
Generating Type Systems for Process Graphs

Barbara König

Fakultät für Informatik, Technische Universität München
koenigb@in.tum.de

Abstract. We introduce a hypergraph-based process calculus with a
generic type system. That is, a type system checking an invariant prop-
erty of processes can be generated by instantiating the original type
system. We demonstrate the key ideas behind the type system, namely
that there exists a hypergraph morphism from each process graph into
its type, and show how it can be used for the analysis of processes. Our
examples are input/output-capabilities, secrecy conditions and avoiding
vicious circles occurring in deadlocks.

In order to specify the syntax and semantics of the process calculus and
the type system, we introduce a method of hypergraph construction using
concepts from category theory.

1 Introduction

In this work we propose a framework for the generation of type systems checking
invariant properties of processes. We introduce a graph-based, asynchronous
process calculus, similar to the polyadic π-calculus [13, 15], and give a generic
type system for this calculus. Specialized type systems can then be generated by
instantiating the original system.

Type systems are a valuable tool for the static analysis of parallel processes.
Applications range from checking the use of channels [19, 11], confirming conflu-
ence [17], avoiding deadlocks [10] and ascertaining security properties [1, 4]. In
all these cases, types are considered as partial descriptions of process behaviour,
staying invariant during reduction. Furthermore a method for inferring proper-
ties of a process out of its behaviour description is required. Generally types
are computable and in some type systems there is a most general or principal
type for every typable process, from which all other types of the process can be
derived. The flip side to type systems is the fact that some correct processes may
not be typable.

Examining the type systems mentioned above, one can observe that they
share similarities concerning the structure of types and typing rules. Our idea
is to present a framework making a first step towards the integration of differ-
ent type systems. The generic type system presented in this paper satisfies the
subject reduction property, and we can guarantee absence of runtime errors for
well-typed processes, the existence of principal types and of a type inference
algorithm.

In order to type communicating processes, recursive types are essential. They
can be represented in several ways: as expressions with a recursion operator µ

(e.g. in [21]), as infinite trees [19] or as graphs [20, 23] (for different representa-
tions of recursive types for the λ-calculus see [22]). We chose graph representation
for types as well as for processes. This enables us to establish a close corre-
spondence between processes and types: there is a graph morphism from each
process into its type. Thus, if a type graph satisfies a property which is closed
under inverse graph morphisms (e.g. absence of circles, necessary for deadlock
prevention), it is also valid for the process and—because of the subject reduction
property—for all its successors.

Since in a general type system like ours the properties of a process which are
to be analyzed are not fixed a priori, a close relationship between processes and
their types is essential. Describing both processes and types by graphs seems
a convenient method for allowing easy inference of process properties. This al-
lows a systematic approach to obtaining correctness proofs for generated type
systems. It is not clear to us how the same effect could be achieved by a string
representation of processes.

There are several papers describing various ways of representing processes by
graphs [14, 16, 9, 18]. Our method is closest to [9], but differs in several aspects,
the most prominent being that we employ hierarchical hypergraphs.

Pure graph structure (or hypergraph structure in our case) is ordinarily not
sufficient to capture relevant properties of a process. We therefore enrich our
types by annotating them with lattice elements, e.g. describing input/output-
capabilities of ports or channels. Every set of mappings assigning lattice elements
to nodes or edges of a graph is a lattice itself, and thus it is sufficient to assign
only one lattice element to every graph. It is necessary to define, how these lattice
elements behave under morphisms. This is described by a functor mapping graph
morphisms to join-morphisms in lattices. It is not the only case where we make
use of category theory. It also allows us to give an elegant definition of graph
construction (related to [6]) in terms of co-limits.

The annotation of graphs with lattice elements is another argument in favour
of the use of graphs. It is more convenient to add additional labels or structures
to a type represented as a graph than to a type represented by a term. This
point will become clearer in section 5 where we will assign lattice elements to
pairs of nodes.

2 Categorical Hypergraph Construction

We work with a variant of graphs: so-called hypergraphs [7, 2], where each edge
has several (ordered) source nodes. There are two kinds of labels: edge sorts and
and edge labels.

