A

0, x 6∈ A

Definition 2.3 (Mutually Disjoint Sets, Disjoint Union, Cartesian Product). Let I be
an arbitrary set, (Xi)i∈I be a family of arbitrary sets.

• We call (Xi)i∈I a disjoint family of sets iff the Xi are mutually disjoint, i.e. Xi ∩
Xj = ∅ for i 6= j.

• The disjoint union of the (Xi)i∈I is the set:⊔
i∈I

Xi :=
⋃
i∈I
{(x, i) | x ∈ Xi}

For every j ∈ I there is an injective function ιj : Xj →
⊔
i∈I Xi where x 7→ (x, j)

called the canonical injection. Note that whenever the family (Xi)i∈I is disjoint,
the disjoint union coincides with the usual set-theoretic union in an obvious way.
For finite I, say I = {1, ..., n} we will also write

X1 +X2 + ...+Xn =
n⊔
i=1

Xi

for the (n-th) disjoint union.
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• The cartesian product of the Xi is the set∏
i∈I

Xi := {(xi)i∈I | ∀i ∈ I : xi ∈ Xi}

For every j ∈ I there is a surjective function πj :
∏
i∈I Xi → Xj where (xi)i∈I 7→ xj

called the canonical projection. For finite I, say I = {1, . . . , n} we will also write

X1 ×X2 × . . .×Xn =

n∏
i=1

Xi

for the (n-th) cartesian product.

2.1.1 Alphabets and Words

Any countable set can be considered to be an alphabet. Whenever that is the case, we
need some additional definitions and operations which we will introduce here.

Definition 2.4 (Alphabets and Words). Let A be a countable set and ε be a symbol such
that ε 6∈ A. We call A an alphabet and define

A0 := {ε}.

For every natural number n ∈ N, we call the elements of the n-th cartesian product words
of length n and denote its elements u ∈ An as u = a1a2a3 . . . an where a1, . . . , an ∈ An.
The symbol ε is called the empty word which has length 0 by definition. Furthermore we
define for every n ∈ N0 the set:

A≤n :=
n⋃
i=0

Ai

and call it the set of words of length of at most n. The set of all finite words (over A)
is:

A∗ :=
⋃
n∈N0

An

and the set of all infinite words (over A) is the set:

Aω :=
∏
n∈N
A = {(an)n∈N | ∀n ∈ N : an ∈ A} .
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Combining the two latter sets we obtain the set of all (finite and infinite) words (over A):

A∞ := A∗ ∪ Aω.

Two words can be concatenated by the concatenation function:

conc : A∗ ×A∞ → A∞

where for x = x1 . . . xm ∈ Am and y = y1 . . . yn ∈ An we define

conc(x, y) := x1 . . . xmy1 . . . yn ∈ Am+n

and for x as above and y = (yn)n∈N ∈ Aω we define the sequence (zi)i∈N := conc(x, y)

where

zi :=

xi, 1 ≤ i ≤ m

yi−m, i > m

The length of a word u ∈ A∞ is denoted by |u| and we define |(an)n∈N| :=∞.

Definition 2.5 (Finite Prefixes). Let A be an alphabet. We define the prefix-relation
v⊆ A∗ ×A∞ where two words x ∈ A∗, y ∈ A∞ are related (notation: x v y) iff one of
the following conditions is fulfilled:

(a) x = ε and y is an arbitrary word.

(b) There are m,n ∈ N such that m ≤ n, x = x1...xm ∈ Am, y = y1...yn ∈ An and
xi = yi holds for all i ∈ {1, ...,m}.

(c) There is an m ∈ N such that x = x1...xm ∈ Am, y = (yn)n∈N ∈ Aω and xi = yi

holds for all i ∈ {1, ...,m}.

Whenever x v y holds, we call x a (finite) prefix of y. The set of all finite prefixes of a
word u ∈ A∞ is the (countable) set:

pref(u) := {v ∈ A∗ | v v x}.

2.2 Measure and Integration Theory

The basic idea of measure theory is to assign a measure to subsets of a given set X
which is nothing else but a non-negative real number (or possibly +∞). Depending on
the context, this measure might for instance be a length, an area, or a volume. The
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measures we will be interested in, are (sub-)probability measures. In order to define any
measure, the first step is to identify what subsets of a set should be measurable. The
results in this section are mainly based on or taken from Elstrodt [2007] and Ash [1972].

2.2.1 Sigma-Algebras and Measurable Spaces

Definition 2.6 (Sigma-Algebra, Measurable Space). Let X be an arbitrary set. We call
Σ ⊆ P(X) a sigma-algebra (also σ-algebra) on X iff the following axioms are fulfilled:

(1) X itself is an element of Σ, i.e. X ∈ Σ.

(2) Σ is closed under complement: A ∈ Σ =⇒ X \A ∈ Σ.

(3) Σ is closed under countable unions: Ai ∈ Σ ∀i ∈ N =⇒
⋃
i∈N

Ai ∈ Σ.

The pair (X,Σ) is called a measurable space. We sometimes denote a measurable space
merely by its base set X. When needed, the corresponding σ-algebra is denoted by ΣX .

Remark 2.7. (Additional Properties of σ-Algebras) Let Σ be a σ-algebra on an arbitrary
set X. Then the following holds:

(a) ∅ ⊆ Σ.

(b) Σ is closed under countable intersection: Ai ∈ Σ ∀i ∈ N =⇒
⋂
n∈N

Ai ∈ Σ.

(c) Σ is closed under finite union.

(d) Σ is closed under finite intersection.

Proof.

(a) ∅ = (X \X) ∈ Σ.

(b) Let Ai ∈ Σ ∀i ∈ N, then:

⋂
i∈N

Ai =

(
X \

(⋃
i∈N

(X \Ai)

))
∈ Σ.

(c) Follows immediately from (a) and axiom (3) by taking Sn = ∅ for all but finitely
many n ∈ N.

(d) Follows immediately from (a) and (b) by taking Sn = ∅ for all but finitely many
n ∈ N.
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Let us now consider a few examples of σ-algebras:

Example 2.8. Let X be an arbitrary set.

• The trivial σ-algebra on X is the set {∅, X}. With respect to set inclusion it is the
smallest σ-algebra on X.

• The powerset P(X) is a σ-algebra on X. With respect to set inclusion it is the
biggest σ-algebra on X.

• Let A ⊆ X be an arbitrary subset of X. Then {∅, A,X \ A,X} is a σ-algebra on
X. With respect to set inclusion it is the smallest σ-algebra on X containing A.

Note that for X = ∅ and for X = 1 the trivial σ-algebra coincides with the powerset and
hence in these two cases the choice of the σ-algebra is unique.

A useful property of σ-algebras is that they are closed under intersection in the fol-
lowing manner:

Proposition 2.9. Let for an arbitrary set I, (Σi)i∈I be a family of σ-algebras on a
common set X. Then their intersection

⋂
i∈I Σi is a sigma-algebra on X.

Proof. Trivial checking of the axioms.

As a result of this property, we can define the notion of a generated sigma-algebra.
We want certain sets to be measurable, so we take those sets and consider the smallest
σ-algebra that contains them.

Definition 2.10 (Generator, Generated Sigma-Algebra). Let X be a set, G ⊆ P(X).
We define the sigma-algebra generated by G to be:

σ(G) :=
⋂

Σ∈Φ(G)

Σ

where Φ(G) := {Σ ⊆ P(X) | G ⊆ Σ and Σ

mboxisa σ-algebra}. It is the smallest σ-algebra on X (with respect to set inclusion) con-
taining G. The set G is called the generator of σ(G). If for all A,B ∈ G the intersection
A ∩B is itself an element of G, we say that G is closed under finite intersection.

With the above definition we can regard σ to be an operator σ : P(X)→ {Σ ⊆ P(X) |
Σ is a σ-algebra on X}. The following properties of this operator are useful for proofs:
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Remark 2.11. (Properties of the σ-operator) Let X be an arbitrary set. The σ-operator
is

• monotone, i.e. the following holds for every F ,G ⊆ P(X):

F ⊆ G =⇒ σ(F) ⊆ σ(G)

• idempotent, i.e. the following holds for every G ⊆ P(X):

σ (σ(G)) = σ(G)

Proof. For monotonicity, let F ⊆ G ⊆ P(X), then Φ(F) ⊇ Φ(G) and hence:

σ(F) =
⋂

Σ∈Φ(F)

Σ ⊆
⋂

Σ∈Φ(G)

Σ = σ(G).

Idempotence is obvious because σ(G) is the smallest σ-algebra that contains itself.

Let us now take a look at two examples of a generated σ-algebra.

Example 2.12. Let X be a countable set. We consider the sigma-algebra generated by
all singletons and the empty set2: Σ := σ({∅} ∪ {{x} | x ∈ X}) and claim that it is
identical to the powerset of X. By definition, we have Σ ⊆ P(X). Let now S ∈ P(X),
then S = ∪x∈S{x} is a countable union of singletons. Hence, we have S ∈ Σ and thus
Σ = P(X).

The previous example does not show the necessity of taking a generated σ-algebra.
In fact, for countable sets X it is often convenient to take P(X) as σ-algebra. The
most prominent example for taking a smaller σ-algebra than the powerset, is the set
of real numbers. The canonical σ-algebra on the reals is the Borel-σ-algebra which is
defined below. Explaining why one usually considers this σ-algebra instead of another
one is outside the scope of this thesis. For further reference, every standard textbook
on measure theory can be consulted. A good summary in German is given in [Elstrodt,
2007, pp. 1-6].

Example 2.13 (The Borel-σ-Algebra on R and R). The set of real numbers, R, is usually
endowed with the Borel-σ-algebra B, which can be defined in the following way:

B := σ ({]−∞, t] | t ∈ R}) .
2The empty set could be omitted as it is trivially contained in every sigma-algebra. However, later we

will see that it useful to include it in the generator.
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Analogously, the set
B := σ ({[−∞, t] | t ∈ R})

is the Borel-σ-algebra for R.

2.2.2 Semi-Rings of Sets

We know now that the sets we want to consider as “measurable” are defined by a σ-
algebra. In order to define how we can “measure” them, it is helpful to define weaker
requirements on a subset S ⊆ P(X) than those it has to fulfill to be a σ-algebra. In
many cases these weaker requirements on S are sufficient to define a measure on σ(S)

uniquely.

Definition 2.14 (Semi-Ring of Sets). Let X be a set. A set S ⊆ P(X) is called a
semi-ring (of sets) iff it satisfies the following axioms:

(1) The empty set is contained in S: ∅ ∈ S.

(2) S is closed under finite intersection: A,B ∈ S ⇒ A ∩B ∈ S.

(3) For every A,B ∈ S there are finitely many pairwise disjoint subsets C1, ..., Ck ∈ S
such that A \B = ∪ki=1Ci.

A simple and yet useful example for a semi-ring of sets is the set of singletons:

Example 2.15. Let X be a countable set. The set S := {∅} ∪ {{x} | x ∈ X} is a
semi-ring of sets.

Proof. We obviously have ∅ ∈ S. Furthermore, we have for every x, y ∈ X: {x} ∩ {y} =

{x} iff x = y and {x} ∩ {y} = ∅ iff x 6= y. Analogously, we observe that {x} \ {y} = {x}
iff x 6= y and {x} \ {y} = ∅ iff x = y.

Remark 2.16. Every σ-algebra Σ on an arbitrary set X is a semi-ring of sets.

Proof. We have ∅ ∈ Σ by definition and we know that σ-algebras are closed under finite
intersection. For A,B ∈ Σ we rewrite A \B = A ∩ (X \B) ∈ Σ.

Proposition 2.17. Let X,Y be arbitrary sets and SX ⊆ P(Y ) and SY ⊆ P(Y ) be
semi-ring of sets. Then the set:

SX ⊕ SY := {SX + SY | SX ∈ SX , SY ∈ SY } ⊆ P(X + Y )

is a semi-ring of sets.
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Proof. We check the axioms:

(1) ∅+ ∅ = ∅ ∈ S1 ⊕ S2.

(2) Let A1 +A2, B1 +B2 ∈ S1 ⊕ S2, then:

(A1 +A2) ∩ (B1 +B2) = (A1 ∩B1)︸ ︷︷ ︸
∈S1

+ (A2 ∩B2)︸ ︷︷ ︸
∈S2

∈ S1 ⊕ S2

(3) Let A1 +A2, B1 +B2 ∈ S1 ⊕ S2, then:

(A1 +A2) \ (B1 +B2) = (A1 \B1)︸ ︷︷ ︸
∈S1

+ (A2 \B2)︸ ︷︷ ︸
∈S2

∈ S1 ⊕ S2

Proposition 2.18. Let X,Y be arbitrary sets and SX ⊆ P(Y ) and SY ⊆ P(Y ) be
semi-ring of sets. Then the set:

SX ∗ SY := {SX × SY | SX ∈ SX , SY ∈ SY } ⊆ P(X × Y )

is a semi-ring of sets.

Proof. Cf. [Elstrodt, 2007, Lemma I.5.4, p. 21]

Corollary 2.19. Let X,Y, Z be arbitrary sets and SX ⊆ P(Y ), SY ⊆ P(Y ) and SZ ⊆
P(Z) be semi-ring of sets. Then the set:

SX ∗ SY ⊕ SZ := {(SX × SY ) + SZ | SX ∈ SX , SY ∈ SY , SZ ∈ SZ} ⊆ P((X × Y ) + Z)

is a semi-ring of sets.

Proof. By Proposition 2.18 we know that SX ∗ SY is a semi-ring of sets. We then
apply Proposition 2.17 to the semi-rings of sets SX ∗ SY and SZ and obtain that also
(SX ∗ SY )⊕ SZ = SX ∗ SY ⊕ SZ is a semi-ring of sets.

2.2.3 Pre-Measures and Measures

Definition 2.20 (Pre-Measure, Measure, Measure Space). Let X be a set and S ⊆ P(X)

be a semi-ring of sets. A map µ : S → R is called a pre-measure iff it satisfies the
following axioms:
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(1) µ(∅) = 0.

(2) µ is non-negative.

