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2 Dipartimento di Informatica, Università di Pisa, Italy
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Abstract. We propose a framework where behavioural properties of
finite-state systems modelled as graph transformation systems can be
expressed and verified. The technique is based on the unfolding seman-
tics and it generalises McMillan’s complete prefix approach, originally
developed for Petri nets, to graph transformation systems. It allows to
check properties of the graphs reachable in the system, expressed in a
monadic second order logic.

1 Introduction

Graph transformation systems (GTSs) are recognised as an expressive specifica-
tion formalism, properly generalising Petri nets and especially suited for concur-
rent and distributed systems [9]: the (topo)logical distribution of a system can
be naturally represented by using a graphical structure and the dynamics of the
system, e.g., the reconfigurations of its topology, can be modelled by means of
graph rewriting rules.

The concurrent behaviour of GTSs has been thoroughly studied and a consol-
idated theory of concurrency for GTSs is available, including the generalisation of
several semantics of Petri nets, like process and unfolding semantics (see, e.g., [6,
20, 3]). However, only recently, building on these semantical foundations, some
efforts have been devoted to the development of frameworks where behavioural
properties of GTSs can be expressed and verified (see [12, 15, 13, 21, 19, 1]).

As witnessed, e.g., by the approaches in [17, 10] for Petri Nets, truly concur-
rent semantics are potentially useful in the verification of finite-state systems, in
that they help to avoid the combinatorial explosion arising when one explores all
possible interleavings of events. Still, to the best of our knowledge, no technique
based on partial order (process or unfolding) semantics has been proposed for
the verification of finite-state GTSs.

In this paper we contribute to this topic by proposing a verification framework
for finite-state graph transformation systems based on their unfolding semantics.
Our technique is inspired by the approach originally developed by McMillan for
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Petri nets [17] and further developed by many authors (see, e.g., [10, 11, 23]).
More precisely, our technique applies to any graph grammar, i.e., any set of
graph rewriting rules with a fixed start graph (the initial state of the system),
which is finite-state in a liberal sense: the set of graphs which can be reached from
the start graph, considered not only up to isomorphism, but also up to isolated
nodes, is finite. Hence in a finite-state graph grammar in our sense there is not
actually a bound to the number of nodes generated in a computation, but only
to the nodes which are connected to some edge at each stage of the computation.
Existing model-checking tools, such as SPIN [14], usually do not directly support
the creation of an arbitrary number of objects while still maintaining a finite
state space, making entirely non-trivial their use for checking finite-state GTSs
(similar problems arise for process calculi agents with name creation).

As a first step we face the problem of identifying a finite, still useful frag-
ment of the unfolding of a GTS. In fact, the unfolding construction for GTSs
produces a structure which fully describes the concurrent behaviour of the sys-
tem, including all possible steps and their mutual dependencies, as well as all
reachable states. However, the unfolding is infinite for non-trivial systems, and
cannot be used directly for model-checking purposes.

Following McMillan’s approach, we show that given any finite-state graph
grammar G a finite fragment of its unfolding which is complete, i.e., which pro-
vides full information about the system as far as reachability (and other) prop-
erties are concerned, can be characterised as the maximal prefix of the unfolding
not including cut-off events. The greater expressiveness of GTSs, and specifically,
the possibility of performing “contextual” rewritings (i.e., of preserving part of
the state in a rewriting step), a feature which leads to multiple local histories
for a single event (see, e.g., the work on contextual nets [18, 22, 4, 23]), imposes
a generalisation of the original notion of cut-off.

Unfortunately the characterisation of the finite complete prefix is not con-
structive. Hence, while leaving as an open problem the definition of a general
algorithm for constructing such a prefix, we identify a significant subclass of
graph grammars where an adaptation of the existing algorithms for Petri nets is
feasible. These are called read-persistent graph grammars by analogy with the
terminology used in the work on contextual nets [23].

In the second part we consider a logic L2 where graph properties of interest
can be expressed, like the non-existence and non-adjacency of edges with specific
labels, the absence of certain paths (related to security properties) or cycles
(related to deadlock-freedom). This is a monadic second-order logic over graphs
where quantification is allowed over (sets of) edges. (Similar logics are considered
in [8] and, in the field of verification, in [19, 5].) Then we show how a complete
finite prefix of a grammar G can be used to verify properties, expressed in L2, of
the graphs reachable in G. This is done by exploiting both the graphical structure
underlying the prefix and the concurrency information it provides.

The rest of the paper is organised as follows. Section 2 introduces graph
transformation systems and their unfolding semantics. Section 3 studies finite
complete prefixes for finite-state GTSs. Section 4 introduces a logic for GTSs,



showing how it can be checked over a finite complete prefix. Finally, Section 5
draws some conclusions and indicates directions of further research. A more
detailed presentation of the material in this paper can be found in [2].