Definition 1. (Hypergraph) Let Z be a fixed set of edge sorts and let L be a
fixed set of labels. A simple hypergraph G is a tuple G = (V,E, s, z, l) where V

is a set of nodes, E is a set of edges disjoint from V , s:E → V ∗ maps each edge

to a string of source nodes, z:E → Z assigns a sort to each edge and l:E → L

assigns a label to each edge.
A hypergraph or multi-pointed hypergraph H = G[χ] is composed of a sim-

ple hypergraph G = (V,E, s, z, l) and a string χ ∈ V ∗. χ is called the string of
external nodes. EXTH is the set of all external nodes in H.

The components of a hypergraph H are denoted by VH , EH , sH , zH , lH , χH ,
while the components of a simple hypergraph G are denoted by VG, EG, sG, zG, lG.
Furthermore we define the arity of edges and hypergraphs as follows: ar(e) :=
|sH(e)|, if e ∈ EH , and ar(G[χ]) := |χ|.

External nodes are the interface of a hypergraph with its environment and
are used to attach hypergraphs. In the process calculus, which will be presented
in section 3, we have two edge sorts, dividing the edge set into processes and
messages, while the label of a process specifies its behaviour. In the rest of this
paper we use both terms graph and hypergraph interchangeably

The following definition of hypergraph morphism is quite straightforward.
A morphism is expected to preserve graph structure, as well as edge sorts and
labels:

Definition 2. (Hypergraph Morphism) Let G,G′ be two simple hypergraphs.
A hypergraph morphism φ:G → G′ consists of two mappings φE :EG → EG′ ,

φV :VG → VG′ satisfying for all e ∈ EG :

φV (sG(e)) = sG′(φE(e)) zG(e) = zG′(φE(e)) lG(e) = lG′(φE(e))

We write φ : G[χ] → G′[χ′] if φ : G → G′ is a hypergraph morphism. If1

φV (χ) = χ′, φ is called a strong morphism and we write φ : G[χ] � G′[χ′]
G[χ] and G′[χ′] are called strongly isomorphic (G[χ] ∼= G′[χ′]) if there exists

a bijective strong morphism from one graph into the other.

Notation:
We call a hypergraph discrete, if its edge set is empty.
m denotes a discrete graph of arity m ∈ lN with m

nodes where every node is external (see (a), exter-
nal nodes are labelled (1), (2), . . . in their respective
order).
H := zn(l) is the hypergraph with exactly one edge e

with sort z and label l where sH(e) = χH , |χH | = n,
VH = EXTH (see (b), nodes are ordered from left to
right).

(a)
(1) ... (m)

(b)

...

zl

(1) (n)

For the definition of the process calculus and its type system we need some
basic concepts from category theory, namely categories, functors and co-limits.
Detailed definitions can be found in [5].

Since we want to associate hypergraphs with lattice elements, we need a
functor between the following two categories:

1 Each morphism can be extended to strings of nodes in a canonical way, i.e.
φV (v1 . . . vn) = φV (v1) . . . φV (vn)

The category of hypergraphs (with hypergraph morphisms): The class
of all simple hypergraphs (multi-pointed hypergraphs) forms a category to-
gether with the (strong) hypergraph morphisms.

The category of lattices (with join-morphisms): Let (I1,≤1), (I2,≤2) be
two lattices with bottom elements ⊥1 respectively ⊥2. For two elements
a1, b1 ∈ I1 (a2, b2 ∈ I2) let a1 ∨1 b1 (a2 ∨2 b2) be the least upper bound or
join of the two elements.
A mapping t : I1 → I2 is called a join-morphism iff t(a1∨1b1) = t(a1)∨2 t(b1)
and t(⊥1) = ⊥2

Type graphs are hypergraphs G[χ] which are associated with a lattice ele-
ment. A type functor F maps every type graph to a lattice F (G) from which this
associated lattice element can be taken. The concept of hypergraph morphisms
can be extended to type graph morphisms, from which we demand, that they not
only preserve graph structure but also the order in the corresponding lattices.

Definition 3. (Type Functors and Type Graphs) A functor F from the
category of simple hypergraphs into the category of lattices is called a type func-
tor.

T = G[χ, a] where G[χ] is a hypergraph and a ∈ F (G) is called a type graph
wrt. F . The class of all type graphs wrt. F is denoted by TF .

We write φ : G[χ, a]
F
→ G′[χ′, a′] if φ : G → G′ is a hypergraph morphism

and F (φ)(a) ≤ a′. φ is called type graph morphism.
We say φ is a strong type graph morphism if additionally φV (χ) = χ′ and

it is denoted by φ : G[χ, a]
F
� G′[χ′, a′].