(3) µ is sigma-additive, i.e. for every sequence (Sn)n∈N of mutually disjoint sets from
S where ∪n∈NSj ∈ S the following holds:

µ

(⋃
n∈N

Sn

)
=

∞∑
n=1

µ(Sn).

We call µ a sigma-finite pre-measure iff a sequence (Sn)n∈N of measurable sets Sn ∈ S
exists such that µ(Sn) <∞ for all n ∈ N and ∪n∈NSn = X.
If S is a σ-algebra on X we call µ a measure and the triple (X,S, µ) a measure space.
In this case the measure is called finite iff µ(X) <∞. Of course, finiteness of a measure
implies σ-finiteness.

Having defined what a pre-measure is, we will now take a look at some of the basic
properties such pre-measures fulfill.

Proposition and Definition 2.21 (Properties of Pre-Measures). Let X be a set, S ⊆
P(X) a semi-ring of sets and µ : S → R+ be a pre-measure. Then the following holds for
all A,B ∈ S and all sequences (Sn)n∈N:

(a) If µ(B) <∞ and A ⊆ B then µ(B \A) = µ(B)− µ(A).

(b) µ(A) + µ(B) = µ(A ∪B)− µ(A ∩B).

(c) µ is subadditive:

µ

(
N⋃
n=1

Sn

)
≤

N∑
n=1

µ(Sn)

(d) µ is σ-subadditive:

µ

(⋃
n∈N

Sn

)
≤
∞∑
n=1

µ(Sn).

(e) µ is continuous from below, i.e. if Sn ⊆ Sn+1 holds for all n ∈ N then:

µ
(

lim
n→∞

Sn

)
= µ

( ∞⋃
n=1

Sn

)
= lim

n→∞
µ(Sn).

Proof. Cf. [Elstrodt, 2007, Satz II.1.7, pp. 31f.; Satz II.1.10, pp. 32f.].
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Although the above properties are interesting and useful (especially for calculations),
the most useful properties for our interest are of a theoretical nature and given by the
following two results which can be summarized in one sentence: A σ-finite measure is
already defined by its values on a semi-ring of sets which generates the σ-algebra.

Proposition 2.22. (Extension Theorem) Let X be an arbitrary set, S ⊆ P(X) be a
semi-ring of sets. Every σ-finite pre-measure µ : S → R+ can uniquely be extended to a
measure µ : σ(S)→ R+ on σ(S), the σ-algebra generated by S.

Proof. Cf. [Elstrodt, 2007, Korollar II.5.7, p. 61].

Corollary 2.23. Let X be an arbitrary set, S ⊆ P(X) be a semi-ring of sets and
µ, ν : σ(S)→ R+ be σ-finite measures. Then the following holds:

µ|S = ν|S ⇔ µ = ν

Proof. We apply Proposition to the σ-finite pre-measures µ|S and ν|S . For µ|S = ν|S the
uniqueness of the extension yields µ = ν. The other implication is trivially fulfilled.

Definition 2.24 (Null Set, Almost Everywhere). Let (X,Σ, µ) be a measure space. A
measurable set N ∈ Σ is called a null set iff µ(N) = 0. If a condition defined for all
elements x ∈ X holds outside a null set, it is said to hold almost everywhere (denoted
“a.e. (µ)” or simply “a.e.” if the measure µ is obvious).

We will be interested in a very prominent class of measures, namely (sub-)probability
measures. There is a whole branch of mathematics, called probability theory, devoted to
the study of these measures and the associated real world problems: random phenomena.
However, we will be comfortable with some basic definitions and an “intuitive” under-
standing of randomness as we will focus our attention on theoretical results covered by
these few definitions and the already presented measure-theoretic fundamentals.

Definition 2.25 ((Sub-)Probability Measure, (Sub-)Probability Space). Let (X,Σ, µ)

be a measure space. We call µ a probability measure iff µ(X) = 1 and a sub-probability
measure iff µ(X) ≤ 1. In that case (X,Σ, µ) is called probability space or sub-probability
space respectively. We define the sets:

S(X) := {P : Σ→ [0, 1] | P is a sub-probability measure} and

P(X) := {P : Σ→ [0, 1] | P is a probability measure} .
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A trivial example of a probability measure is the so-called Dirac measure which we
will use a lot in the main part of this thesis:

Definition 2.26 (Dirac Measure). Let (X,Σ) be a measurable space. The Dirac measure
for a given x ∈ X is the probability-measure:

δXx : Σ→ [0, 1], δXx (S) =

1, x ∈ S

0, else

which assigns the probability 1 to all measurable sets containing x and 0 to all other sets.

2.2.4 Measurable Functions

As a preparation for defining the Lebesgue integral, we must specify a property of func-
tions f : X → Y where (X,ΣX), (Y,ΣY ) are measurable spaces:

Definition 2.27 (Measurable Function). Let (X,ΣX), (Y,ΣY ) be measurable spaces. A
function f : X → Y is called ΣX -ΣY -measurable or simply measurable iff f−1(S) ∈ ΣX

for all S ∈ ΣY .

The most simple examples of measurable functions are constant functions f : X →
Y, x 7→ y0 and identity functions f : X → X,x 7→ x. A useful property of measurability
of functions is that composition of functions maintains measurability.

Proposition 2.28. Let (X,ΣX), (Y,ΣY ), (Z,ΣZ) be measurable spaces, f : X → Y be
a ΣX-ΣY -measurable function and g : Y → Z be a ΣY -ΣZ-measurable function. The
composition g ◦ f : X → Z is ΣX-ΣZ-measurable.

Proof. Let SZ ∈ ΣZ . Measurability of g yields g−1(SZ) = SY ∈ ΣY and using the
measurability of f we obtain:

(g ◦ f)−1(SZ) = f−1
(
g−1(SZ)

)
= f−1(SY ) ∈ ΣX

which is the desired measurability of g ◦ f .

Checking the measurability of a function f : X → Y can be difficult in some instances,
especially if ΣY is uncountably infinite. However, if ΣY is generated by a set G ⊆ P(Y )

it suffices to show measurability on the generator as the following proposition tells us:

Proposition 2.29. Let (X,ΣX), (Y,ΣY ) be measurable spaces such that ΣY = σ(G) for
G ⊆ P(Y ). A function f : X → Y is ΣX-ΣY -measurable iff f−1(S) ∈ ΣX for all S ∈ G.
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Proof. Cf. [Elstrodt, 2007, Satz 1.3, p. 86].

A prominent example of an uncountable set is the set of real numbers, R. Since the
canonical σ-algebra, the Borel-σ-algebra B, is generated by the set of real intervals of the
form ] −∞, t] for arbitrary t ∈ R, the ΣX -B-measurability (called Borel-measurability)
of functions f : X → R can be checked in the following way:

Example 2.30 (Borel Measurability). Let (X,Σ) be a measurable space. A function
f : X → R is called Borel-measurable iff it is Σ-B-measurable. This is the case iff the
following holds:

{x | f(x) ≤ t} = f−1(]−∞, t]) ∈ Σ

for all t ∈ R. Analogously a function g : X → R is called Borel-measurable iff it is
Σ-B-measurable. This is the case iff the following holds:

{x | g(x) ≤ t} = g−1([−∞, t]) ∈ Σ

for all t ∈ R.

Measurability of a function f is not only useful for integration, but it allows us to
specify a new class of measures:

Definition 2.31 (Image Measure). Let (X,ΣX , µ) be a measure space, (Y,ΣY ) be a
measurable space and f : X → Y be a ΣX-ΣY -measurable function. We define the image
measure of µ, f to be:

µf = µ ◦ f−1 : ΣY → [0, 1], S 7→ µ ◦ f−1(S)

Note that the composition µ ◦ f−1 is only defined for measurable sets S ∈ ΣY since only
then the pre-image f−1(S) is guaranteed to be an element of ΣX .

2.2.5 The Lebesgue Integral

Definition 2.32 (Simple Function). Let (X,Σ) be a measurable space. We call f : X →
R+ a (non-negative) simple function iff there are α1, ..., αn ∈ R+ and S1, ..., Sn ∈ ΣX

such that

f(x) =
n∑
i=1

αiχSi(x).

Note that this representation of f is not unique.
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Proposition and Definition 2.33. (The Lebesgue Integral) Let (X,Σ, µ) be a measure
space and f : X → R be a Borel-measurable function.

• If f is a (non-negative) simple function, say f(x) =
∑n

i=1 αiχSi(x), we define the
µ-integral of f to be: ∫

f dµ :=

n∑
i=1

αiµ(Si) ∈ R+

This value is independent of the representation of f .

• If f is non-negative, we define the µ-integral of f to be:∫
f dµ := sup

{∫
s dµ

∣∣∣∣ s is a simple function and 0 ≤ s ≤ f
}
∈ R+

• If f takes on negative values, we consider the positive part f+ := max{f, 0} and
the negative part f− := max{−h, 0} of f and notice that |f | = f+ + f− and
f = f+ − f−. Both, f+ and f−, are non-negative and Borel-measurable functions
and thus we can define the µ-integral of f to be:∫

f dµ :=

∫
f+ dµ−

∫
f− dµ ∈ R

if not
∫
f+ dµ =

∫
f− dµ = +∞. In the latter case we say, that the integral does

not exist.

We call f a (µ-)integrable or Lebesgue-integrable function if the (µ-)integral exists and
is finite and write f ∈ L1(X,Σ, µ) in that case. For measurable S ∈ Σ we note that
f · χS : X → R is Borel-measurable and define∫

S
f dµ :=

∫
f · χS dµ

The following notation might be used synonymously:∫
S
f dµ =

∫
S
f(x) dµ(x) =

∫
S
f(x)µ(dx).

Proof. This can be found in any standard book on integration, e.g. cf. [Ash, 1972, p.
36f.].

Now that we know what the Lebesgue integral is, let us recite a few properties of
integration in the subsequent propositions:
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Proposition 2.34 (Integrability). Let (X,Σ, µ) be a measurable space. The following
statements are equivalent for every function f : X → R:

(i) f is µ-integrable.

(ii) f is measurable and there is a measurable g : X → R+ such that |f | ≤ g.

Proof. Cf. [Elstrodt, 2007, Satz IV.3.3, p. 130].

Proposition 2.35 (Linearity of the Integral). Let (X,Σ, µ) be a measurable space,
f, g : X → R be integrable functions and α, β ∈ R. Then αf + βg is integrable and∫

αf + βg dµ = α ·
∫
f dµ+ β ·

∫
g dµ.

Proof. Cf. [Elstrodt, 2007, Satz IV.3.6, pp. 131f.].

Proposition 2.36 (Monotonicity of the Integral). Let (X,Σ, µ) be a measurable space
and f, g : X → R be µ-integrable functions such that f ≤ g. Then the following holds:∫

f dµ ≤
∫
g dµ.

Proof. Cf. [Elstrodt, 2007, Satz IV.3.7, p. 132].

Proposition 2.37. Let (X,Σ, µ) be a measure space and f, g : X → R such that f is
µ-integrable and f = g a.e. (µ). Then gis integrable and the following holds:∫

f dµ =

∫
g dµ.

Proof. Cf. [Elstrodt, 2007, Satz IV.4.2 c, p. 141].

Corollary 2.38. Let (X,Σ, µ) be a measure space, N ∈ Σ be a null set and f : X → R
be a µ-integrable function. Then the following holds:∫

f dµ =

∫
X\N

f dµ.

Proof. Apply Proposition 2.37 to the measurable function g := f · χX\N .

Given a measure space (X,ΣX , µ) and a measurable space (Y,ΣY ) integration with
respect to the image measure of µ and a measurable function f : X → Y has the following
property, which can sometimes be used to simplify integral calculations:
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Proposition 2.39 (Integration and the Image Measure). Let (X,ΣX , µ) be a measure
space, (Y,ΣY ) be a measurable space, f : X → Y be a measurable function, g : Y → R be
Borel-measurable. Then the following holds:

g ∈ L1(Y,ΣY , µf ) ⇔ g ◦ f ∈ L1(X,ΣX , µ)

Whenever these statements are valid we have:∫
Y
g dµf =

∫
X
g ◦ f dµ

and ∫
S
g dµf =

∫
f−1(S)

g ◦ f dµ ∀S ∈ ΣY .

Proof. Cf. [Ash, 1972, Theorem 1.6.12, p. 50f].

2.2.6 Disjoint Union Sigma-Algebra

Definition 2.40 (Disjoint Union Sigma-Algebra). Let I be an arbitrary index set and
(Xi,Σi)i∈I be a family of measurable spaces. We consider the disjoint union

⊔
i∈I Xi and

define the disjoint union sigma-algebra to be the finest (i.e. the biggest with respect to
set inclusion) σ-algebra on the disjoint union

⊔
i∈I Xi for which the canonical injections

ιj : Xj →
⊔
i∈I Xi, x 7→ (x, j) are measurable (for every j ∈ I). We denote this σ-algebra

by
⊕

i∈I Σi or for finite I, say I = {1, ..., n}, by Σ1 ⊕ Σ2 ⊕ ...⊕ Σn.

The given definition of the disjoint union sigma-algebra is non-constructive but there
is a way of describing the measurable sets explicitly which we show in the following
proposition.

Proposition 2.41. Let I be an arbitrary index set and (Xi,Σi)i∈I be a family of measur-
able spaces. We consider the disjoint union

⊔
j∈I Xj together with the canonical injections

ιi : Xi →
⊔
j∈I Xj , x 7→ (x, i). We define:

S1 :=

{
S ∈ P

(⊔
i∈I

Xi

) ∣∣∣∣ ∀i ∈ I : ι−1
i (S) ∈ Σi

}
, S2 :=

{⊔
i∈I

Si

∣∣∣∣ ∀i ∈ I : Si ∈ Σi

}

Then the following holds:
⊕

j∈I Σj = S1 = S2.

Proof. We first show that S2 is a σ-algebra:

(1) For every i ∈ I we have Xi ∈ Σj and thus
⊔
i∈I Xi ∈ S.
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(2) Let
⊔
i∈I Ai ∈ S2, then the following holds:

X \

(⊔
i∈I

Ai

)
=

(⊔
i∈I

Xi

)
\

(⊔
i∈I

Ai

)
=
⊔
i∈I

(Xi \Ai)︸ ︷︷ ︸
∈Σi

∈ S2.