2 Unfolding semantics of graph grammars

This section presents the notion of graph rewriting used in the paper. Rewriting
takes place on so-called typed graphs, namely graphs labelled over a structure
that is itself a graph [6]. It can be seen as a set-theoretical presentation of an
instance of algebraic (single- or double-pushout) rewriting (see, e.g., [7]). Next
we review the notion of occurrence grammar, which is instrumental in defining
the unfolding of a graph grammar [3, 20].

2.1 Graph Transformation Systems

In the following, given a set A we denote by A∗ the set of finite strings of elements
of A. Given u ∈ A∗ we write |u| to indicate the length of u. If u = a0 . . . an and
0 ≤ i ≤ n, by [u]i we denote the i-th element ai of u. Furthermore, if f : A → B
is a function then we denote by f∗ : A∗ → B∗ its extension to strings.

A (hyper)graph G is a tuple (VG, EG, cG), where VG is a set of nodes, EG

is a set of edges and cG : EG → VG
∗ is a connection function. A node v ∈ VG

is called isolated if it is not connected to any edge. Given two graphs G,G′, a
graph morphism φ : G → G′ is a pair 〈φV : VG → VG′ , φE : EG → EG′〉 of total
functions such that for all e ∈ EG, φV

∗(cG(e)) = cG′(φE(e)). When obvious
from the context, the subscripts V and E will be omitted.

Definition 1 (typed graph). Given a graph (of types) T , a typed graph G
over T is a graph |G|, together with a morphism typeG : |G| → T . A morphism
between T -typed graphs f : G1 → G2 is a graph morphism f : |G1| → |G2|
consistent with the typing, i.e., such that typeG1

= typeG2
◦ f .

A typed graph G is called injective if the typing morphism typeG is injective.
More generally, given n ∈ N, the graph is called n-injective if for any item x in
T , |type−1

G (x)| ≤ n, namely if the number of “instances of resources” of any type
x is bounded by n. Given two (typed) graphs G and G′ we will write G ' G′ to
mean that G and G′ are isomorphic, and G

...
'G′ when G and G′ are isomorphic

up to isolated nodes, i.e., once their isolated nodes have been removed.
In the sequel we extensively use the fact that given a graph G, any subgraph

of G without isolated nodes is identified by the set of its edges. Precisely, given
a subset of edges X ⊆ EG, we denote by graph(X) the least subgraph of G
(actually the unique subgraph, up to isolated nodes) having X as set of edges.

We will use some set-theoretical operations on (typed) graphs with “compo-
nentwise” meaning. Let G and G′ be T -typed graphs. We say that G and G′

are consistent if G∪G′ defined as (V|G| ∪ V|G′|, E|G| ∪E|G′|, cG ∪ cG′), typed by
typeG ∪ typeG′ , is a well-defined T -typed graph. In this case also the intersection
G ∩ G′, constructed in a similar way, is well-defined. Given a graph G and a



set (of edges) E we denote by G − E the graph obtained from G by removing
the edges in E. Sometimes we will also refer to the items (nodes and edges)
in G − G′, where G and G′ are graphs, although the structure resulting as the
componentwise set-difference of G and G′ might not be a well-defined graph.

Definition 2 (production). Given a graph of types T , a T -typed production
is a pair of finite consistent T -typed graphs q = (L,R), often written L → R,
such that 1) L ∪ R and L do not include isolated nodes; 2) V|L| ⊆ V|R|; and 3)
E|L| − E|R| and E|R| − E|L| are non-empty.

A rule L → R specifies that, once an occurrence of L is found in a graph G, then
G can be rewritten by removing (the images in G of) the items in L − R and
adding those in R − L. The (images in G of the) items in L ∩ R instead are left
unchanged: they are, in a sense, preserved or read by the rewriting step.

This informal explanation should also motivate Conditions 1–3 above. Con-
dition 1 essentially states that we are interested only in rewriting up to isolated
nodes: by the requirement on L∪R, no node is isolated when created and, by the
requirement on L, nodes that become isolated have no influence on further reduc-
tions. Thus one can safely assume that isolated nodes are removed by some kind
of garbage collection. Consistently with this view, by Condition 2 productions
cannot delete nodes (deletion can be simulated by leaving that node isolated).
Condition 3 ensures that every production consumes and produces at least one
edge: a requirement corresponding to T -restrictedness in Petri net theory.

Definition 3 (graph rewriting). Let q = L → R be a T -typed production.
A match of q in a T -typed graph G is a morphism φ : L → G, satisfying the
identification condition, i.e., for e, e′ ∈ E|L|, if φ(e) = φ(e′) then e, e′ ∈ E|R|. In
this case G rewrites to the graph H, obtained as H = ((G−φ(E|L|−E|R|))]R)/≡,
where ≡ is the least equivalence on the items of the graph such that x ≡ φ(x).
We write G ⇒q,φ H or simply G ⇒q H.