Two type graphs G[χ, a], G′[χ′, a′] are called isomorphic (wrt. F) if there
exists a strong isomorphism φ : G[χ] � G′[χ′] such that F (φ)(a) = a′. In this
case we write G[χ, a] ∼=F G′[χ′, a′].

Note: If H = G[χ] we define H[a] := G[χ, a].

Example: We consider the following type functor F : let (I,≤) be an arbitrary
lattice and let k ∈ lN. For any simple hypergraph G we define F (G) as the set of
all mappings from (VG)k (cartesian product) into I (which yields a lattice with
pointwise order).

Let a : V k
G → I, φ : G → G′, s′ ∈ V k

T ′ . We define:

F (φ)(a) := a′ where a′(s′) :=
∨

φV (s)=s′

a(s)

It is straightforward to check that F is indeed a type functor.

We now introduce a mechanism for the construction of hypergraphs. Com-
pared to string concatenation it is not so obvious how to build larger graphs
out of smaller ones. We describe a construction plan with morphisms mapping
discrete graphs into discrete graphs. This construction plan is then applied to
hypergraphs by a co-limit construction. Our method is related to the double-
pushout approach for graph rewriting described in [6].

If we define how to transform and sum up lattice elements, we can assemble
type graphs in the same way.

Definition 4. (Construction of Hypergraphs and Type Graphs)
Let H1, . . . , Hn be hypergraphs and let ζi : mi → D, i ∈ {1, . . . , n} be hyper-

graph morphisms where ar(Hi) = mi ∈ lN and D is a discrete graph. There is
always a unique strong morphism φi : mi � Hi for every i ∈ {1, . . . , n}.

Let H (with morphisms φ : D → H, ζ ′

i : Hi → H) be
the co-limit of ζ1, . . . , ζn, φ1, . . . , φn such that φ is a
strong morphism. We define:

n
⊗

i=1

(Hi, ζi) := H H

D
ζ

H
ζ

m

i
’

i

i

i
φ φ

i

Let Ti = Hi[ai], i ∈ {1, . . . , n} be type graphs and let F be a fixed type functor.
The construction of type graphs wrt. F is defined in the following way:

n
⊗

i=1

(Ti, ζi) :=

(

n
⊗

i=1

(Hi, ζi)

)

[a] where a :=

n
∨

i=1

F (ζ ′i)(ai)

Generally, co-limits do not necessarily exist, but they always exist in our
case. The co-limit is unique up to isomorphism (i.e. bijective morphisms), but
not unique up to strong isomorphism. Therefore we demand above that the
morphism from D into the co-limit is a strong morphism and thereby determine
the string of external nodes of the result.

In order to clarify the intuition behind graph construction we give the fol-
lowing two examples:

Example 1: As stated above, the morphisms ζi can be regarded as a construc-
tion plan for assembling hypergraphs. The example in figure 1 will illustrate this:
we describe how to construct H below out of smaller hypergraphs H1, H2, H3.
In this case H ∼=

⊗3
i=1(Hi, ζi) (see the graphical description of ζ1, ζ2, ζ3 below).

Example 2: Let H1, H2 be hypergraphs with ar(H1) = ar(H2) = n. Then

H12H2 :=
⊗2

i=1(Hi, ζi) where ζ1, ζ2 : n � n are the unique strong morphisms
from n into n. That is H12H2 is constructed out of H1, H2 by fusing corre-
sponding external nodes.

Every hypergraph can be decomposed into hyperedges and has the following
normal form:

Proposition 1. (Graph construction out of hyperedges) Let H be a hy-
pergraph. Then there exists a natural number n, sorts zi, labels li and morphisms
ζi : mi → D (where i ∈ {1, . . . , n} and D is a discrete hypergraph) such that

H ∼=

n
⊗

i=1

((zi)mi
(li), ζi)

A

DH1

(1)

(2)

(3) (4)

H2

(2)

(2)

(1)

(1)

B C

E H3

(1)

(2)

C

D E

A B

H

1m
2ζ

2=m3

=

2=m2

3ζ

1ζ
4

(1)

(2)

(3)

(1)

(4)

(1) (2)

(1)

(2)

D
(2)

Fig. 1. Graph construction (example 1)

3 Process Graphs

We are now ready to introduce the calculus: an expression in our process cal-
culus is a hierarchical hypergraph. Edges are representing either processes or
messages (since we present an asynchronous calculus we distinguish processes
and messages) and nodes are representing ports. In the rest of this paper we use
the names “port” and “node” interchangeably.