(3) Let
(⊔

i∈I S
i
n

)
n∈N be a countable family of sets from S2. Then the following holds:

(⋃
n∈N

(⊔
i∈I

Sin

))
=


⊔
i∈I

(⋃
n∈N

Sin

)
︸ ︷︷ ︸
∈Σi

 ∈ S2.

Now we show that S1 = S2 and hence S1 is a σ-algebra.

“⊆” Let S ∈ S1. We define Si := ι−1
i (S) for every i ∈ I, then S =

⊔
i∈I Si and obviously

Si = ι−1
i (S) ∈ Σi for every i ∈ I.

“⊇” We denote that for every
⊔
i∈I Si ∈ S2 we have ι−1

i

(⊔
i∈I Si

)
= Si ∈ Σi for every

i ∈ I.

By looking at the definition of S1 it becomes obvious that S1 is the finest σ-algebra for
which all the injections are measurable and hence we have

⊕
j∈I Σj = S1 = S2.

2.2.7 Product Sigma-Algebra and Product Measure

Definition 2.42 (Initial Sigma-Algebra). Let I be an arbitrary set, ((Xi,Σi))i∈I be a
family of measurable spaces, X be a set and (fi)i∈I be a family of functions fi : X → Xi.
We define a σ-algebra on X via:

Σ := σ

(⋃
i∈I

f−1
i (Σi)

)
.

This σ-algebra is called the initial sigma-algebra for the fi. By definition this is the
smallest σ-algebra on X (with respect to set theoretic inclusion) for which all the fi are
measurable.

Definition 2.43 (Product Sigma-Algebra). In Definition 2.42 let X :=
∏
j∈I Xj, for

every i ∈ I let fi := πi :
∏
j∈I Xj → Xi, (ωj)j∈I 7→ ωi be the canonical projection.

Then the initial σ-algebra is called the product σ-algebra, denoted by
⊗

j∈I Σj. It is the
smallest σ-algebra for which the projections are measurable.
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While the definition above is rather theoretic we can also specify generators for the
product σ-algebra:

Proposition 2.44 (Generators for the Product σ-Algebra). Let (X,ΣX), (Y,ΣY ) be
measurable spaces and GX ⊆ P(X), GY ⊆ P(Y ) such that X ∈ GX , σ(GX) = ΣX ,
Y ∈ GY and σ(GY ) = ΣY . Then the set:

GX ∗ GY := {SX × SY | SX ∈ GX , SY ∈ GY }

is a generator for the product σ-algebra, i.e. the following holds:

σ(GX ∗ GY ) = σ(GX)⊗ σ(GY ).

Particularly the set ΣX ∗ΣY is a generator for the product σ-algebra and a semi-ring of
sets.

Proof. Cf. [Elstrodt, 2007, Beispiel III.5.3, p. 113] and Proposition 2.18.

Proposition and Definition 2.45 (Product Measure). Let (X,ΣX , µ) and (Y,ΣY , ν)

be measure spaces, µ, ν be σ-finite. There exists a uniquely determined measure µ ⊗
ν : ΣX ⊗ ΣY → R+ on (X × Y,ΣX ⊗ ΣY ) such that for all SX × SY ∈ ΣX ∗ ΣY the
following holds:

µ⊗ ν(SX × SY ) = µ(SX) · ν(SY ).

The measure µ⊗ ν is σ-finite and is called the product measure of µ and ν.

Proof. Cf. [Elstrodt, 2007, Satz und Definition V.1.5, p. 167].

2.3 Probabilistic Transition Systems

Since we now have provided the necessary background from measure theory, we are - at
last - ready to give a thorough definition of probabilistic transition systems:

Definition 2.46 (Probabilistic Transition System w/o Termination). A probabilistic
transition system without (explicit) termination is a tuple ((X,Σ),A, α) where:

• (X,Σ) is an arbitrary measurable space, called the state space,

• A is an alphabet which we consider as measurable space by endowing it with the
sigma-algebra P(A),
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• α : X → S(A×X) is the transition function which assigns to every state x ∈ X a
sub-probability measure on the measurable space

(
A×X,P(A)⊗ Σ

)
.

For every x ∈ X and every a ∈ A we define the probability of making an a-transition
from x to be:

Px,a : Σ→ [0, 1], S 7→ α(x)({a} × S).

We call the transition system

• discrete iff the set X is at most countable and endowed with the σ-algebra P(X)

and

• continuous iff the set X is uncountably infinite.

As we have already seen in the introduction, a system with explicit termination needs
a dedicated state denoting termination:

Definition 2.47 (Probabilistic Transition System with Termination). A probabilistic
transition system with (explicit) termination is a tuple ((X,Σ),A, α) where

• (X,Σ) is an arbitrary measurable space, called the state space,

• A is an alphabet which we consider as measurable space by endowing it with the
sigma-algebra P(A),

• α : X → S(A×X+1) is the transition function which assigns to every state x ∈ X
a sub-probability measure on the measurable space

(
A×X+1, σ

(
P(A)∗Σ⊕P(1)

))
.

The unique symbol X ∈ 1 denotes termination of the system, hence α(x)(1) is the prob-
ability of terminating at the state x. For every x ∈ X and every a ∈ A we define the
probability of making an a-transition from x to be:

Px,a : Σ→ [0, 1], S 7→ α(x)({a} × S).

We call the transition system

• discrete iff the set X is at most countable and endowed with the σ-algebra P(X)

and

• continuous iff the set X is uncountably infinite.

Before we can continue with properties of such transition systems, we need to take a
closer look at category theory.
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2.4 Category Theory

Category theory is a branch of abstract algebra which allows to unify or generalize con-
cepts from different other disciplines of mathematics. While studying different math-
ematical structures, one often has maps between those structures which preserve the
structure. A few examples are:

• Sets and total functions.

• Groups and group homorphisms.

• Topological spaces and continuous maps.

• Vector spaces over a fixed field F and F -linear transformations.

• Measurable spaces and total, measurable functions.

In category theory, each of these examples form a category : the structures are called ob-
jects and the structure preserving maps are called arrows. Many properties of categories
are obtained by looking at the arrows instead of the objects. The definitions and results
from category theory in this section are taken from or based on Pierce [1991], Mac Lane
[1998] and Bonchi et al. [2011].

2.4.1 Categories

Definition 2.48 (Category). A category C consists of:

• A collection of objects denoted obj(C).

• A collection of arrows (also called morphisms) denoted arr(C). Associated with
each arrow f ∈ arr(C) are two objects of the category, the domain of f , denoted by
dom(f) and the codomain of f denoted by cod(f). We denote an arrow f ∈ arr(C)

with domain A and codomain B by f : A→ B.

• A composition operator assigning to a pair of arrows f, g ∈ arr(C) where dom(g) =

cod(f) a composite arrow g ◦f : dom(f)→ cod(g) satisfying the following associa-
tive law for all arrows f : A→ B, g : B → C, h : C → D:

h ◦ (g ◦ f) = (h ◦ g) ◦ f
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• An identity arrow idA : A→ A for every object A satisfying the following identity
law for every (f : A→ B) ∈ arr(C):

f ◦ idA = f and idB ◦ f = f

We present a well-known category as our first example:

Example 2.49 (Category of Sets). Set is the category of sets. Its objects are sets and its
arrows are total functions. Composition of arrows is set-theoretic function composition
and the identity arrows are the identity functions.

Definition 2.50 (Isomorphism). Let C be a category. An arrow f : X → Y is called
in isomorphism iff there is an arrow f−1 : Y → X, called the inverse of f , such that
f ◦ f−1 = idY and f−1 ◦ f = idX . Two objects X and Y are called isomorphic (denoted
X ∼= Y ) iff there is an isomorphism f : X → Y .

Definition 2.51 (Initial and Terminal Objects). Let C be a category. An object I ∈
obj(C) is called an inital object iff for all other objects X ∈ obj(C) there is a unique
arrow f : I → X. Analogously, T ∈ obj(C) is called a terminal object iff for all other
objects X ∈ obj(C) there is a unique arrow f : X → T .

Example 2.52 (Initial and Terminal Objects in Set). The empty set ∅ is the only
initial object in Set with the unique arrow being the empty function. Every set with
only one element is a terminal object with the unique arrow being the constant function
f : X → 1, x 7→ X for every object X.

Definition 2.53 (Product). Let C be a category and I be an arbitrary index set. For
a family of objects (Xi)i∈I we call an object

∏
i∈I

Xi together with projection arrows

πi :
∏
i∈I

Xi → Xi for every i ∈ I a product of the Xi iff for every other object Y with

arrows τi : Y → Xi for every i ∈ I there exists a unique mediating arrow denoted by
〈τi〉i∈I : Y →

∏
i∈I

Xi such that the following diagram commutes for every i ∈ I:

Y

〈τi〉i∈I
��

τi

!!∏
i∈I

Xi πi
// Xi

For finite I, e.g. I = {1, . . . , n}, we also denote the product - if it exists - by X1 ×X2 ×
. . .×Xn. For I = {1, 2} the product is called a binary product.
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Definition 2.54 (Coproduct). Let C be a category and I be an arbitrary index set.
For a family of objects (Xi)i∈I we call an object

∐
i∈I

Xi together with injection arrows

ιi : Xi →
∐
i∈I

Xi for every i ∈ I a coproduct of the Xi iff for every other object Y with

arrows τi : Xi → Y for every i ∈ I there exists a unique mediating arrow denoted by
[τi]i∈I :

∐
i∈I

Xi → Y such that the following diagram commutes for every i ∈ I:

∐
i∈I

Xi

[τi]i∈I

��

Xi
ιioo

τi
}}

Y

For finite I, e.g. I = {1, . . . , n}, we also denote the coproduct - if it exists - by X1 +

X2 + . . .+Xn. For I = {1, 2} the product is called a binary coproduct.

2.4.2 Functors

While we have so far considered arrows which are structure-preserving maps within a
category, we will now focus our attention on functors which are structure-preserving
maps from one category to another.

Definition 2.55 (Functor). Let C,D be categories. A functor F : C→ D is a map that
takes

• each object X ∈ obj(C) to an object F (X) ∈ obj(D) and

• each arrow (f : X → Y ) ∈ arr(C) to an arrow (F (f) : F (X)→ F (Y )) ∈ arr(D)

such that the following holds:

• F (idA) = idF (A) for all C-objects A and

• F (f ◦ g) = F (f) ◦ F (g) for all C-arrows f : B → C, g : A→ B

If C and D are identical, the functor is called an endofunctor.

The following is a trivial example of a functor:

Example 2.56 (Identity Functor). Let C be an arbitrary category. The map IdC : C→
C taking every C-object X to itself and each C-arrow f to itself is an endofunctor.
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We will now present two additional popular examples (the first is taken from Ex.
2.1.7 in Pierce [1991] with slight modifications, the second is constructed analogously)
of functors for categories with all binary (co-)products, which we will also need in the
following chapters of this thesis:

Example 2.57 (Product Functor). Let C be a category with all binary products. Every
C-object A determines a functor (IdC×A) : C→ C, the right product (with A) functor
that takes each object X to X ×A and each arrow f : X → Y to the arrow f × idA : X ×
A→ Y ×A, (x, a) 7→

(
f(x), a

)
. The left product (with A) functor is defined analogously.

Example 2.58 (Coproduct Functor). Let C be a category with all binary coproducts.
Every C-object A determines a functor (IdC + A) : C → C, the right coproduct (with
A) functor that takes each object X to X + A and each arrow f : X → Y to the arrow
f + idA : X + A → Y + A, (x, a) 7→ f(x) + a. The left coproduct (with A) functor is
defined analogously.

A structure-preserving map from one functor to another functor is called a natural
transformation:

Definition 2.59 (Natural Transformation). Let C,D be categories and F and G be
functors from C to D. A natural transformation η from F to G is a function that
assigns to every C-object A a D-arrow ηA : F (A) → G(A) such that for any C-arrow
f : A→ B the following diagram commutes in D:

F (A)
ηA //

F (f)

��

G(A)

G(f)

��
F (B)

ηB // G(B)

We denote a natural transformation η from F to G by η : F ⇒ G.

2.4.3 Coalgebra

Definition 2.60 (Coalgebra). Let F be an endofunctor on a category C. A (F -)coalgebra
is a pair (X,α) where X is an object of C and α : X → FX is a morphism in C.

Definition 2.61 (Coalgebra Homomorphism). Let F be an endofunctor on a category
C, (X,α), (Y, β) be F -coalgebras. A (F -coalgebra) homomorphism f : (X,α)→ (Y, β) is
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a C-morphism such that F (f)◦α = β ◦f , i.e. such that the following diagram commutes:

X

α
��

f // Y

β
��

FX
F (f)

// FY

Definition 2.62 (Final Coalgebra). Let F be an endofunctor on a category C. An F-
coalgebra (Ω, ω) is final iff for any F-coalgebra (X,α) there exists a unique (F -coalgebra)
homomorphism φX : (X,α)→ (Ω, ω).

2.4.4 Monads and Kleisli Categories

Definition 2.63 (Monad). Let C be a category. A monad on C is an endofunctor
T : C→ C together with

• a unit natural transformation η : Id⇒ T , i.e. morphisms ηX : X → TX for every
C-object X and

• a multiplication natural transformation µ : T 2 ⇒ T , i.e. morphisms µX : TTX →
TX for every C-object X

such that the following diagrams commute for all C-objects X:

TX
ηTX //

idTX ##

T 2X

µX
��

TX
T (ηX)oo

idTX{{

T 3X
T (µX)//

µTX

��

T 2X

µX
��

TX T 2X µX
// TX

Given a monad (T, η, µ) on a category C we can define a new category, the Kleisli
category of T , where the objects are the same as in C but every arrow in the new
category corresponds to an arrow f : X → TY in C. Thus, arrows in the Kleisli category
incorporate side effects specified by a monad3. In the following definition we will adopt
the notation used by Mac Lane4, as this notation allows us to distinguish between objects
and arrows in the base category C and their associated objects and arrows in the Kleisli
category K`(T ).