A rewriting step is schematically represented in Fig. 1. Intuitively, in the
graph H ′ = G − φ(E|L| − E|R|) the images of all the edges in L − R have been
removed. Then in order to get the resulting graph, merge R to H ′ along the
image through φ of the preserved subgraph L∩R. Formally the resulting graph
H is obtained by first taking H ′]R and then by identifying, via the equivalence
≡, the image through φ of each item in L∩R with the corresponding item in R.

Definition 4 (graph transformation system and graph grammar). A
graph transformation system (GTS) is a triple R = 〈T, P, π〉, where T is a
graph of types, P is a set of production names and π is a function mapping
each production name q ∈ P to a T -typed production π(q) = Lq → Rq. A graph
grammar is a tuple G = 〈T,Gs, P, π〉 where 〈T, P, π〉 is a GTS and Gs is a
finite T -typed graph, without isolated nodes, called the start graph. We denote
by Elem(G) the (disjoint) union ET ] P , i.e., the set of edges in the graph of
types and the production names. We call G finite if the set Elem(G) is finite.
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G (H ′ ] R)/≡H ′ ] RH ′

RL

L∩R L∩R

φ

φ(L∩R)

Fig. 1. A rewriting step, schematically.

A T -typed graph G is reachable in G if Gs ⇒∗
G G′ for some G′ ' G, where ⇒∗

G

is the transitive closure of the rewriting relation induced by productions in G.
We remark that Place/Transition Petri nets can be viewed as a special sub-

class of typed graph grammars. Say that a graph G is edge-discrete if its set
of nodes is empty (and thus edges have no connections). Given a P/T net P ,
let TP be the edge-discrete graph having the set of places of P as edges. Then
any finite edge-discrete graph typed over TP can be seen as a marking of P : an
edge typed over s represents a token in place s. Using this correspondence, a
production Lt → Rt faithfully represents a transition t of P if Lt encodes the
marking pre-set(t), Rt encodes post-set(t), and Lt∩Rt = ∅. The graph grammar
corresponding to a Petri net is finite iff the original net has finitely many places
and transitions. Observe that the generalisation from edge-discrete to proper
graphs radically changes the expressive power of the formalism. For instance,
unlike P/T Petri nets, the class of grammars in this paper is Turing complete.

Example 1. Consider the graph grammar CP, modeling a system where three
processes of type P are connected to a communication manager of type CM (see
the start graph in Fig. 2, where edges are represented as rectangles and nodes
as small circles). Two processes may establish a new connection with each other
via the communication manager, becoming processes engaged in communication
(typed PE , the only edge with more than one connection). This transformation
is modelled by the production [engage] in Fig. 2: observe that a new node con-
necting the two processes is created. The second production [release] terminates
the communication between two partners. A typed graph G over TCP is drawn
by labeling each edge or node x of G with “: typeG(x)”. Only when the same
graphical item x belongs to both the left- and the right-hand side of a production
we include its identity in the label (which becomes “x : typeG(e)”): in this case
we also shade the item, to stress that it is preserved by the production.

The notion of safety for graph grammars [6] generalises the one for P/T nets
which requires that each place contains at most one token in any reachable mark-
ing. More generally, we extend to graph grammars the notion of n-boundedness.

Definition 5 (bounded/safe grammar). For a fixed n ∈ N, we say that a
graph grammar G is n-bounded if for all graphs H reachable in G there is an
n-injective graph H ′ such that H ′ ...

'H. A 1-bounded grammar will be called safe.
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:PE

:PE

2: w 2: w

Fig. 2. The finite-state graph grammar CP.

The definition can be understood by thinking of edges of the graph of types T
as a generalisation of places in Petri nets. In this view the number of different
edges of a graph which are typed on the same item of T corresponds to the
number of tokens contained in a place. Observe that for finite graph grammars,
n-boundedness amounts to the property of being finite-state (up to isomorphism
and up to isolated nodes). In the sequel when considering a finite-state graph
grammar we will (often implicitly) assume that it is also finite.

For instance, the graph grammar CP in Fig. 2 is clearly 3-bounded and thus
finite-state (but only up to isolated nodes).

2.2 Nondeterministic Occurrence Grammars

When a graph grammar G is safe, and thus reachable graphs are injectively typed,
at every step, for any item t in the type graph every production can consume,
preserve and produce a single item typed t. Hence we can safely think that a
production, according to its typing, consumes, preserves and produces items of
the graph of types. Using a net-like language, we speak of pre-set •q, context
q and post-set q• of a production q. Since we work with graphs considered up
to isolated nodes, we will record in these sets only edges. Formally, for any
production q of a graph grammar G = 〈T,Gs, P, π〉, we define

•q = typeLq
(E|Lq| −E|Rq|) q = typeLq

(E|Lq∩Rq|) q• = typeRq
(E|Rq| −E|Lq|)

Furthermore, for any edge e in T we define •e = {q ∈ P : e ∈ q•}, e = {q ∈ P :
e ∈ q}, e• = {q ∈ P : e ∈ •q}. This notation is extended also to nodes in the
obvious way, e.g., for v ∈ VT we define •v = {q ∈ P : v ∈ typeRq

(V|Rq| − V|Lq|)}.