Definition 5. (Process Graph) A process graph P is inductively defined as
follows: P is a hypergraph with edge sorts Z = {proc,mess}. Edges with zP (e) =
proc are called processes and edges with zP (e) = mess are called messages.

Processes are either labelled !Q (Replication) or λ
(n)
k .Q (the process receives

a message with n + 1 ports—one of it the send-port—on its k-th port and then
behaves like Q) where Q is again a process graph. Messages have at least arity 1
and remain unlabelled (or are labelled with dummies).

By definition, a message is sent to its last port2: sendP (e) := bsP (e)car(e) if
zP (e) = mess. Process graphs have an intuitive graphical representation which
will be introduced step by step.

The most important form of reduction in our calculus is the reception of a
message by a process, which means the replacement of a redex, consisting of
process and message, by the hypergraph inside the process.

Redex: Let P1 := procm(l), P2 := messn+1 and let 1 ≤ k ≤ m. Furthermore let

ζ1 : m → m + n with ζ1(χm) := bχm+nc1...m

2 We define the following operator on strings: if s = a1 . . . an is a string, we define
bsci1...in

:= ai1 . . . ain
.

ζ2 : n + 1 → m + n with ζ2(χn+1) := bχm+ncm+1...m+n k

We define Redk,m,n(l) :=
⊗2

i=1(Pi, ζi).

Graphical representation: We draw mes-
sages with dashed lines, thereby distinguishing
them from processes.

(k)(1) (m) (m+n)(m+1)

mess

...

l

proc

send

We favour reduction semantics in the spirit of the Chemical Abstract Ma-
chine [3]. Our calculus obeys the rules of structural congruence and reduction
in table 1. ≡ is the smallest equivalence which contains hypergraph isomor-
phism and which satisfies the rules (C-ABSTR), (C-REPL1), (C-CON) and (C-
REPL2).

Note that runtime errors may occur if ar(P) 6= m + n in (R-MR) or ar(P) 6= n

P1 ≡ P2

procn(λk.P1) ≡ procn(λk.P2)
(C-ABSTR)

P1 ≡ P2

procn(!P1) ≡ procn(!P2)
(C-REPL1)

Pi ≡ Qi, i ∈ {1, . . . , n}
Nn

i=1(Pi, ζi) ≡
Nn

i=1(Qi, ζi)
(C-CON)

procn(!P) ≡ P2procn(!P) (C-REPL2)

Redk,m,n(λ
(n)
k .P) → P (R-MR)

Q ≡ P, P → P ′, P ′ ≡ Q′

Q → Q′
(R-EQU)

Pi → P ′

i , (i 6= j ⇒ Pj ≡ P ′

j)
Nn

i=1(Pi, ζi) →
Nn

i=1(P
′

i , ζi)
(R-CON)

Table 1. Operational semantics of process graphs

in (C-REPL2), i.e. if the left hand and the right hand side of a rule do not have
the same arity, or if there is a mismatch in arities for the construction operator
2.

Mobility of port addresses is inherent in rule (R-MR): For a process of the

form procm(λ
(n)
k .P) the arity of P should be m+n in order not to cause runtime

errors. If such a process receives a message with n ports attached to it, the rules
cause the first m external ports of P to fuse with the ports of the process, while
the rest of the ports fuses with the ports of the message. In this way a process
can gain access to new ports which means dynamic restructuring of the entire
process graph. This feature is often called mobility [13].

Our calculus, as presented here, is closely related to the asynchronous, polyadic
π-calculus without summation (see appendix A). Asynchronous means, in this
case, that the continuation of an output prefix is always 0, the nil process.

Example: In figure 2 we give a small example, illustrating message reception in
the calculus. Note that messages are drawn with dashed lines, all other edges are
representing processes. The dashed arrow leading away from a message indicates
the send-port of a message. The arrows leading to the source nodes of an edge
are ordered from left to right. Furthermore the external ports inside a process
abstraction which are going to be fused with the ports of a message are filled
with grey. The corresponding expression in the π-calculus would be

(νa)(νb)(a(a1a2).a2〈a1〉.0 | b(b1).a〈e1b1〉.0 | b̄〈e2〉.0)

where e1, e2 are the names representing external ports (the only free names).
(See also appendix A.)