Definition 2.64 (The Kleisli Category of a Monad). Let (T, η, µ) be a monad on a
category C. To each object X of C we associate a new object XT and to each arrow

3Cf. Bonchi et al. [2011]
4Cf. [Mac Lane, 1998, Theorem VI.5.1, p. 147]
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f : X → TY of C we associate a new arrow f [ : XT → YT . Together, these objects
and arrows form a new category K`(T ), the Kleisli category of T , where composition of
arrows f [ : XT → YT and g[ : YT → ZT is defined as follows:

g[ ◦ f [ := (µZ ◦ T (g) ◦ f)[

For every object XT the identity arrow is idXT
= (ηX)[.

Proposition 2.65 (Induced Isomorphism). Let (T, η, µ) be a monad on a category C.
Every isomorphism φ : X → Y in C induces an isomorphism (ηY ◦ φ)[ : XT → YT in
K`(T ).

Proof. Let ψ : Y → X be the inverse arrow of φ. We consider the following diagram in
the category C:

Y
ψ //

idY

��

X
ηX //

φ

��

TX
T (ηY ◦φ) //

T (φ)

��

TTY
µY // TY

Y ηY
// TY

T (ηY )

<<

idTY

77

and denote that it commutes because:

• φ and ψ are inverse isomorphisms: φ ◦ ψ = idY ,

• η : IdC ⇒ T is a natural transformation: ηY ◦ φ = T (φ) ◦ ηX ,

• T is a functor: T (ηY ◦ φ) = T (ηY ) ◦ T (φ) and

• µY is the multiplication natural transformation: µY ◦ T (ηY ) = idTY .

We conclude that:

µY ◦ T (ηY ◦ φ) ◦ (ηX ◦ ψ) = idTY ◦ ηY ◦ idY = ηY

and hence we have:

(ηY ◦ φ)[ ◦ (ηX ◦ ψ)[ = (µY ◦ T (ηY ◦ φ) ◦ (ηX ◦ ψ))[ = η[Y = idYT

Analogously we obtain:
(ηX ◦ ψ)[ ◦ (ηY ◦ φ)[ = idXT
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and the proof is complete.

2.4.5 Coalgebra in a Kleisli Category

Let G be an endofunctor on K`(T ). By our previous definition, a G-coalgebra is a tuple
(XT , α

[) where XT is an object of the Kleisli category and α[ : XT → G(XT ) is an
arrow in the Kleisli category. Thus the corresponding arrow in the base category C is
α : X → TGX.
Given an endofunctor F on C, we now want to construct an endofunctor F on K`(T ) that
“resembles” F : Since objects in C and objects in K`(T ) are basically the same, we want
F to coincide with F on objects i.e. F (XT ) = (FX)T . It remains to define how F shall
act on arrows f [ : XT → YT such that it “resembles” F . We denote that for the associated
arrow f : X → TY we have F (f) : FX → FTY . If we had a map λY : FTY → TFY to
“swap” the endofunctors F and T , we could simply define F (f [) := (λY ◦ F (f))[ which
is exactly what we are going to do:

Definition 2.66 (Distributive Law). Let (T, η, µ) be a monad on a category C and
F : C→ C be an endofunctor on C. A natural transformation λ : FT ⇒ TF is called a
distributive law iff the following diagrams commute in C:

FX
F (ηX)//

ηFX ##

FTX

λX
��

FT 2X
λTX //

F (µX)
��

TFTX
T (λX) // T 2FX

µFX

��
TFX FTX

λX
// TFX

Definition 2.67 (Lifting of a Functor). Let (T, η, µ) be a monad on a category C and
F be an endofunctor on C with a distributive law λ : FT ⇒ TF . The distributive law
induces a lifting of F to an endofunctor F : K`(T )→ K`(T ) where

• for each object XT of K`(T ) we define F (XT ) = (FX)T and

• for each arrow f [ : XT → YT we define F (f [) : F (XT )→ F (YT ) via F (f [) := (λY ◦
Ff)[. The corresponding arrow in the base category C is the arrow λY ◦Ff : FX →
TFY .

Definition 2.68 (Coalgebra in a Kleisli Category). Let (T, η, µ) be a monad on a category
C and F be an endofunctor on C with a distributive law λ : FT ⇒ TF . A (F-)coalgebra
in the Kleisli category K`(T ) of the monad T is a F -coalgebra in K`(T ). Thus it is a tuple
(XT , α

[) where XT is an object in K`(T ) and α[ : XT → F (XT ) is an arrow in K`(T ).
The corresponding tuple in the base category C is the tuple (X,α) where α : X → TFX.
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2.5 Graph Theory

As we will make use of König’s Lemma in a later proof, let us state the few results we
need from graph theory:

Definition 2.69 (Undirected Simple Graph). An undirected simple graph is a pair
G = (V,E) where V is an arbitrary set whose elements are called vertices or nodes
and E ⊆ {e ∈ P(V ) | |e| = 2} =

{
{v1, v2} ∈ P(V ) | v1 6= v2

}
is called the set of

edges. If both, V and E, are finite sets the graph is called finite, otherwise infinite. A
finite/infinite path is a finite/infinite sequence of vertices where for every vertex in the
sequence there is an edge from the vertex to its direct predecessor and an edge to its direct
successor (if those exist). Finite and infinite paths have a start vertex and a finite path
also has an end vertex. An arbitrary path is called a simple path iff all the vertices in
the path are mutually distinct. Two vertices v, w ∈ V are called connected if there is a
path containing both v and w and if every pair of vertices u, v ∈ V is connected, the whole
graph is called a connected graph. For a vertex v ∈ V , the degree of v is the number:

deg(v) := |{e ∈ E | v ∈ e}| ∈ N0 ∪ {∞}

Definition 2.70 (Tree). An undirected graph T = (V,E) is called a tree iff any two
vertices u, v ∈ V are connected by exactly one path. A tree is called rooted iff one vertex
r ∈ V has been designated the root.

Proposition 2.71 (König’s Lemma). Let G be an infinite, connected graph where every
vertex has finite degree. For every vertex v ∈ V there exists an infinite, simple path
(vn)n∈N such that v1 = v.

Proof. Cf. [König, 1936, Satz 3, p. 80].
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3 The Category of Measurable Spaces

Due to the fact that we want to model probabilistic transition systems, it is reasonable
to assume that the category in which we want to do that must have something to do
with the aspect of measurability. Other authors, e.g. Hasuo et al. [2007], try to avoid
this by allowing only discrete probabilistic transition systems, i.e. probabilistic transition
systems where the state space is at most countably infinite. Doing so, they are able to
work in the well-known category Set. We use the category of measurable spaces, Meas,
instead, which allows us to model probabilistic transition systems with uncountable in-
finite state spaces. Moreover, it enables us to define trace semantics for probabilistic
transition systems without explicit termination which - to our knowledge - is impossible
in Set even for discrete probabilistic transition systems. In this chapter we are going to
provide the necessary definitions and results to work in the category Meas.

3.1 Definition and Conventions

Definition 3.1 (The Category of Measurable Spaces). We define the category of mea-
surable spaces denoted Meas as follows:

• The objects of Meas are the measurable spaces X = (X ′,Σ) where X ′ is an ar-
bitrary set endowed with an arbitrary σ-algebra Σ. For an object (X ′,Σ) we will
often use the symbol X ′ to denote the whole tuple (X,Σ). Similarily, given an object
X = (X ′,Σ), we “forget” the σ-algebra and write X instead of X ′.

• Let X = (X ′,ΣX), Y = (Y ′,ΣY ) be measurable spaces. Every ΣX-ΣY measurable
function f ′ : X ′ → Y ′ becomes an arrow f : X → Y of Meas. Conversely this
means that for every arrow f : X → Y there is a uniquely determined ΣX-ΣY

measurable function f ′ : X ′ → Y ′. Although f and f ′ are technically different we
will often denote both maps by the same symbol f .

• Let X = (X ′,ΣX), Y = (Y ′,ΣY ), Z = (Z ′,ΣZ) be measurable spaces. For two
arrows f : X → Y and g : Y → Z we consider the associated ΣX-ΣY -measurable
function f ′ : X ′ → Y ′ and the ΣY -ΣZ-measurable function g′ : Y ′ → Z ′. According
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to Proposition 2.28, their composition g′ ◦ f ′ : X ′ → Z ′ is a ΣX-ΣZ-measurable
function. We define g ◦ f : X → Z to be this function.

• Let X = (X ′,ΣX) be a measurable space. The identity arrow idX : X → X is the
measurable identity function idX′ : X

′ → X ′, x 7→ x.

Now that we know what the category of measurable spaces Meas is, let us provide
some results about it which we will need in the main part of this thesis:

Proposition 3.2 (Isomorphisms). Let X,Y be arbitrary sets, S ⊆ P(X), f : X → Y a
bijective function. Then the following holds:

(a) S is a semi-ring of sets iff f(S) is a semi-ring of sets.

(b) S is a σ-algebra on X iff f(S) is a σ-algebra on Y .

(c) The measurable spaces (X,σ(S)) and (Y, σ (f(S)) are isomorphic in Meas.

Proof. For every set S ∈ P(X) the following holds S ∈ S ⇔ f(S) ∈ f(S). The bijectivity
of f yields the following equalities for all A,B ∈ P(X) and all sequences (Sn)n∈N of sets
Sn ∈ P(X):

f(A \B) = f(A) \ f(B), f

(⋃
n∈N

Sn

)
=
⋃
n∈N

f(Sn) and

(⋂
n∈N

Sn

)
=
⋂
n∈N

f(Sn)

With the help of these facts it is easy to prove (a) and (b). We omit this part and prove
only (c): Let g : Y → X be the inverse function of f . Then the following holds for all
SX ∈ S:

f−1(f(SX)) = (g ◦ f)(SX) = SX ∈ σ(S) and g−1(SX) = f(SX) ∈ σ (f(S))

and thus by Proposition 2.29 f is a σ(S)-σ(f(S))-measurable and g a σ(f(S))-σ(S)-
measurable function. Therefore we have associated arrows f ′ : (X,σ(S))→ (Y, σ (f(S)))

and g′ : (Y, σ (f(S)))→ (X,σ(S)) in Meas. The bijectivity of f yields f ′ ◦ g′ = idY and
g′ ◦ f ′ = idX and hence f ′ is an isomorphism in Meas.

3.2 Initial and Terminal Objects

Proposition 3.3 (Initial Objects in Meas). The measurable space (∅, {∅}) is an initial
object in Meas.
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Proof. Let (X,Σ) be an arbitrary measurable space. The unique arrow mapping (∅, {∅})
to (X,Σ) is the empty function f : ∅ → X which is measurable since for all S ∈ Σ we
trivially have f−1(S) = ∅ ∈ {∅}.

Proposition 3.4 (Terminal Objects in Meas). The measurable space (1,P(1)) is a
terminal object in Meas.

Proof. Let (X,Σ) be an arbitrary measurable space. The unique arrow mapping (X,Σ) to
(1,P(1)) is the constant function f : X → 1, x 7→ X which is measurable since f−1(∅) =

∅ ∈ Σ and f−1(1) = X ∈ Σ is fullfilled for every σ-algebra Σ.

3.3 Products

Proposition 3.5. (Binary Products in Meas) Let (X,ΣX), (Y,ΣY ) ∈ obj(Meas) be
measurable spaces. The measurable space (X × Y,ΣX ⊗ΣY ) together with the projection
arrows π1 : X × Y → X, (x, y) 7→ x and π2 : X × Y → Y, (x, y) 7→ y is a product of
(X,ΣX) and (Y,ΣY ).

Proof. For an arbitrary object (C,ΣC) ∈ obj(Meas) together with arrows τ1 : C → X

and τ2 : C → Y we consider the following diagram in Meas:

C
τ1

{{

τ2

##
τ
��

X X × Yπ1
oo

π2
// Y

and define the arrow τ to be:

τ : C → X × Y, c 7→ (τ1(c), τ2(c))

Obviously this is the only total function making the diagram commute. Measurability of
τ is given as well: For SX × SY ∈ ΣX ∗ ΣY we calculate

τ−1(SX × SY ) = {c ∈ C | τ1(c) ∈ SX and τ2(c) ∈ SY } = τ−1
1 (SX) ∩ τ−1

2 (SY )

The latter set is measurable as it is the intersection of two sets which are measurable
since both τ1 and τ2 are measurable. As the set ΣX ∗ΣY is a generator of ΣX ⊗ΣY this
suffices to show measurability of τ .

We immediately obtain the following result:
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Corollary 3.6. The category of measurable spaces has all finite products.

Proof. The construction from Proposition 3.5 can inductively be extended to finitely
many measurable spaces. An empty product exists as well, since Meas has terminal
objects.

3.4 Coproducts

The category Meas does not only have all finite products but all finite coproducts as
well. Now we are ready to define coproducts in Meas:

Proposition 3.7. (Coproducts in Meas) Let (X,ΣX), (Y,ΣY ) ∈ obj(Meas) be mea-
surable spaces. The measurable space (X + Y,ΣX ⊕ ΣY ) together with the canonical
injection arrows ι1 : X → X+Y, x 7→ (x, 1) and ι2 : Y → X+Y, y 7→ (y, 2) is a coproduct
of (X,ΣX) and (Y,ΣY ).

Proof. For an arbitrary object (C,ΣC) ∈ obj(Meas) together with arrows τ1 : X → C

and τ2 : Y → C we consider the following diagram in Meas:

X
ι1 //

τ1
##

X + Y

τ
��

Y
ι2oo

τ2
{{

C

and define the arrow τ to be:

τ : X + Y → C, z 7→

τ1(x) if z = (x, 1), x ∈ X

τ2(y) if z = (y, 2), y ∈ Y

Obviously this is the only total function making the diagram commute. Measurability of
τ is given as well: For SC ∈ ΣC we calculate:

τ−1(SC) = {z ∈ X + Y | τ(z) ∈ SC}

= {(x, 1) ∈ X + Y | τ1(x) ∈ SC} ∪ {(y, 2) ∈ X + Y | τ2(y) ∈ SC}

= τ−1
1 (SC)︸ ︷︷ ︸
∈ΣX

+ τ−2
2 (SC)︸ ︷︷ ︸
∈ΣY

∈ ΣX ⊕ ΣY

Again we immediately obtain the following result:
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Corollary 3.8. The category of measurable spaces has all finite coproducts.