An example of safe grammar can be found in Fig. 3 (for the moment ignore
its relation to grammar CP in Fig. 2). For this grammar, •engage1 = {2:P, 3:P},
engage1 = {1:CM} and engage1• = {5:PE, 6:PE}, while •1:CM = ∅, 1:CM =
{engage1, engage2, engage3} and 3:P • = {engage1, engage3}.



Definition 6 (causal relation). The causal relation of a safe grammar G is
the least transitive relation < over Elem(G) satisfying, for any edge e in the
graph of types T , and for productions q, q′ ∈ P :

1. e ∈ •q ⇒ e < q; 2. e ∈ q• ⇒ q < e; 3. q• ∩ q′ 6= ∅ ⇒ q < q′.

As usual ≤ is the reflexive closure of <. Moreover, for x ∈ Elem(G) we denote
by bxc the set of causes of x in P , namely bxc = {q ∈ P : q ≤ x}.

Note that the fact that an item is preserved by q and consumed by q′, i.e.,
q ∩ •q′ 6= ∅ does not imply q < q′. In this case, the dependency between the two
productions is a kind of asymmetric conflict (see [4, 18, 16, 23]): The application
of q′ prevents q from being applied, so that q can never follow q′ in a derivation
(or, equivalently, if both q and q′ occur in a derivation then q must precede q′).

Definition 7 (asymmetric conflict). The asymmetric conflict ↗ of a safe
grammar G is the relation over the set of productions P , defined by q ↗ q′ if:

1. q ∩ •q′ 6= ∅; 2. •q ∩ •q′ 6= ∅ and q 6= q′; 3. q < q′.

Condition 1 is justified by the discussion above. Condition 2 essentially expresses
the fact that the ordinary symmetric conflict is encoded, in this setting, as an
asymmetric conflict in both directions. More generally, we will write q#q′ and
say that q and q′ are in conflict when the causes of q and q′, i.e., bqc ∪ bq′c,
includes a cycle of asymmetric conflict. Finally, since < represents a global order
of execution, while ↗ determines an order of execution only locally to each
computation, it is natural to impose ↗ to be an extension of < (Condition 3).

Definition 8 ((nondeterministic) occurrence grammar). A (nondetermin-
istic) occurrence grammar is a safe grammar O = 〈T,Gs, P, π〉 such that

1. ≤ is a partial order; for any q ∈ P , bqc is finite and ↗ is acyclic on bqc;
2. Gs is the graph graph(Min(O)) generated by the set Min(O) of minimal

elements of 〈Elem(O),≤〉, typed over T by the inclusion;
3. any item x in T is created by at most one production in P , i.e., | •x |≤ 1;
4. for each q ∈ P , the typing typeLq

is injective on the “consumed” items in
|Lq| − |Rq|, and typeRq

is injective on the “produced” items in |Rq| − |Lq|.

Since the start graph of an occurrence grammar O is determined by Min(O), we
often do not mention it explicitly.

Intuitively, Conditions 1–3 recast in the framework of graph grammars the con-
ditions of occurrence nets (actually of occurrence contextual nets [4, 23]). In
particular, in Condition 1, the acyclicity of asymmetric conflict on bqc corre-
sponds to the requirement of irreflexivity for the conflict relation in occurrence
nets. Condition 4, instead, is closely related to safety and requires that each
production consumes and produces items with multiplicity one. An example of
an occurrence grammar is given in Fig. 3.



2.3 Concurrent Subgraphs, Configurations and Histories

The finite computations of an occurrence grammar are characterised by special
subsets of productions closed under causal dependencies and with no conflicts
(i.e., cycles of asymmetric conflict), suitably ordered.

Definition 9 (configuration). Let O = 〈T, P, π〉 be an occurrence grammar.
A configuration of O is a finite subset of productions C ⊆ P such that ↗C (the
asymmetric conflict restricted to C) is acyclic, and for any q ∈ C, bqc ⊆ C.
Given two configurations C1, C2 we write C1 v C2 if C1 ⊆ C2 and for any
q1 ∈ C1, q2 ∈ C2, if q2 ↗ q1 then q2 ∈ C1.

The set of all configurations of O, ordered by v, is denoted by Conf (O).

Proposition 1 (reachability of graphs generated by configurations). Let
O be an occurrence grammar, C ∈ Conf (O) be a configuration and

G(C) = graph((Min(O) ∪
⋃

q∈C q•) −
⋃

q∈C
•q).

Then a graph G such that G
...
'G(C) can be obtained from the start graph of O,

by applying all the productions in C in any order compatible with ↗.

Due to the presence of asymmetric conflicts, given a production q, the history
of q, i.e., the set of events which must precede q in a computation is not uniquely
determined by q, but it depends also on the particular computation: the history
of q can or can not include the productions in asymmetric conflict with q.