λ1. (3)(2)(1)

(1) (2)

λ1.(2)

(R-MR)

(R-MR)
(1) (2)

(2)(1)λ1. (4)(3)(2)(1)

(2)

(3)

(1)

(2) (1)

Fig. 2. Example reduction

4 The Type System

We assume that F is a fixed type functor. It is one of two parameters of the
type system, we will now specify the second: we need a method for mapping a
process graph to a corresponding type graph. It is only necessary to describe
this mapping for graphs consisting of one edge only. The extension to arbitrary
graphs is straightforward.

Definition 6. (Linear Mapping) Let L be a function which maps graphs of
the form zn(l) to type graphs in TF , satisfying ar(L(zn(l))) = n. Furthermore
we demand that

P1 ≡ P2 ⇒ L(P1) ∼=F L(P2) (1)

∃φ : messn[⊥]
F
� L(messn) (2)

Since proposition 1 implies that all hypergraphs can be constructed out of graphs
of the form zn(l) we can expand L to arbitrary hypergraphs in the following way:

L(
n
⊗

i=1

(Hi, ζi)) :=
n
⊗

i=1

(L(Hi), ζi)

L is well-defined and is called a linear mapping.

Condition (2) in the definition of the linear mapping may seem somewhat out
of place. It is however (together with condition (3) below and rule (T-ABSTR))
essential to the proof of the subject reduction property (see proof sketch below).
Both conditions ensure that nodes that might get fused during reduction are
already fused in the type graph.

The type system works with arbitrary linear mappings as long as they satisfy
conditions (1) and (2). In practice, however, the structure of the graphs created
by the linear mappings does not vary much (see also section 5) and the important
part in defining the linear mappings is to choose sensible lattice elements.

We have now described the two parameters of the type system: the type
functor F and the linear mapping L and the conditions imposed on them. The
typing rules in table 2 describe how a type can be assigned to an expression,
P .G[χ, a] meaning that the process graph P has type G[χ, a]. We demand that
in G every port is the send-port of at most one message, i.e. G satisfies:

e, e′ ∈ EG, zG(e) = zG(e′) = messG, sendG(e) = sendG(e′) ⇒ e = e′ (3)

The main motivation behind the typing rules is to ensure that there exists a

morphism L(P)
F
� T , if P . T , and that the subject reduction property holds.

The former is ensured by the morphisms in rules (T-PROC), (T-MESS) and
(T-CON) and the latter is mainly ensured by typing rule (T-ABSTR). In (T-
ABSTR) we demand the existence of a message in the type graph which implies,
with conditions (2) and (3), that, in the type graph, the images of ports attached
to any message arriving at the k-th port are already fused with the images of the
last n ports of P . (T-CON) checks that all parts of a hypergraph are typed and

l . G[χ, a], ∃φ : L(procn(l))
F
� G[χ, a]

procn(l) . G[χ, a]
(T-PROC)

∃φ : L(messn)
F
� G[χ, a]

messn . G[χ, a]
(T-MESS)

P . G[χ, a]

!P . G[χ, a]
(T-REPL)

P . G[χ, a], ∃φ : messn+1 � G[bχcm+1...m+n k], |χ| = m + n

λ
(n)
k .P . G[bχc1...m, a]

(T-ABSTR)

∃φ : D � G[χ], ζi : mi → D, Pi . G[φ(ζi(χmi
)), a], i ∈ {1, . . . , n}

Nn

i=1(Pi, ζi) . G[χ, a]
(T-CON)

Table 2. Typing Rules

that their types overlap at least in the corresponding external ports (they may
overlap in other places as well). (T-REPL) states that we can produce copies of
a process without changing its type since all copies are represented by the same
part of the type graph, and the join operation in lattices is idempotent.

Condition (3) can not be satisfied if there are messages with a different num-
ber of ports sent to the same port. It therefore ensures that the arities of expected
and received message match and thus avoids runtime errors.

The type system satisfies the properties listed below.

Proposition 2. (Properties of the Type System)

Subject Reduction Property: P . G[χ, a], P →∗ Q ⇒ Q . G[χ, a]

Runtime Errors: P . G[χ, a] implies that P will never cause a runtime error.