Proof. The construction from Proposition 3.7 can inductively be extended to finitely
many measurable spaces. An empty product exists as well, sinceMeas has initial objects.

3.5 The (Sub-)Probability Monad

In the last part of this chapter we introduce the (sub-)probability monad onMeas. While
Giry [1981] constructs just a probability monad, the very same construction works for sub-
probabilities as well as Panangaden [2009] points out. The Kleisli category of this monad
can be seen as a “category of stochastic relations”. Its objects are measurable spaces and
its arrows are conditional probability densities or stochastic kernels (cf. [Panangaden,
2009, Chapter 5, pp. 63-76] for further reference). For our considerations it suffices to
know how the functor and the natural transformations of the monad are defined.

Definition 3.9 (Evaluation Map, (Sub-)Probability Functor). Let (X,Σ) be a measur-
able space. We define the sets:

S(X) := {P : Σ→ [0, 1] | P is a sub-probability measure} and

P(X) := {P : Σ→ [0, 1] | P is a probability measure} .

Let T ∈ {S,P}. For every S ∈ Σ we define its evaluation map to be the map

pS : T(X)→ [0, 1], P 7→ P (S)

that takes a (sub-)probability P from the set of all (sub-)probability measures on X and
evaluates it on S. We endow the set T(X) of all (sub-)probabilities with the initial sigma
algebra for the evaluation maps

ΣT(X) := σ

(⋃
S∈Σ

p−1
S (B)

)

and obtain a measurable space
(
T(X),ΣT(X)

)
. By definition this is the smallest σ-algebra

for which all the evaluation maps are Borel-measurable. With these preparations we
can define the sub-probability functor S : Meas → Meas and the probability functor
P : Meas → Meas. For T ∈ {S,P} each measurable space (X,Σ) ∈ obj(Meas) is
mapped to T

(
(X,Σ)

)
:=
(
T (X),ΣT (X)

)
and each arrow (f : X → Y ) ∈ arr(Meas) is
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mapped to an arrow T(f) where for all P ∈ T (X) we have T(f)(P ) := Pf . Thus T(f)

assigns to every (sub-)probability measure P the image measure of P, f .

Definition and Proposition 3.10 (The (Sub-)Probability Monad). Let T ∈ {S,P}.
We define the following natural transformations:

• For all measurable spaces (X,Σ) we define the function:

ηX : X → T(X), x 7→ δXx

which assigns to every x ∈ X its Dirac measure on X. Taking all the corresponding
arrows of Meas we obtain a natural transformation η : IdMeas → T.

• Again for all measurable spaces (X,Σ) we define the function µX : T2(X)→ T (X)

where for every (sub-)probability measure P ∈ T2(X) a (sub-)probability measure
on X is defined via

µX(P )(S) :=

∫
pS dP ∀S ∈ ΣX

where pS is the evaluation map. Taking all the corresponding arrows of Meas we
obtain another natural transformation µ : T2 ⇒ T.

Then the triple (T, η, µ) is a monad on Meas.

Proof. The proof for T = P can be found in [Giry, 1981, Theorem 3.1., pp. 70f.] and for
T = S a proof is in [Panangaden, 2009, Theorem 5.3, pp. 66f.].
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4 PTS as Coalgebra

4.1 Sigma Algebras on Words

Due to the fact that we are working in the category of measurable spaces, it is necessary
to define suitable σ-algebras on the sets of words, A∗ and Aω. In this section we will
therefore define sets S∗ ⊆ P(A∗) and Sω ⊆ P(Aω) and show, that they are semi-rings of
sets. Moreover, given a non-negative map µ : S → R+ for S ∈ {S∗,Sω} we will present
sufficient criteria to show σ-additivity of µ. Of course, we will then consider A∗ and Aω

as measurable spaces by endowing them with the σ-algebras generated by S∗ or Sω.

4.1.1 A Sigma Algebra on Finite Words

Definition and Proposition 4.1. Let A be an arbitrary alphabet. The set

S∗ := {∅} ∪ {{u} | u ∈ A∗}

is a semi-ring of sets. For a family (Sn)n∈N of mutually disjoint sets from S∗ such that⋃
n∈N Sn ∈ S∗ it necessarily holds, that Sn 6= ∅ for at most one n ∈ N. Thus every non-

negative map µ : S∗ → R+ where µ(∅) = 0 is trivially σ-additive and hence a pre-measure.
Furthermore the following is valid:

σ(S∗) = P(A∗)

Proof. We have already seen that the singletons form a semi-ring of sets and that the
generated σ-algebra is the powerset. The rest of the proposition is obvious.

Definition and Proposition 4.2. Let A be an alphabet. We consider the bijective
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functions

φ : A∗ → A×A∗ + 1, φ(u) =

X, u = ε

(a, u′), u = au′, a ∈ A, u′ ∈ A∗

ψ : A×A∗ + 1→ A∗, ψ(u) =

ε, u = X

conc(a, u′), u = (a, u′)

and define:
S ′∗ := φ(S∗) = {∅} ∪ {X} ∪ {{(a, u)} | a ∈ A, u ∈ A∗} .

Then S ′∗ is a semi-ring of sets and the measurable spaces (A∗, σ(S∗)) and (A × A∗ +

1, σ(S ′∗))are isomorphic in Meas.

Proof. This follows immediately from Proposition 3.2.

Proposition 4.3. Let A be an alphabet. Then the following holds:

σ(S ′∗) = σ
(
P(A) ∗ σ(S∗)⊕ P(1)

)
Proof. We obviously have S ′∗ ⊆ P(A) ∗ σ(S∗) ⊕ P(1) and by the monotonicity of the
σ-operator we obtain σ(S ′∗) ⊆ σ

(
P(A) ∗ σ(S∗)⊕P(1)

)
. The set A×A∗+ 1 is countable

and thus we conclude with Example 2.12 that:

P(A×A∗ + 1) = σ(S ′∗) ⊆ σ
(
P(A) ∗ σ(S∗)⊕ P(1)

)
⊆ P(A×A∗ + 1)

and thus equality must hold.

4.1.2 A Sigma Algebra on Infinite Words

Definition 4.4 (ω-Cones). Let A be an arbitrary alphabet. We define for every finite
word a ∈ A∗ the ω-cone of a to be:

cone(a) := {u ∈ Aω | a v u}

Definition and Proposition 4.5. Let A be a finite alphabet. The set of all ω-cones of
A given by:

Sω := {∅} ∪ {cone(a) | a ∈ A∗}

is a semi-ring of sets. Let (Sn)n∈N be a family of disjoint sets from Sω such that⋃
n∈N Sn ∈ Sω. Then Sn 6= ∅ holds for only finitely many n ∈ N. After resorting
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the Sn we can hence assume that there exist an N ∈ N and finite words un ∈ A∗ for
every n ∈ {1, ..., N} such that

Sn =

cone(un), 1 ≤ n ≤ N

∅, n > N

Moreover there is a finite word u ∈ A∗ such that

⋃
n∈N

Sn =
N⋃
n=1

cone(un) = cone(u)

and u v un for all n ∈ {1, ..., N}.

Proof. 1 By definition we have ∅ ∈ Sω. For A,B ∈ Sω where A = ∅ or B = ∅ obviously
A ∩B = ∅ ∈ Sω and A \B ∈ Sω. For a, b ∈ A∗ the following holds:

cone(a) ∩ cone(b) =


cone(b), if a v b

cone(a), if b v a

∅, else

and hence we also have cone(a) ∩ cone(b) ∈ Sω. Furthermore:

cone(a) \ cone(b) =



⋃
c∈A|b|−|a|\{b}

cone(ac), if a v b

∅, if b v a

cone(a), else

Obviously, for a finite alphabet, the union in the first case is finite and hence Sω is a
semi-ring of sets.
For the second part of the proposition we consider the undirected rooted tree given by
T = (A∗, E) where E := {{u, uv} | u ∈ A∗, v ∈ A} and ε ∈ A∗ is the dedicated root.

1Based on ideas (tree-metaphor and the use of Königs Lemma) by Prof. Dr. Barbara König and
Mathias Hülsbusch.
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For A = {a, b, c} this tree can be depicted as follows:

ε

a b c

aa ab ac ba bb bc ca cb cc

We can think of the set of all infinite words Aω as being the set of all infinite simple
paths starting at the root ε of the tree. For a finite alphabet A obviously every vertex
of this tree has the same, finite degree, namely |A|+ 1. Given a finite word u ∈ A∗, we
can identify the cone of u to be the set of all infinite simple paths that begin in ε and
contain the vertex u.
Let (Sn)n∈N be a sequence of mutually disjoint cones such that

⋃
n∈N Sn ∈ Sω. Then

either
⋃
n∈N Sn = ∅ and hence Sn = ∅ for all n ∈ N or there must be a finite word u ∈ A

such that
⋃
n∈N Sn = cone(u). We will show by contradiction that this u cannot exist if

Sn 6= ∅ for infinitely many n ∈ N. Let thus (Sn)n∈N be a sequence of mutually disjoint
cones such that Sn 6= ∅ for infinitely many n ∈ N. Without loss of generalization we can
assume that for every n ∈ N there is an un ∈ A∗ such that Sn = cone(un) 6= ∅. We
assume that there is a suitable u ∈ A∗ such that

⋃
n∈N cone(un) = cone(u). Necessarily

we have u v un for every n ∈ N or in other words we know that for every n ∈ N the
vertex u must be contained in the (unique) simple undirected path in T connecting the
root ε with un. We consider the subgraph T ′ := (A,EA) where A ⊆ A∗ is the set of
vertices contained in the simple paths connecting u with un and EA ⊆ E is the set of
edges contained in them. By our previous observation we conclude that T ′ is a tree with
root u. As the set {un | n ∈ N} is infinite, we have thus constructed an infinite, connected
graph where every vertex has finite degree. König’s Lemma, Proposition 2.71, states that
T ′ contains an infinite, simple path starting at a. This is a contradiction as every path
in T ′ starting at u leads to one of the un and is accordingly finite by construction. Thus
our assumption must be wrong and there cannot be such a word u as required.

The previous theorem provides an easy way to check σ-additivity of a given map on
Sω as we will see in the next corollary.

Corollary 4.6. Let A be a finite alphabet. A non-negative map µ : Sω → R+ with
µ(∅) = 0 is sigma-additive and hence a pre-measure iff for every u ∈ A∗ the following
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holds:

µ(cone(u)) = µ

(⋃
a∈A

cone(ua)

)
=
∑
a∈A

µ(cone(ua))

Proof. It is obvious, that σ-additivity implies the validity of the given equality. In order
to show that the given equality suffices to show σ-additivity, we consider a sequence
of cones of the form (cone(un))1≤n≤N where N ∈ N, N > 1 (N = 1 is trivial!) and⋃N
n=1 cone(un) = cone(u). We define U0 := {u1, ..., un}. Let v = v1...vm ∈ {v ∈

U0 | |v| = max1≤n≤N |{un}|}. Since the cones of the form cone(un) are required to be
mutually disjoint, none of the un ∈ U \ {v} can be a prefix of v. However, all the cones
of the form cone(v1...vm−1a) where a ∈ A are contained in cone(u) because u @ v (we
must have u 6= v because N > 1) . Thus we must have v1...vm−1a ∈ U for every a ∈ A.
We know that the following holds:

µ(cone(v1...vm−1)) = µ

(⋃
a∈A

cone(v1...vm−1a)

)
=
∑
a∈A

µ(cone(v1...vm−1a))

Therefore we may “contract” U0 and define U1 = {v1...vm−1}∪U0 \{v1...vm−1a | a ∈ A}.
By applying the previous steps repeatedly, we obtain the desired σ-additivity of µ.

While in (A∗,P(A∗)) everything is measurable, it is not that obvious which sets -
besides the ω-cones themselves - are measurable in the sigma algebra generated by the
ω-cones. The following remark will provide some insight into what sets are measurable:

Remark 4.7 (The Sigma Algebra of Cones). The following sets are measurable sets in
σ(Sω):

• Single infinite words u ∈ Aω: {u} =
⋂

v∈pref(u)

cone(v).

• The set of all infinite words which contain a finite word v ∈ A∗ at a specified
position: {u ∈ Aω | ∃v1 ∈ Am : v1v v u} =

⋃
v1∈Am

cone(v1v).

• The set of all infinite words which contain a finite word v ∈ A∗: {u ∈ Aω | ∃v1 ∈
A∗ : v1v v u} =

⋃
v1∈A∗

cone(v1v).

Proof. This follows immediately from the fact that the intersection and the unions are
countable.
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Proposition 4.8. Let A be an alphabet. We consider the bijective functions:

φ : Aω → A×Aω, (un)n∈N 7→
(
u1, (un+1)n∈N

)
ψ : A×Aω → Aω, (u, v) 7→ conc(u, v)

and define:

S ′ω := φ(Sω) = φ ({∅} ∪ {cone(u) | u ∈ A∗ \ {ε}} ∪ {cone(ε)})

= {∅} ∪ {{a} × cone(u) | a ∈ A, u ∈ A∗} ∪ {A × cone(ε)}}

Then S ′ω is a semi-ring of sets and the measurable spaces (Aω, σ(Sω)) and (A×Aω, σ(S ′ω))

are isomorphic in Meas.

Proof. This follows immediately from Proposition 3.2.

Proposition 4.9. Let A be an alphabet. Then the following holds:

σ(S′ω) = P(A)⊗ σ(Sω)

Proof. We know from Example 2.12 that σ({∅} ∪ {{a} | a ∈ A}) = P(A) and conclude
that G := {A} ∪ {∅} ∪ {{a} | a ∈ A} fulfills A ∈ G and σ(G) = P(A). Due to the fact
that Aω = cone(ε) ∈ Sω we can apply Proposition 2.44 and conclude that the following
holds:

σ(G ∗ Sω) = P(A)⊗ σ(Sω)

Finally we show that σ(S ′ω) = σ(G ∗ Sω):

“⊆” We note that S ′ω ⊆ G ∗ Sω. The monotonicity of the σ-operator yields σ(S ′ω) ⊆
σ(G ∗ Sω).