Definition 10 (history). Let O be an occurrence grammar, let C ∈ Conf (O)
be a configuration and let q ∈ C. The history of q in C is the set of events
C[[q]] = {q′ ∈ C : q′ ↗∗

C q}. We denote by Hist(q) the set of histories of q, i.e.,
Hist(q) = {C[[q]] : C ∈ Conf (O)}.

Reachable states can be characterised in terms of a concurrency relation.

Definition 11 (concurrent graph). Let O = 〈T, P, π〉 be an occurrence gram-
mar. A finite subset of edges E ⊆ ET is called concurrent, written co(E), if

1. ↗E, the asymmetric conflict restricted to
⋃

x∈Ebxc, is acyclic;
2. ¬(x < y) for all x, y ∈ E.

A subgraph G of T is called concurrent, written co(G), if co(EG).

It can be shown that the maximal concurrent subgraphs G of T correspond
exactly (up to isolated nodes) to the graphs reachable from the start graph.

2.4 Unfolding of graph grammars

The unfolding construction, when applied to a grammar G, produces a nondeter-
ministic occurrence grammar U(G) describing the behaviour of G. A construction
for the double-pushout algebraic approach to graph rewriting has been proposed



in [3]: the one sketched here is simpler because productions cannot delete nodes
and thus the dangling edge condition does not play a role.

The construction begins from the start graph of G, and then applies in all
possible ways its productions to concurrent subgraphs, recording in the unfold-
ing each occurrence of production and each new graph item generated in the
rewriting process.

Definition 12 (unfolding - sketch). Let G = 〈T,Gs, P, π〉 be a graph gram-
mar. The unfolding U(G) = 〈T ′, G′

s, P
′, π′〉 is the “componentwise” union of the

following inductively defined sequence of occurrence grammars U(G)
[n]

.

(n = 0) U(G)
[0]

consists of the start graph |Gs|, with no productions.

(n → n + 1) Take q ∈ P and let m be a match of q in the graph of types of

U(G)
[n]

, satisfying the identification condition, such that m(|Lq|) is concurrent.

Then the occurrence grammar U(G)
[n+1]

is obtained by “recording” in U(G)
[n]

the application of q at the match m. More precisely, a new production q′ = 〈q,m〉
is added and the graph of types T [n] is extended by adding to it a copy of each
item generated by the application q, without deleting any item.

The unfolding is mapped over the original grammar by the so-called folding
morphism χ = 〈χT , χP 〉 : U(G) → G. The first component χT : T ′ → T is a graph
morphism mapping each graph item in the (graph of types of) the unfolding to
the corresponding item in the (graph of types of) the original grammar G. The
second component χP : P ′ → P maps any production occurrence 〈q,m〉 in the
unfolding to the corresponding production q of G.

The occurrence grammar in Fig. 3 is an initial part of the (infinite) unfolding
of the grammar CP in Fig. 2. For instance, production engage1 is an occurrence
of production engage in CP, applied at the match consisting of the edges 1:CM ,
2:P , 3:P . Unfolding such a match, three new graph items, two edges 5:PE, 6:PE
and a node, are added to the graph of types of the unfolding. Note that the graph
of types of the (partial) unfolding (call it TT ) is typed over the graph of types
TCP of the original grammar (via the folding morphism χT : TT → TCP). This
explains why the edges of the graphs in the productions of the unfolding, which
are typed over TT , are marked with names including two colons.

The unfolding provides a compact representation of the behaviour of G, and
in particular it represents all the graphs reachable in G, in the following sense.

Theorem 1 (completeness of the unfolding). Let G = 〈T,Gs, P, π〉 be a
graph grammar. A T -typed graph G is reachable in G iff there exists a maximal
concurrent subgraph X ′ of the graph of types of U(G) such that G ' 〈X ′, χT |X′〉.

3 Finite Prefix for Graph Grammars

Let G = 〈T,Gs, P, π〉 denote a graph grammar, fixed throughout the section,
and let U(G) = 〈T ′, P ′, π′〉 be its unfolding with χ : U(G) → G the folding



morphism, as in Definition 12. Given a configuration C of U(G), recall from
Proposition 1 that G(C) denotes the subgraph of T ′ reached after the execution
of the productions in C (up to isolated nodes). We shall denote by Reach(C)
the same graph, seen as a graph typed over T by the restriction of the folding
morphism, i.e., Reach(C) = 〈G(C), χT |G(C)〉.

To identify a finite prefix of the unfolding the idea consists of avoiding to keep
in the unfolding useless productions, i.e., productions which do not contribute to
generating new graphs. The definition of “cut-off event” introduced by McMillan
for Petri nets in order to formalise such a notion has to be adapted to this context,
since for graph grammars a production may have different histories.