Morphisms: P . G[χ, a] ⇒ ∃φ : L(P)
F
� G[χ, a]

Principal Types: If P is typable then there exists a principal type graph
P . G[χ, a] with

– φ : G[χ, a]
F
� G′[χ′, a′] implies P . G′[χ′, a′]

– P . G′[χ′, a′] implies the existence of φ : G[χ, a]
F
� G′[χ′, a′], where φ is

a strong morphism
And there exists a type inference algorithm constructing the principal type
graph for every process graph, if it exists.

In order to expose the intuition behind the type system we show that reduc-
tion of a process does not change its type. In order to unravel the typing and to
be able to trace it backwards, we need the following non-trivial lemma:

Lemma 1. Let
⊗n

i=1(Pi, ζi) . G[χ, a] with ζi : mi → D. Then there is a strong
morphism φ : D � G[χ] such that for all i ∈ {1, . . . , n}: Pi . G[φ(ζi(χmi

)), a]

We now demonstrate how to prove the subject reduction property in the case
of (R-MR):

Proof Sketch (Subject Reduction Property): Let Redk,m,n(λk.Q).G[χ, a].
It follows with lemma 1 that

procm(λk.Q) . G[bχc1...m, a], messn+1 . G[bχcm+1...m+n k, a]

Since procm(λk.Q) was typed with (T-PROC) and (T-ABSTR) it follows that
there exists a χ′ ∈ V ∗

G such that

Q . G[bχc1...m ◦ χ′, a], messn+1 � G[χ′ ◦ bχck]

And since (2) and (T-MESS) imply that

messn+1[⊥]
F
� L(messn+1)

F
� G[bχcm+1...m+n k, a]

it follows with condition (3) that χ′ = bχcm+1...m+n and therefore Q . G[χ, a].

We now describe how the type system can be used for verification purposes:
we introduce two predicates X and Y where X is a predicate on type graphs
and Y is a predicate on process graphs. We want to show that Y is an invariant
with the help of X.

Proposition 3. (Process Analysis with the Type System) Let Y be a
predicate on process graphs and let X be a predicate on type graphs of the form
G[χ, a]. We assume that X,Y satisfy

X(L(P)) ⇒ Y (P) (4)

φ : G[χ, a]
F
� G′[χ′, a′], X(G′[χ′, a′]) ⇒ X(G[χ, a]) (5)

i.e. X is closed under inverse hypergraph morphisms.
Then P . G[χ, a] and X(G[χ, a]) imply Y (Q) for all P →∗ Q.

A full type system is determined by four components: the type functor F , a
linear mapping L and the two predicates X,Y .

5 Examples

In the following examples we use a rather restricted linear mapping L with

L(procn(l)) ∼=F n[ap] L(messn) ∼=F messn[am]

for lattice elements ap, am, yet to be determined. That is, in this case, type graphs
consist of messages only. Furthermore we use the type functor F introduced in
the example after definition 3. The simplest version of this type system, where
every lattice consists of one element only, corresponds to standard type systems
for the π-calculus with recursive types, but without let-polymorphism [21].

In all of the following examples the predicate X is preserved by inverse hy-
pergraph morphisms.

5.1 Input/Output-Capabilities

We want to ensure that some external ports are only used as input ports (i.e. for
receiving messages) and that some are only used as output ports (i.e. for sending
messages). For F we choose k = 1, I = {⊥, in, out, both} where ⊥ < in < both
and ⊥ < out < both and in ∨ out = both. The linear mapping L is defined in the
following way:

L(procm(l)) = n[ap] where ap(bχci) =

{

in if l = λ
(n)
i .P, n ∈ lN

⊥ otherwise

L(messn) = messn[am] where am(bχci) =

{

out if i = n

⊥ otherwise

Since the only nodes of procn and messn are external, it is sufficient to define
ap and am on the respective string χ of external nodes.

We want to ensure that P will never reduce to a process graph P ′ where a
message is sent to bχP ci. The corresponding predicate X is:

X(G[χ, a]) := (a(bχci) ≤ in)

If we replace in by out in X we can conclude that P will never reduce to a
process graph P ′ where a process listens at bχP ci.

A similar version of this type system is presented in [19].
Typing the example process graph from section 3 (figure 2) yields the prin-

cipal type in figure 3 (left). This implies that the first external part is not used
for any I/O-operations at all, while the second external port is only an output
port.

(2)(1)
outboth both (2)(1) (2)(1)

Fig. 3. Types for process graphs (input/output, secrecy, deadlocks)

5.2 Secrecy of External Ports

We assume that the external ports of a process graph can have different levels of
secrecy. They might either be public or secret. Both sorts of ports can be used
to send or receive message, but it is not allowed to forward a secret port to a
receiver listening at a public port.