“⊇” Obviously we have ∅ × cone(u) = ∅ ∈ σ(S ′ω) and {a} × cone(u) ∈ σ(S ′ω) for every
a ∈ A and every u ∈ A∗. Furthermore the following holds for every u ∈ A∗:

A× cone(u) =
⋃
a∈A
{a} × cone(u)︸ ︷︷ ︸

∈σ(S′ω)

∈ σ(S ′ω)

and thus we have shown that G ∗ Sω ⊆ σ(S ′ω). The monotonicity and the idempo-
tence of the σ-operator yield:

σ(G ∗ Sω) ⊆ σ
(
σ(S ′ω)

)
= σ(S ′ω)
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4.2 The Endofunctor F = A× IdMeas and PTS w/o
Termination

4.2.1 The Endofunctor

Definition 4.10 (The Endofunctor F = A× IdMeas). Let A be an alphabet. We define
an endofunctor F := A× IdMeas + 1 : Meas→Meas:

• For each measurable space (X,Σ) we define

F
(
(X,Σ)

)
:= (A×X + 1, σ

(
P(A) ∗ Σ)

)
= (A×X + 1,P(A)⊗ Σ)

• For each measurable arrow f : (X,ΣX)→ (Y,ΣY ), i.e. a ΣX-ΣY measurable total
function f ′ : X → Y we define F (f) to be the arrow corresponding to the P(A)⊗ΣX-
P(A)⊗ ΣY -measurable total function:

F ′(f) : A×X → A× Y

(a, x) 7→ (a, f ′(x))

Proposition 4.11. F as defined above is well-defined.

Proof. We have to verify, that F (f)′ is P(A)⊗ΣX -P(A)⊗ΣY -measurable. For arbitrary
SA × SY ∈ P(A) ∗ ΣY we calculate

F ′(f)−1(SA × SY ) = SA × (f ′)−1(SY )︸ ︷︷ ︸
∈ΣX

∈ P(A) ∗ ΣX ⊆ P(A)⊗ ΣX

Checking that F is a functor is trivial.

4.2.2 A Distributive Law

Proposition and Definition 4.12 (A Distributive Law). Let A be an alphabet, F =

A × IdMeas : Meas → Meas and let T ∈ {S,P} be either the sub-probability or the
probability monad. For every X ∈ obj(Meas) we define an arrow:

λX : A× T(X)→ T(A×X)

(a, P ) 7→ δAa ⊗ P.
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Then λ : FT→ TF is a distributive law.

Proof. We denote that (δAa ⊗ P )(A×X) = P (X) holds for all a ∈ A. Thus δAa ⊗ P is a
(sub-)probability measure on A ×X iff P is a (sub-)probability measure on X. Let us
now show that λ is a natural transformation. For an arbitrary arrow (f : X → Y ) ∈
arr(Meas) we consider the following diagram in Meas:

FTX λX //

FT(f)
��

TFX
TF (f)
��

FTY λY // TFY

For arbitrary (a, P ) ∈ A× T(X) and S := SA × SY ∈ P(A) ∗ ΣY we calculate:

(TF (f) ◦ λX)(a, P )(S) = (δAa ⊗ P )
(
F (f)−1(S)

)
= (δAa ⊗ P )(SA × f−1(SY ))

= δAa (SA) · P
(
f−1(SY )

)
= δa(SA) · Pf (SY )

= (δAa ⊗ Pf )(SA × SY )

= (λY ◦ FT(f))(a, P )(S)

Since (sub-)probability measures are finite measures and thus trivially σ-finite, we can use
Corollary 2.23 and conclude that the diagram commutes for all arrows f ∈ arr(Meas)

and hence λ is a natural transformation. Analogously we consider the diagram:

FX
F (ηX)//

ηFX ##

FTX
λX
��

TFX

For arbitrary (a, x) ∈ F (X) and S := SA × SX ∈ P(A) ∗ ΣX we calculate:

ηF (X)(a, x)(S) = δA×X(a,x) (SA × SX)

= δAa (SA) · δXx (SX)

= (δAa ⊗ δXx )(S)

= λX(a, δXx ) = λX ◦ F (ηX)(a, x)

As above, Corollary 2.23 yields commutativity of the diagram. Finally we consider the
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diagram:

FT2X
λT(X) //

F (µX)
��

TFTX
T(λX) // T2FX

µF (X)

��
FTX

λX
// TFX

For arbitrary (a, P ) ∈ FT2X = A×T(T(X)) and S = SA×SX ∈ P(A)∗ΣX we calculate:

(λX ◦ F (µX)) (a, P )(S) = (λX (a, µX(P ))) (S)

=
(
δAa ⊗ µX(P )

)
(S)

= δAa (SA) · (µX(P )) (SX)

= δAa (SA) ·
∫
pSX

dP

and:

(
µFX ◦ T(λX) ◦ λT(X)

)
(a, P )(S) = µFX

((
δAa ⊗ P

)
λX

)
(S)

=

∫
TFX

pS d
(
δAa ⊗ P

)
λX

(1)
=

∫
λ−1
X (TFX)

pS ◦ λX d
(
δAa ⊗ P

)
(2)
=

∫
{a}×T(X)

pS ◦ λX d
(
δAa ⊗ P

)
(3)
=

∫
P ′∈T(X)

(δAa ⊗ P ′)(S) dP (P ′)

=

∫
P ′∈T(X)

δAa (SA) · P ′(SX) dP (P ′)

= δAa (SA) ·
∫
pSX

dP

where we have used:

(1) Proposition 2.39.

(2) The fact that (A\{a})×T(X) is a null set for δAa ⊗P in conjunction with Corollary
2.38.

(3) (pS ◦ λX)(a, P ′) = (δAa ⊗ P ′)(S) and ∀M ∈ ΣT(X) : (δAa ⊗ P )({a} ×M) = P (M).

As before, commutativity of the diagram is a result of Corollary 2.23.
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4.2.3 PTS w/o Termination as Coalgebra

Although we have defined probabilistic transition systems with the transition function α
consisting of sub-probability measures, we are now going to restrict our considerations
to systems where α is made up of probability measures as we are only able to prove the
final coalgebra theorem for such systems.

Remark 4.13 (PTS without Termination as Coalgebra). Let A be an alphabet. We
consider the probability monad (P, η, µ) and the endofunctor F := A× IdMeas on Meas

together with the lifting F : K`(P)→ K`(P) induced by the distributive law λ : FP→ PF .
A probabilistic transition system without explicit termination ((X,Σ),A, α), where α com-
prises merely of probability measures can be expressed as the F -coalgebra ((X,Σ)P, α

[).

Proof. This follows immediately from the definitions of a PTS without termination and
a coalgebra in a Kleisli category.

4.2.4 A Final Coalgebra and Trace Semantics for PTS w/o Termination

Theorem 4.14 (Final Coalgebra). Let A be a finite alphabet. We consider the probability
monad (P, η, µ) and the endofunctor F := A× IdMeas on Meas together with the lifting
F : K`(P) → K`(P) induced by the distributive law λ : FP → PF . A final F -coalgebra is
the tuple

(
(Aw, σ(Sω))P, κ

[
)
where κ[ : AωP → F (AωP) is the induced isomorphism associ-

ated to:
κ := ηF ((Aω ,σ(Sω))) ◦ φ : Aω → P(A×Aω), u 7→ δA×A

ω

φ(u)

Given an arbitrary F -coalgebra
(
(X,Σ)P, α

[
)
, the unique arrow mapping this coalgebra

to the final coalgebra is tr[ : XP → AωP associated to tr : X → P(Aω) where for every
x ∈ X the probability measure tr(x) : σ(Sω)→ [0, 1] is the uniquely determined extension
of the finite (and thus σ-finite) pre-measure tr(x) : Sω → [0, 1] defined by the following
equations:

tr(x)(∅) = 0

tr(x)(cone(ε)) = 1

tr(x)(cone(au)) =

∫
tru dPx,a ∀a ∈ A, ∀u ∈ A∗

where for every a ∈ A:

Px,a : ΣX → [0, 1], Px,a(S) := α(x)({a} × S)
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and for every u ∈ A∗:

tru : X → [0, 1], x 7→ tr(x)(cone(u)).

Proof. First we verify, that the map tr defined by the given equations is indeed a finite
(and thus σ) finite pre-measure. Using Corollary 4.6 we denote that for tr to be a
pre-measure, it is sufficient to show σ-additivity of tr: Let u = a1...am ∈ A∗, then:

tr(x)
(
cone(u)

)
=

∫
tra2...am dPx,a1

=

∫
x1∈X

tr(x1)
(
cone(a2...am)

)
dPx,a1(x1)

=

∫
x1∈X

(∫
tra3...am dPx1,a2

)
dPx,a1(x1)

=

∫
x1∈X

 ∫
x2∈X

tr(x2)
(
cone(a3...am)

)
dPx1,a2(x2)

 dPx,a1(x1)

=

∫
x1∈X

. . .

∫
xm∈X

tr(xm)
(
cone(ε)

)︸ ︷︷ ︸
=1

dPxm−1,am(xm) . . . dPx,a1(x1)

=

∫
x1∈X

. . .

∫
xm∈X

1 dPxm−1,am(xm) . . . dPx,a1(x1)

and for arbitrary b ∈ A we obtain analogously:

tr(x)
(
cone(ub)

)
=

∫
x1∈X

. . .

∫
xm∈X

tr(xm)
(
cone(b)

)︸ ︷︷ ︸
=Pxm,b(X)

dPxm−1,am(xm) . . . dPx,a1(x1)

=

∫
x1∈X

. . .

∫
xm∈X

Pxm,b(X) dPxm−1,am(xm) . . . dPx,a1(x1).
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All integrals exist and are bounded above by 1 and we can use the linearity of the
integral to exchange the finite sum and the integrals to obtain:

∑
b∈A

tr(x)
(
cone(ub)

)
=
∑
b∈A

∫
x1∈X

. . .

∫
xm∈X

Pxm,b(X) dPxm−1,am(xm) . . . dPx,a1(x1)

=

∫
x1∈X

. . .

∫
xm∈X

(∑
b∈A

Pxm,b(X)

)
dPxm−1,am(xm) . . . dPx,a1(x1)

=

∫
x1∈X

. . .

∫
xm∈X

(∑
b∈A

α(x)({b} ×X)

)
dPxm−1,am(xm) . . . dPx,a1(x1)

=

∫
x1∈X

. . .

∫
xm∈X

(α(x)(A×X))︸ ︷︷ ︸
=1

dPxm−1,am(xm) . . . dPx,a1(x1)

=

∫
x1∈X

. . .

∫
xm∈X

1 dPxm−1,am(xm) . . . dPx,a1(x1)

= tr(x)
(
cone(u)

)
Hence tr(x) is σ-additive and since tr(x)(Aω) = 1 <∞ it is a σ-finite pre-measure which
we can extend (uniquely!) to a measure.
In order to show that the given tuple is a final coalgebra, let

(
(X,Σ)P, α

[
)
be an arbi-

trary F -coalgebra. We have to show that tr[ : (X,Σ)P → (Aω, σ(Sω))P is the uniquely
determined arrow such that the following diagram commutes:

(X,Σ)P
α[

//

tr[

��

(A×X,P(A)⊗ Σ)P

F (tr[)
��

(Aω, σ(Sω))P
κ[

∼=
// (A×Aω,P(A)⊗ σ(Sω))P

We define the following arrows:

g[ := κ[ ◦ tr[ (down, right) h[ := F (tr[) ◦ α[ (right, down)
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such that commutativity is equivalent to g[ = h[ and conclude

g[ = h[

⇔ g = h

⇔ g(x) = h(x) ∀x ∈ X

⇔ g(x)(S) = h(x)(S) ∀x ∈ X,∀S ∈ P(A)⊗ σ(Sω)

⇔ g(x)(S) = h(x)(S) ∀x ∈ X,∀S ∈ σ(S ′ω)

⇔ g(x)(S) = h(x)(S) ∀x ∈ X,∀S ∈ S ′ω

using for the last step that S ′ω is a semi-ring of sets, the fact that for all x ∈ X both g(x)

and h(x) are finite and thus σ-finite measures since they are probability measures and
Corollary 2.23. For arbitrary x ∈ X and S ∈ S ′ω we calculate g(x)(S) as follows:

g(x)(S) = (µA×Aω ◦ P(κ) ◦ tr)(x)(S)

= µA×Aω (P(κ)(tr(x))) (S)

= µA×Aω (tr(x)κ) (S)

=

∫
pS dtr(x)κ

(1)
=

∫
pS ◦ κdtr(x)

(2)
=

∫
χψ(S) dtr(x) = tr(x)(ψ(S))

In (1) we used Proposition 2.39 and in (2) the fact that for every S as above and for
every u ∈ A∗ the following holds:

pS ◦ κ(u) = δA×A
ω

φ(u) (S) = χS(φ(u)) = χψ(S)(u)

Hence we get the following set of equations:

g(x)(∅) = tr(x)(∅)

g(x)(A× cone(ε)) = tr(x)(cone(ε))

g(x)({a} × cone(u)) = tr(x)(cone(au)) ∀a ∈ A, ∀u ∈ A∗

In order to calculate h(x)(S), let:

ρ := λA×Aω ◦ (idA × tr) : A×X → P(A×Aω)
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and for every S ∈ S ′ω let:

ρS := pS ◦ ρ : A×X → [0, 1], (a, x) 7→
(
ρ(a, x)

)
(S)

Then we obtain the following result:

h(x)(S) = (µA×Aω ◦ P(ρ) ◦ α)(x)(S)

= µA×Aω (P(ρ)(α(x))) (S)

= µA×Aω (α(x)ρ) (S)

=

∫
pS dα(x)ρ

(1)
=

∫
pS ◦ ρdα(x)

=

∫
ρS dα(x)

where we have used Proposition2.39 in (1). Obviously we have h(x)(∅) = 0. For (b, x′) ∈
A×X the following holds:

ρA×cone(ε)(b, x
′) =

(
δAb ⊗ tr(x′)

)
(A× cone(ε))

= δAb (A) · tr(x′)
(
cone(ε)

)
= tr(x′)

(
cone(ε)

)
= trε(x

′)

= (trε ◦ π2) (b, x′)

where π2 : A×X → X is the canonical projection of the product and hence:

h(x)(A× cone(ε)) =

∫
trε ◦ π2 dα(x)

For a ∈ A, u ∈ Aω, (b, x′) ∈ A×X the following holds:

ρ{a}×cone(u)(b, x
′) =

(
δAb ⊗ tr(x′)

)
({a} × cone(u))

= δAb ({a}) · tr(x′)
(
cone(u)

)
= χ{a}(b) · tru(x′)

= χ{a}×X(b, x′) · (tru ◦ π2)(b, x′)



4.2 The Endofunctor F = A× IdMeas and PTS w/o Termination 57

and hence:

h(x) ({a} × cone(u)) =

∫
χ{a}×X · (tru ◦ π2) dα(x)

=

∫
{a}×X

tru ◦ π2 dα(x)

=

∫
X
tru dPx,a

Thus we have shown that the commutativity of the diagram is equivalent to the following
set of equations:

tr(x)(∅) = 0

tr(x)(cone(ε)) =

∫
trε ◦ π2 dα(x) ∀x ∈ X

tr(x)(cone(au)) =

∫
tru dPx,a ∀x ∈ X,∀a ∈ A, ∀u ∈ A∗

We denote that tr as defined in the proposition fulfills these equations because:∫
trε ◦ π2 dα(x) =

∫
1 dα(x) = α(x)(A×X) = 1

where the last equality follows from the fact that α(x) is a probability measure on A×X.
Furthermore tr is the is uniquely defined by these equations because tr(x)(cone(ε)) =

tr(x)(Aω) = 1 is a necessary requirement for every probability measure.