Definition 13 (cut-off). A production q ∈ P ′ of the unfolding U(G) is a cut-off
if there exists q′ ∈ P ′ such that Reach(bqc) ' Reach(bq′c) and |bq′c| < |bqc|.

A production q is a strong cut-off if for all Cq ∈ Hist(q) there exist q′ ∈ P ′

and Cq′ ∈ Hist(q′) such that Reach(Cq) ' Reach(Cq′) and |Cq′ | < |Cq|. The
truncation of G is the greatest prefix T (G) of U(G) not including strong cut-offs.

Theorem 2 (completeness and finiteness of the truncation). The trun-
cation T (G) is a complete prefix of the unfolding, i.e., for any reachable graph
G of G there is a configuration C in Conf (T (G)) such that Reach(C)

...
'G. Fur-

thermore, if G is n-bounded then the truncation T (G) is finite.

Unfortunately, the proof of the above theorem does not suggest a way of
constructing the truncation for finite-state graph grammars. The problem es-
sentially resides in the fact that the notion of strong cut-off refers to the set of
histories of a production, which is, in general, infinite. While leaving the solution
for the general case as an open problem, we next discuss how a finite complete
prefix can be derived for a class of grammars for which this problem disappears.
This still interesting class of graph grammars is characterised by a property that
we call “read-persistence”, since it appears as the graph grammar theoretical
version of read-persistence as defined for contextual nets [23].

Definition 14 (read-persistence). An occurrence grammar O = 〈T, P, π〉 is
called read-persistent if for any q1, q2 ∈ P , if q1 ↗ q2 then q1 ≤ q2 or q1#q2. A
graph grammar G is called read-persistent if its unfolding U(G) is read-persistent.

It can be shown that an adaptation of the algorithm originally proposed
in [17] for ordinary nets and extended in [23] to read-persistent contextual nets,
works for read-persistent graph grammars. In particular, the notion of strong
cut-off can be safely replaced by the weaker notion of (ordinary) cut-off. An
obvious class of read-persistent graph grammars consists of all the grammars G
where any edge preserved by productions is never consumed.

For instance, the grammar CP in our running example is read-persistent,
since the communication manager CM , the only edge preserved by productions,
is never consumed. Its truncation is the graph grammar T (CP) depicted in Fig. 3.
Denote by TT its type graph. Note that applying the production [release] to any
subgraph of TT matching its left-hand side would result in a cut-off: this is the



reason why T (CP) does not include any instance of production [release]. The
start graph of the truncation is isomorphic to the start graph of grammar CP
and it is mapped injectively to the graph of types TT in the obvious way.

1:CM

: 2: P

: 3: P

: 2: P

: 4: P

: 3: P

: 4: P

: 5:PE

: 6:PE

: 8:PE

: 9:PE

: 10:PE

1: 1:CM

1: 1:CM

1: 1:CM 1: 1:CM
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2: 11: v

2: 11: v
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3: P
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5:PE
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11: v
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1: 1:CM
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13: w
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2: 11: v

: 12: w

2: 11: v

2: 11: v

: 13: w

: 14: w

: 7:PE

Fig. 3. The truncation T (CP) of the graph grammar in Fig. 2.

In general, the truncation of a grammar such as CP where n processes are

connected to CM in the start graph, will contain n(n−1)
2 productions. Consid-

ering instead all possible interleavings, we would end up with an exponential
number of productions.

4 Exploiting the prefix

In this section we propose a monadic second-order logic L2 where some graph
properties of interest can be expressed. Then we show how the validity of a
property in L2 over all the reachable graphs of a finite-state grammar G can be
verified by exploiting a complete finite prefix.

4.1 A logic on graphs

We first introduce the monadic second order logic L2 for specifying graph prop-
erties. Quantification is allowed over edges, but not over nodes (as, e.g., in [8]).

Definition 15 (Graph formulae). Let X1 = {x, y, . . .} be a set of (first-order)
edge variables and let X2 = {X,Y, . . .} be a set of (second-order) variables repre-
senting edge sets. The set of graph formulae of the logic L2 is defined as follows,
where ` ∈ Λ, i, j ∈ N:

F ::= x = y | ci(x) = cj(y) | type(x) = ` | x ∈ X (Predicates)

F ∨ F | ¬F | ∃x.F | ∃X.F (Connectives / Quantifiers)
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Fig. 4. The Petri net underlying the truncation T (CP) in Fig. 3

We denote by free(F ) and Free(F ) the sets of first-order and second-order vari-
ables, respectively, occurring free in F , defined in the obvious way.

Given a T -typed graph G, a formula F in L2, and two valuations σ : free(F ) →
E|G| and Σ : Free(F ) → P(E|G|) for the free first- and second-order variables
of F , respectively, the satisfaction relation G |=σ,Σ F is defined inductively, in
the usual way; for instance G |=σ,Σ x = y iff σ(x) = σ(y) and G |=σ,Σ x ∈ X iff
σ(x) ∈ Σ(X).