Remark 4.15 (Trace Semantics for PTS without Termination). Let ((X,Σ),A, α) be
a probabilistic transition system without termination with finite alphabet A such that α
comprises merely of probability measures. For every x ∈ X the uniquely defined probability
measure tr(x) as defined in Theorem 4.14 is called the trace of x.

4.2.5 Examples

Example 4.16. Let X = {0} and A be a finite alphabet such that � ∈ A. We de-
fine α(0) := δ

A×{0}
(�,0) . The graphical representation of the resulting transition system

(({0}, {∅, {0}}), α) is

0 �,1hh
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We denote that P0,a = δA� ({a}) and tr(0)(cone(�n)) =
∫
tr�n−1 dδ

A×{0}
(�,0) = 1 and calculate

the trace map:

tr(0)({�ω}) = tr(x)

 ⋂
n∈N0

cone(�n)


= tr(0)

Aω \
 ⋃
n∈N0

(Aω \ cone(�n))


= tr(0)(Aω)− tr(0)

 ⋃
n∈N0

(Aω \ cone(u))


≥ 1−

∑
n∈N0

tr(0) (Aω \ cone(�n))

≥ 1−
∑
n∈N0

(tr(0)(Aω)− tr(0)(cone(�n)))

= 1−
∑
n∈N0

(1− 1) = 1

and tr(0)(Aω \ {�ω}) = 1− 1 = 0. We obtain:

tr(x0) = δA
ω

�ω .

Example 4.17. Let X := N0 and A be a finite alphabet such that � ∈ A. We de-
fine α(n) := δA×N(�,n+1) for every n ∈ N0 and consider the probabilistic transition system(
(N0,P(N0)), α

)
which has the following graphical representation:

0
�,1 // 1

�,1 // 2
�,1 // 3

�,1 // 4
�,1 // 5

�,1 // 6
�,1 // . . .

We denote that Pn,a = δA� ({a}) · δN0
n+1 and claim that tr(m)(cone(�n)) = 1 for all m,n ∈

N0. (This can easily be verified by induction.) As in the previous example, we conclude
that for all m ∈ N0 we have tr(m) = δA

ω

�ω .



4.3 The Endofunctor F = A× IdMeas + 1 and PTS with Termination 59

4.3 The Endofunctor F = A× IdMeas + 1 and PTS with
Termination

4.3.1 The Endofunctor

Definition 4.18 (The Endofunctor F = A × IdMeas + 1). Let A be an alphabet. We
define an endofunctor F := A× IdMeas + 1 : Meas→Meas:

• For each measurable space (X,Σ) we define

F
(
(X,Σ)

)
:= (A×X + 1, σ

(
P(A) ∗ Σ⊕ P(1)

)
• For each measurable arrow f : (X,ΣX)→ (Y,ΣY ), i.e. a ΣX-ΣY measurable total
function f ′ : X → Y we define F (f) to be the arrow corresponding to the σ

(
P(A) ∗

ΣX ⊕ P(1)
)
-σ
(
P(A) ∗ ΣY ⊕ P(1)

)
-measurable total function:

F ′(f) : A×X + 1→ A× Y + 1

(a, x) 7→ (a, f ′(x))

X 7→ X

Proposition 4.19. F as defined above is well-defined.

Proof. We have to verify, that F (f)′ is σ(P(A) ∗ ΣX ⊕ P(1)-σ(P(A) ∗ ΣY ⊕ P(1)-
measurable. For arbitrary SA × SY + S1 ∈ P(A) ∗ ΣY ⊕ P(1) we calculate

F ′(f)−1(SA×SY +S1) = SA×(f ′)−1(SY )︸ ︷︷ ︸
∈ΣX

+S1 ∈ P(A)∗ΣX⊕P(1) ⊆ σ
(
P(A)∗ΣX⊕P(1)

)
Checking that F is a functor is trivial.

Definition 4.20. Let (X,ΣX , µ), (Y,ΣY , ν) be measure spaces, (Z,ΣZ) be a measurable
space. We define a pre-measure:

µ� ν : ΣX ∗ ΣY ⊕ ΣZ → R+

SX × SY + S1 7→ µ(SX) · ν(SY )

Proposition 4.21. Let in Definition 4.20 µ and ν be σ-finite measures. Then µ� ν can
uniquely be extended to a σ-finite measure on σ

(
ΣX ∗ ΣY ⊕ ΣZ

)
.
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Proof. Recall from Corollary 2.2.2 that ΣX ∗ΣY ⊕ΣZ is a semi-ring of sets. Due to the
fact that µ and ν are σ-finite, we have sequences (SnX)n∈N and (SnY )n∈N such that for
all n ∈ N we have SnX ∈ ΣX , SnY ∈ ΣY , µ(SX) < ∞, ν(SY ) < ∞,

⋃
n∈N S

n
X = X and⋃

n∈N S
n
Y = Y . Moreover, for allm,n ∈ N we obviously have SmX×SnY +Z ∈ ΣX∗ΣY ⊕ΣZ ,

µ� ν(SnX × SnY + Z) = µ(SnX) · ν(SnY ) < ∞ and
⋃

(m,n)∈N2 SmX × SnY + Z = X × Y + Z.
Thus µ � ν as defined in Definition 4.20 is a σ-finite pre-measure. Hence we can apply
the extension theorem, Theorem 2.22, and the proof is complete.

4.3.2 A Distributive Law

Proposition and Definition 4.22 (A Distributive Law). Let A be an alphabet, F =

A × IdMeas + 1 : Meas →Meas and let T ∈ {S,P} be either the sub-probability or the
probability monad. For every X ∈ obj(Meas) we define an arrow:

λX : A× T(X) + 1→ T(A×X + 1)

X 7→ δA×X+1
X

(a, P ) 7→ δAa � P.

Then λ : FT⇒ TF is a distributive law.

Although the proof is quite similar to the proof of Proposition 4.12, we will give it for
reasons of completeness.

Proof. We denote that (δAa � P )(A×X + 1) = P (X) holds for all a ∈ A. Thus δAa � P
is a (sub-)probability measure on A×X + 1 iff P is a (sub-)probability measure on X.
Let us now show that λ is a natural transformation. For an arbitrary arrow (f : X →
Y ) ∈ arr(Meas) we consider the following diagram in Meas:

FT(X)
λX //

FT(f)
��

TF (X)

TF (f)
��

FT(Y )
λY // TF (Y )
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For arbitrary (a, P ) ∈ A×T(X) and S := SA×SY ×S1 ∈ P(A)∗ΣY ⊕P(1) we calculate:

(TF (f) ◦ λX)(a, P )(S) = (δAa � P )
(
F (f)−1(S)

)
= (δAa � P )(SA × f−1(SY ) + S1)

= δAa (SA) · P
(
f−1(SY )

)
= δAa (SA) · Pf (SY )

= (δAa � Pf )(SA × SY + S1)

= (λY ◦ FT(f))(a, P )(S)

and analogously:

(TF (f) ◦ λX)(X)(S) = δA×X+1
X

(
F (f)−1(S)

)
= δA×X+1

X

(
SA × f−1(SY ) + S1

)
= δA×Y+1

X (S)

= (λY ◦ FT(f))(X)(S)

Since (sub-)probability measures are finite measures and thus trivially σ-finite, we can use
Corollary 2.23 and conclude that the diagram commutes for all arrows f ∈ arr(Meas)

and hence λ is a natural transformation. Analogously we consider the diagram:

FX
F (ηX)//

ηFX ##

FTX
λX
��

TFX

We immediately obtain:

ηFX(X) = δFXX = λX(X) = λX (F (ηX)(X)) =
(
λX ◦ F (ηX)

)
(X)

and for arbitrary (a, x) ∈ F (X) and S := SA×SX×S1 ∈ P(A)∗ΣX⊕P(1) we calculate:

ηF (X)(a, x)(S) = δ
F (X)
(a,x) (SA × SX × S1)

= δAa (SA) · δXx (SX)

= (δAa � δXx )(S)

= λX(a, δXx )(S) =
(
λX ◦ F (ηX)

)
(a, x)

As above, Corollary 2.23 yields commutativity of the diagram. Finally we consider the
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diagram:

FT2X
λT(X) //

F (µX)
��

TFTX
T(λX) // T2FX

µF (X)

��
FTX

λX
// TFX

For arbitrary (a, P ) ∈ FT2X = A× T(T(X)) + 1 and S = SA × SX + S1 we calculate:

(λX ◦ F (µX)) (X) = λX(X) = δA×X+1
X

and:

(λX ◦ F (µX)) (a, P )(S) = (λX (a, µX(P ))) (S)

=
(
δAa � µX(P )

)
(S)

= δAa (SA) · (µX(P )) (SX)

= δAa (SA) ·
∫
X
pSX

dP

Furthermore we obtain:

(
µFX ◦ T(λX) ◦ λT(X)

)
(X)(S) = µFX

((
δ
A×T(X)+1
X

)
λX

)
(S)

=

∫
TFX

pS d
(
δ
A×T(X)+1
X

)
λX

(1)
=

∫
λ−1
X (TFX)

pS ◦ λX dδ
A×T(X)+1
X

(2)
= (pS ◦ λX)(X)

= δA×X+1
X (S)
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and analogously:

(
µFX ◦ T(λX) ◦ λT(X)

)
(a, P )(S) = µFX

((
δAx � P

)
λX

)
(S)

=

∫
TFX

pS d
(
δAa � P

)
λX

(1)
=

∫
λ−1
X (TFX)

pS ◦ λX d
(
δAa � P

)
(3)
=

∫
{a}×T(X)

pS ◦ λX d
(
δAa � P

)
(4)
=

∫
P ′∈T(X)

(
δAa ⊗ P ′)(S) dP (P ′)

=

∫
P ′∈T(X)

δAa (SA) · P ′(SX) dP (P ′)

= δAa (SA) ·
∫
T(X)

pSX
dP

where we have used:

(1) Proposition 2.39.

(2) The fact that A × T(X) is a null set for δA×T(X)+1
X in conjunction with Corollary

2.38.

(3) The fact that (A \ {a}) × T(X) + 1 is a null set for δAa � P in conjunction with
Corollary 2.38.

(4) (pS ◦ λX)(a, P ′) = (δAa � P ′)(S) and ∀M ∈ ΣT(X) : (δAa � P )({a} ×M) = P (M).

As before, commutativity of the diagram is a result of Corollary 2.23.

4.3.3 PTS with Termination as Coalgebra

Now we are ready to model probabilistic transition systems with termination as coalgebra:

Remark 4.23 (PTS with Termination as Coalgebra). Let A be an alphabet. We consider
the sub-probability monad (S, η, µ) and the endofunctor F := A × IdMeas + 1 on Meas

together with the lifting F : K`(S)→ K`(S) induced by the distributive law λ : FS→ SF .
A probabilistic transition system with explicit termination ((X,Σ),A, α) can be expressed
as the F -coalgebra ((X,Σ)S, α

[).

Proof. This follows immediately from the definitions of a PTS with termination and a
coalgebra in a Kleisli category.
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4.3.4 A Final Coalgebra and Trace Semantics for PTS with Termination

Theorem 4.24 (Final Coalgebra). Let A be a finite alphabet. We consider the sub-
probability monad (S, η, µ) and the endofunctor F := A× IdMeas + 1 on Meas together
with the lifting F : K`(S) → K`(S) induced by the distributive law λ : FS → SF . A final
F -coalgebra is the tuple

(
(A∗, σ(S∗))S, κ[

)
where κ[ : (A∗, σ(S∗))S → F ((A∗, σ(S∗))S) is

the induced isomorphism associated to:

κ := ηF ((A∗,σ(S∗))) ◦ φ : A∗ → S(A×A∗ + 1), u 7→ δA×A
∗+1

φ(u)

Given an arbitrary F -coalgebra
(
(X,Σ)S, α

[
)
, the unique arrow mapping this coalgebra to

the final coalgebra is tr[ : (X,Σ)S → (A∗, σ(S∗))S associated to tr : X → S(A∗) where for
every x ∈ X the sub-probability measure tr(x) : σ(S∗)→ [0, 1] is the uniquely determined
extension of the finite (and thus σ-finite) pre-measure tr(x) : S∗ → [0, 1] defined by the
following equations:

tr(x)(∅) = 0

tr(x)({ε}) = α(x)(1)

tr(x)({au}) =

∫
tru dPx,a ∀a ∈ A, ∀u ∈ A∗

where for every a ∈ A:

Px,a : ΣX → [0, 1], Px,a(S) := α(x)({a} × S)

and for every u ∈ A∗:
tru : X → [0, 1], x 7→ tr(x)({u})

Proof. First we note that the map tr defined by the given equations is indeed a pre-
measure as it is trivially σ-additive according to Proposition 4.1. Let us now show that
it is σ-finite: We have tr(x)({ε}) = α(x)(1) ≤ 1. Let us now assume that tr(x)({u}) ≤ 1

for all words u ∈ A≤n. For u ∈ An and arbitrary a ∈ A we conclude:

tr(x)({au}) =

∫
tru dPx,a

=

∫
x′∈X

tr(x′)({u})︸ ︷︷ ︸
≤1

dPx,a(x
′)

≤
∫

1 dPx,a = Px,a(X) = α(x)({a} ×X) ≤ 1
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and hence we have inductively shown that tr(x)({u}) ≤ 1 for all u ∈ A∗. Together with
the trivial decomposition A∗ = ∪u∈A∗{u} this yields that tr is σ-additive allowing us to
apply the extension theorem, Proposition 2.22, to obtain a uniquely defined measure tr.
However, we do not know, whether it is a sub-probability measure. In a similar way as
above, we will show that it is bounded above by 1 and thus a sub-probability measure.
We claim that the following holds for all n ∈ N:

tr(x)
(
A≤n

)
≤ 1

For the base case (n = 0) we have tr(x)
(
A≤0

)
= tr(x)({ε}) ≤ 1 and for the inductive

step we suppose that for a fixed but arbitrary n ∈ N the following holds:

tr(x)
(
A≤n−1

)
≤ 1

We conclude with the following estimation:

tr(x)
(
A≤n

)
= tr(x)

 ⋃
u∈A≤n

{u}

 (1)
=

∑
u∈A≤n

tr(x) ({u})

= tr(x)({ε}) +
∑
a∈A

∑
u∈A≤n−1

tr(x) ({au})

= tr(x)({ε}) +
∑
a∈A

∑
u∈A≤n−1

∫
tru dPx,a

(2)
= tr(x)({ε}) +

∑
a∈A

∫  ∑
u∈A≤n−1

tru

 dPx,a

= tr(x)({ε}) +
∑
a∈A

∫
X

 ∑
u∈A≤n−1

tr(x′)({u})

 dPx,a(x
′)

(1)
= tr(x)({ε}) +

∑
a∈A

∫
X

(
tr(x′)

(
A≤n−1

))︸ ︷︷ ︸
≤1

dPx,a(x
′)

(3)

≤ tr(x)({ε}) +
∑
a∈A

∫
X

1 dPx,a(x
′)

= tr(x)({ε}) +
∑
a∈A

Px,a(X)

= α(x)(1) +
∑
a∈A

α(x)({a} ×X)

= α(x)(A×X + 1) ≤ 1
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using:

(1) The fact that the union of singletons of mutually distinct elements is a disjoint union
together with the σ-additivity of tr(x) for every x ∈ X.

(2) The linearity of the integral which can be applied here since A is finite which in
turn implies that A≤n−1 is finite and all the integrals

∫
tru dPx,a exist because tru

is bounded above by 1.

(3) The induction hypothesis and the monotonicity of the integral.

We have shown:
∀x ∈ X ∀n ∈ N0 : tr(x)

(
A≤n

)
≤ 1

which is equivalent to:
∀x ∈ X sup

n∈N0

tr(x)
(
A≤n

)
≤ 1

Since tr(x) is a measure (and thus non-negative and σ-additive), the sequence given
by
(
tr(x)

(
A≤n

))
n∈N0

is a monotonically increasing sequence of real numbers bounded
above by 1. Furthermore, tr(x) is continuous from below as a measure and we have
A≤n ⊆ A≤n+1 for all n ∈ N and thus we obtain

tr(x) (A∗) = tr(x)

( ∞⋃
n=1

A≤n
)

= lim
n→∞

tr(x)
(
A≤n

)
= sup

n∈N0

tr(x)
(
A≤n

)
≤ 1

In order to show that the given tuple is a final coalgebra, let
(
(X,Σ)S, α

[
)
be an arbi-

trary F -coalgebra. We have to show that tr[ : (X,Σ)S → (A∗, σ(S∗))S is the uniquely
determined arrow such that the following diagram commutes:

(X,Σ)S
α[

//

tr[

��

(A×X + 1, σ(P(A) ∗ Σ⊕ P(1)))S

F (tr[)
��

(A∗, σ(S∗))S κ[

∼=
// (A×A∗ + 1, σ(P(A) ∗ σ(S∗)⊕ P(1)))S

We define the following arrows:

g[ := κ[ ◦ tr[ (down, right) h := F (tr[) ◦ α[ (right, down)
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such that commutativity is equivalent to g[ = h[ and conclude:

g[ = h[

⇔ g = h

⇔ g(x) = h(x) ∀x ∈ X

⇔ g(x)(S) = h(x)(S) ∀x ∈ X,∀S ∈ σ(S ′∗)

⇔ g(x)(S) = h(x)(S) ∀x ∈ X,∀S ∈ S ′∗

using for the last step that S ′∗ is a semi-ring of sets, the fact that for all x ∈ X both g(x)

and h(x) are finite and thus σ-finite measures since they are probability measures and
Corollary 2.23. For arbitrary x ∈ X and S ∈ S ′∗ we calculate g(x)(S) as follows:

g(x)(S) = (µA×A∗+1 ◦ S(κ) ◦ tr)(x)(S)

= µA×A∗+1 (S(κ)(tr(x))) (S)

= µA×A∗+1 (tr(x)κ) (S)

=

∫
pS dtr(x)κ

(1)
=

∫
pS ◦ κdtr(x)

(2)
=

∫
χψ(S) dtr(x) = tr(x)(ψ(S))

In (1) we used Proposition 2.39 and in (2) the fact that for every S as above and for
every u ∈ A∗ the following holds:

pS ◦ κ(u) = δA×A
∗+1

φ(u) (S) = χS(φ(u)) = χψ(S)(u)

We conclude:

g(x)(∅) = tr(x)(∅)

g(x)(1) = tr(x)({ε})

g(x)({(a, u)}) = tr(x)({au}) ∀a ∈ A, ∀u ∈ A∗

In order to calculate h(x)(S), let:

ρ := λA×A∗+1 ◦ (idA × tr + 1) : A×X + 1→ S(A×A∗ + 1)
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and for every S ∈ S ′∗ let:

ρS := pS ◦ ρ : A×X + 1→ [0, 1], z 7→
(
ρ(z)

)
(S)

Then we obtain the following result:

h(x)(S) = (µA×A∗+1 ◦ S(ρ) ◦ α)(x)(S)

= µA×A∗+1 (S(ρ)(α(x))) (S)

= µA×A∗+1 (α(x)ρ) (S)

=

∫
pS dα(x)ρ

(1)
=

∫
pS ◦ ρdα(x)

=

∫
ρS dα(x)

where we have used Proposition 2.39 in (1). Obviously we have h(x)(∅) = 0. We note
that ρ1 = χ1 and hence:

h(x)(1) =

∫
ρ1 dα(x) =

∫
χ1 dα(x) =

∫
1
1 dα(x) = α(x)(1)

For a ∈ A, u ∈ A∗, (b, x′) ∈ A×X the following holds:

ρ{(a,u)}(b, x
′) =

(
δAb � tr(x′)

)
({(a, u)})

= δAb ({a}) · tr(x′)({u})

= χ{a}(b) · tru(x′)

= χ{a}×X(b, x′) · (tru ◦ π2)(b, x′)

and:
ρ{(a,u)}(X) = δA×A

∗+1
X ({(a, u)}) = 0
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and hence:

h(x)({(a, u)}) =

∫
ρ{(a,u)} dα(x)

=

∫
A×X+1

χA×X · ρ{(a,u)} dα(x)

=

∫
A×X

ρ{(a,u)} dα(x)

=

∫
A×X

χ{a}×X · (tru ◦ π2) dα(x)

=

∫
{a}×X

tru ◦ π2 dα(x)

=

∫
X
tru dPx,a

Thus we have shown that the required commutativity of the diagram is equivalent to the
following set of equations:

tr(x)(∅) = 0

tr(x)({ε}) = α(x)(1)

tr(x)({au}) =

∫
tru dPx,a ∀a ∈ A,∀u ∈ A∗

We denote that tr as defined in the proposition fulfills these equations and that tr is
uniquely defined by these equations.

4.3.5 Examples

Example 4.25. Let X = {0} and A be a finite alphabet such that � ∈ A. We define:

α(0) :=
1

3
·
(
δ
A×{0}+1
(�,0) + δ

A×{0}+1
X

)
The graphical representation of the resulting transition system (({0}, {∅, {0}}), α) is:

0�, 1
3 66

1
3 // X

We denote that P0,a = 1
3 · δ

A
� and use induction to show that for all n ∈ N we have

tr(0)({�n}) = 1
3n+1 . For the base step we have tr(0)({ε}) = α(0)(1) = 1

3 and assuming
that for an arbitrary but fixed n ∈ N0 the induction hypothesis tr(0)({�n−1}) = 1

3n holds,
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we execute the inductive step:

tr(0)({�n}) =

∫
tr{�n−1} dPm,� =

1

3
· tr(0)({�n−1}) =

1

3
· 1

3n
=

1

3n+1

Example 4.26. Let X := N0 and A be a finite alphabet such that � ∈ A. We define

α(n) :=
1

3
·
(
δA×N+1

(�,n+1) + δA×N+1
X

)
for every n ∈ N0 and consider the probabilistic transition system

(
(N0,P(N0)), α

)
which

has the following graphical representation:

0
�, 1

3 //

1
3

11

1
�, 1

3 //

1
3

++

2
�, 1

3 //

1
3

��

3
�, 1

3 //

1
3

��

4
�, 1

3 //

1
3

��

5
�, 1

3 //

1
3

ss

6
�, 1

3 //

1
3

mm

. . .

X

We denote that Pn,a = 1
3 · δ
A
� ({a}) · δN0

n+1 and use induction to show that for all m,n ∈ N0

we have tr(m)({�n}) = 1
3n+1 . For the base step note that tr(m)({ε}) = α(m)(1) = 1

3 and
assuming that for all m ∈ N0 and an arbitrary but fixed n ∈ N0 the induction hypothesis
tr(m)({�n−1}) = 1

3n holds, we execute the inductive step:

tr(m)({�n}) =

∫
tr{�n−1} dPm,� =

1

3
· tr(m+ 1)({�n−1}) =

1

3
· 1

3n
=

1

3n+1
.
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5 Conclusions and Future Work

5.1 Conclusions and Remarks

Utilizing the category of measurable spaces, we have shown that coalgebras in the Kleisli
category of the (sub-)probability monad can be used to model probabilistic transition
systems and that the final coalgebra - if it exists - yields a definition of the “trace” of a
state and hence a notion of “trace equivalence”. This supports the idea that coalgebra
captures behavior of dynamic systems. Moreover, as in the category Set, the use of a
monad to “hide side effects” is a sufficient choice to obtain trace equivalence.
Besides the fact that our approach of working in the category of measurable spaces,
Meas, nicely generalizes known results from probabilistic transition systems with explicit
termination and finite state space (cf. Hasuo et al. [2007] who use Set and the sub-
distribution monad D) to systems with a continuous state space, it also allows us to
define trace semantics for PTS without explicit termination. To our knowledge, this is
impossible without measure theory since for an alphabet A with at least two distinct
elements, the set of infinite words, Aω, is uncountably infinite. Thus, even for discrete
probabilistic transition systems without termination, there is no way to obtain the notion
of a trace as a final coalgebra in the Kleisli-category of the sub-distribution monad D on
Set.
Last but not least, another fact worth mentioning is, that the existence of the final
coalgebra and the uniqueness of the arrow mapping an arbitrary coalgebra into the final
coalgebra is so closely connected to the extension theorem for σ-finite measures on semi-
rings of sets.

5.2 Literature for Further Reading

This thesis gives only a relatively small insight into the theory of analyzing dynamic
systems with transitions depending on randomness. Below is a short list of publications
for further reading.

• A good start for the basic ideas of category theory can be found in Pierce [1991],
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for an extensive overview take a look at Mac Lane [1998].

• A general introduction to the theory of (co)algebras and (co)induction can be found
in Jacobs and Rutten [1997].

• A thorough and extensive introduction to measure and integration theory in Ger-
man is given by Elstrodt [2007].

• The foundation of our approach is based on Hasuo et al. [2007] who characterize
trace equivalence as final coalgebra in the Kleisli category of a suitable monad on
Set.

• While the behavioral equivalance we were interested in is trace equivalence, Panan-
gaden [2009] looks at bisimulation for probabilistic transition system which he calls
“labelled markov processes”. He identifies the Kleisli category of the sub-probability
monad as a category with measurable spaces as objects and conditional probability
densities or markov kernels as arrows.

• The main reference for the probability monad and its Kleisli category is of course
given by Giry [1981].

• Bonchi et al. [2011] use coalgebra to define an algorithm for checking behavioral
equivalence of dynamic systems performing both minimization and determinization
of the given system.

5.3 Open Questions and Future Work

Even though we have provided some new results, we have also generated a couple of new
questions which might be interesting for future work:

• Is the finiteness of the alphabet A necessary for the existence of a final coalgebra
or does it exist for countably infinite alphabets as well?

• We have shown that a final coalgebra exists for the combination of S and A ×
IdMeas + 1 and for the combination of P and A × IdMeas. The obvious question
is whether there is a final coalgebra for P and A × IdMeas + 1 or for S and A ×
IdMeas? For the first combination, namely P and A × IdMeas + 1, our current
assumption is that the use of an ∞−cone σ-algebra similar to that of the ω-cones
yields (A∞, σ(S∞)) as final coalgebra where S∞ ⊆ P(A∞) is again a semi-ring of
sets. Our assumption for S and A × IdMeas is that the final coalgebra does not
exist, but possibly something like a weakly final coalgebra.
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• Can the ideas of minimization and determinization as presented in Bonchi et al.
[2011] be applied to our setting? What are suitable factorization structures and
metrics?

• In our model for probabilistic transition systems without explicit termination we
have no specification what a “good” infinite word is. We accept every possible
infinite word since there are no acceptance conditions like for instance in a Büchi
automaton. An interesting question could thus be, whether there is a way to
introduce acceptance conditions for infinite sequences (not only) in probabilistic
transition systems.
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