A simple, but fundamental observation is that, while for n-bounded graph
grammars the graphical nature of the state plays a basic role, for any occurrence
grammar O we can can forget about it and view O as an occurrence contextual
net (i.e., a Petri net with read arcs, see, e.g., [4, 23]).

Definition 16 (Petri net underlying a graph grammar). The contextual
Petri net underlying an occurrence grammar O = 〈T ′, P ′, π′〉, denoted by Net(O),
is the Petri net having the set of edges ET ′ as places and a transition for every
production q ∈ P ′, with pre-set •q, post-set q• and context q.

For instance, the Petri net Net(T (CP)) underlying the truncation of CP (see
Fig. 3) is depicted in Fig. 4. Read arcs are represented as dotted undirected lines.

Let G = 〈T,Gs, P, π〉 be a fixed finite-state graph grammar and consider the
truncation T (G) = 〈T ′, P ′, π′〉 (actually, all the results hold for any complete
finite prefix of the unfolding). Notice that, by completeness of T (G), any graph
reachable in G is (up to isolated nodes) a subgraph of the graph of types T ′ of
T (G), typed over T by the restriction of the folding morphism χ : U(G) → G.
Also observe that a safe marking m of Net(T (G)) can be seen as a graph typed
over the type graph T of the original grammar G: take the least subgraph of T ′

having m as set of edges, i.e., graph(m), and type it over T by the restriction of
the folding morphism. With a slight abuse of notation this typed graph will be
denoted simply as graph(m).

We show how any formula φ in L2 can be translated to a formula M(φ)
over the safe markings of Net(T (G)) such that, for any marking m reachable in
Net(T (G))

graph(m) |= φ iff m |= M(φ).



The syntax of the formulae over markings is

φ ::= e | ¬φ | φ ∧ φ | φ ∨ φ | φ → φ,

where the basic formulae e are place (edge) names, meaning that the place is
marked, i.e., m |= e if e ∈ m. Logical connectives are treated as usual.

Definition 17 (Encoding graph into multiset formulae). Let T (G) be the
truncation of a graph grammar G, as above. Let F be graph formula in L2, let
σ : free(F ) → ET ′ and Σ : Free(F ) → P(ET ′). The encoding M is defined as:

M [x = y, σ,Σ] = true if σ(x) = σ(y) and false otherwise

M [ci(x) = cj(y), σ,Σ] =







true if |cT ′(σ(x))| ≥ i ∧ |cT ′(σ(y))| ≥ j
∧ [cT ′(σ(x))]i = [cT ′(σ(y))]j

false otherwise
M [type(x) = `, σ,Σ] = true if χT (σ(x)) = ` and false otherwise

M [x ∈ X,σ,Σ] = true if σ(x) ∈ Σ(X) and false otherwise
M [F1 ∨ F2, σ,Σ] = M [F1, σ,Σ] ∨ M [F2, σ,Σ]

M [¬F, σ,Σ] = ¬M [F, σ,Σ]
M [∃x.F, σ,Σ] =

∨

e∈ET ′
(e ∧ M [F, σ ∪ {x 7→ e}, Σ])

M [∃X.F, σ,Σ] =
∨

E⊆ET ′ ,co(E) (
∧

E ∧ M [F, σ,Σ ∪ {X 7→ E}])

where, for E = {e1, . . . , en}, the symbol
∧

E stands for e1 ∧ . . . ∧ en. If F is
closed formula (i.e., without free variables), we define M [F ] = M [F, ∅, ∅].

Note that, since every reachable graph in G is isomorphic to a subgraph of T ′,
typed by the restriction of χT , the encoding resolves the basic predicates by
exploiting the structural information of T ′. When a first-order variable x in a
formula is mapped to an edge e, we take care that the edge is marked, and,
similarly, when a second-order variable X in a formula is mapped to a set of
edges E, such a set must be covered. Observe that in this case E is limited to
range only over concurrent subsets of edges. In fact, if E is a non-concurrent set,
then no reachable marking m will include E, i.e., m 6|=

∧

E.
It is possible to show that the above encoding is correct, i.e., for any formula

φ ∈ L2, for any pair of valuations σ : X1 → ET ′ and Σ : X2 → P(ET ′), and for
any safe marking m over ET ′ , we have graph(m) |=σ,Σ φ iff m |= M [φ, σ,Σ].

4.2 Checking properties of reachable graphs

Let G = 〈Gs, T, P, π〉 be a finite-state graph grammar. We next show how a
complete finite prefix of G can be used to check whether, given a formula F ∈ L2,
there exists some reachable graph which satisfies F . In this case we will write
G |= ♦F . The same algorithm allows to check “invariants” of a graph grammars,
i.e., to verify whether a property F ∈ L2 is satisfied by all graphs reachable in
G, written G |= �F . In fact, it trivially holds that G |= �F iff G 6|= ♦¬F .

Let T (G) = 〈T ′, P ′, π′〉 be the truncation of G (or any complete prefix of the
unfolding) and let Net(T (G)) be the underlying Petri net. The formula produced
by the encoding in Definition 17 can be simplified by exploiting the mutual



relationships between items as expressed by the causality, (asymmetric) conflict
and concurrency relation.

Proposition 2 (simplification). Let F be any formula in L2, let σ : free(F ) →
ET ′ and Σ : Free(F ) → P(ET ′) be valuations. If m is a marking reachable in
Net(T (G)) and η is a marking formula obtained by simplifying M [F, σ,Σ] with
the Simplification Rule below:

If S ⊆ ET ′ and ¬co(S) then replace the subformula
∧

S by false.

then graph(m) |=σ,Σ F iff m |= η.

Algorithm. The question “G |= ♦F?” is answered by working over Net(T (G)):

– Consider the formula over markings M [F ] (see Definition 17);
– Express M [F ] in disjunctive normal form as below, where ai,j can be e or

¬e for e ∈ ET ′ :

η =

n
∨

i=1

ki
∧

j=1

ai,j

– Apply the Simplification Rule in Proposition 2, as far as possible, thus ob-
taining a formula η′;

– For any conjunct in η′ of the kind e1 ∧ . . . ∧ eh ∧ ¬e′1 ∧ . . . ∧ ¬e′l:

• Take the configuration C = b{e1, . . . , eh}c.
• Consider the safe marking reached after C, i.e., mC = (m0 ∪

⋃

t∈C t•)−
⋃

t∈C
•t, where m0 is the initial marking of Net(T (G)) (consisting of

all minimal places). Surely mC includes {e1, . . . , eh}. Hence, the only
reason why the conjunct may not be true is that mC includes some of
the {e′1, . . . , e

′
l}. In this case look for a configuration C ′ ⊇ C, which

enriches C with transitions which consume the e′j but not the ei.

– The formula ♦F holds iff this check succeeds for at least one conjunct.

For instance, suppose that we want to check that our sample graph grammar
CP satisfies �F , where F is a L2 formula specifying that every engaged process
is connected through connection c2 to exactly one other engaged process, i.e.,

F = ∀x.(type(x) = PE ⇒ ∃y.(x 6= y ∧ type(y) = PE ∧ c2(x) = c2(y)

∧ ∀z.(type(z) = PE ∧ x 6= z ∧ c2(x) = c2(z) ⇒ y = z))).

The encoding φ = M [F ] simplifies to

φ ≡ (5:PE ⇐⇒ 6:PE ) ∧ (7:PE ⇐⇒ 8:PE ) ∧ (9:PE ⇐⇒ 10:PE )

and we have to check that the truncation does not satisfy

♦¬φ = ♦[(5:PE ∧ ¬6:PE ) ∨ (¬5:PE ∧ 6:PE ) ∨ (7:PE ∧ ¬8:PE )

∨ (¬7:PE ∧ 8:PE ) ∨ (9:PE ∧ ¬10:PE ) ∨ (¬9:PE ∧ 10:PE )],

which can be done by using the described verification procedure.



5 Conclusions

We have discussed how the finite prefix approach, originally introduced by
McMillan for Petri nets, can be generalised to graph transformation systems.
A complete finite prefix can be constructed for some classes of graph grammars,
but the problem of constructing it for general, possibly non-read-persistent gram-
mars remains open and represents an interesting direction of further research.
Also, it would be interesting to try to determine an upper bound on the size of
the prefix, with respect to the number of reachable graphs.

We have shown how the complete finite prefix can be used to model-check
some properties of interest for graph transformation systems. We plan to gen-
eralise the verification technique proposed here to allow the model-checking of
more expressive logics, like the one studied in [10] for Petri nets, where temporal
modalities can be arbitrarily nested. We intend to implement the model-checking
procedure described in the paper and, as in the case of Petri nets, we expect
that its efficiency could be improved by refined cut-off conditions (see, e.g., [11])
which help to decrease the size of the prefix.

As mentioned in the introduction, some efforts have been devoted recently to
the development of suitable verification techniques for GTSs. A general theory
of verification is presented in [12, 13], but without providing directly applicable
techniques. In [15, 1, 5] one can find techniques which are applicable to infinite-
state systems: the first defines a general framework based on types for graph
rewriting, while the second is based on the construction of suitable approxi-
mations of the behaviour of a GTS. Instead, the papers [21, 19] concentrate on
finite-state GTSs. They both generate a suitable labelled transition system out
of a given finite-state GTS and then [21] resorts to model-checkers like SPIN,
while [19] discusses the decidability of the model-checking problem for a logic,
based on regular path expressions, allowing to talk about the history of nodes
along computations. The main difference with respect to our work is that they
do not exploit a partial order semantics, with an explicit representation of con-
currency, and thus considering the possible interleavings of concurrent events
these techniques may suffer of the state-explosion problem.
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