We choose k = 2, I = {false, true} where {false, true} is the boolean lattice
with false < true. If a tuple (v1, v2) is associated with true, this means that the
port v2 is sent to v1. The mapping L has the following form:

L(procm(l)) = n[ap] where ap(bχci, bχcj) = false

L(messn) = messn[am] where am(bχci, bχcj) =

{

true if i = n, j 6= n

false otherwise

Let P be a process graph and we assume that the sets SEC and PUB form a
partition of {1, . . . , ar(P)}. If the type of P satisfies

X(G[χ, a]) := (∀ i ∈ PUB, j ∈ SEC : a(bχci, bχcj) = false)

it follows that no message, with secret ports attached to it, is ever sent to a
public port. In this case typing the example process graph yields the principal
type in figure 3 (middle), where an arrow from port v2 to v1 indicates that
a(v1, v2) = true. The predicate X is not satisfied only in the case where the first
external port is secret and the second external port is public. In all other cases,
the process graph is well-typed.

[4] presents a related method for checking the secrecy of ports.

5.3 Avoiding Deadlocks

We attempt to avoid vicious circles of processes and messages waiting for one
another and causing a deadlock. Let P be a process graph with a non-empty

edge set such that there is no process graph P ′ with P → P ′ and (C-REPL2) is
not applicable, i.e. P is stuck. Then at least one of the following conditions is
satisfied:

(1) There is a message waiting or a process listening at an external port. This
case is good-natured, since P is only waiting to perform an I/O-operation.

(2) There is an internal port where all edges connected to it are either messages,
sent to this port, or processes listening at this port.

(3) There is a vicious circle, i.e. a sequence v0, . . . , vn = v0 ∈ VP such that
for every pair vi, vi+1 there is either a message q with sendP (q) = vi and
bsP (q)cj = vi+1 for some j ∈ {1, . . . , ar(q) − 1} or a process p with lP (p) =

λ
(n)
k .Q, bsP (p)ck = vi and bsP (p)cj = vi+1 for some j ∈ {1, . . . , ar(p)},

j 6= k.

Our aim is to avoid circles as described in (3). We set k := 2 and I is again
the boolean lattice with false and true. We define:

L(procm(l)) = n[ap] where ap(bχci, bχcj) =

{

true if l = λ
(n)
i .P, j 6= i, n ∈ lN

false otherwise

L(messn) = messn[am] where am(bχci, bχcj) =

{

true if i = n, j 6= n

false otherwise

X(G[χ, a]) := (6 ∃v0, . . . , vn = v0 ∈ VG : a(vi, vi+1) = true, 0 ≤ i < n)

In this case we can retrieve the principal type of our example process graph
rather easily from the type in section 5.2. All we have to do is add the arrows
(with filled arrow heads) produced by ap (see figure 3 (right)).

Since there is no circle of arrows we can conclude that the process graph will
(during its reduction) never contain a vicious circle as described in (3).

Similar methods for avoiding deadlocks are presented in [12, 10].

5.4 Composing Type Systems

We asumme that we have two type systems, with functors F1, F2, linear mappings
L1, L2, predicates X1, X2 on type graphs and predicates Y1, Y2 on process graphs.

We define a functor F with F (G) := (I1 × I2,≤) if Fi(G) = (Ii,≤i), i = 1, 2
and (a1, a2) ≤ (a′

1, a
′

2) ⇐⇒ a1 ≤1 a′

1 and a2 ≤2 a′

2.
Furthermore F (φ)((a1, a2)) := (F1(φ)(a1), F2(φ)(a2))
Furthermore let L(P) := G[χ, (a1, a2)] if L1(P) ∼=F1

G[χ, a1] and L2(P) ∼=F2

G[χ, a2]. This requires, of course, that L1 and L2 map process graphs to type
graphs of the same structure. This is actually not a severe restriction since all
practical examples can be defined in such a way that they satisfy this condition
(see the examples in this section).

We define X∧(G[χ, (a1, a2)]) := X1(G[χ, a1]) ∧ X2(G[χ, a2])

X∨(G[χ, (a1, a2)]) := X1(G[χ, a1]) ∨ X2(G[χ, a2])

Then F,L,X∧, Y1∧Y2 respectively F,L,X∨, Y1∨Y2 denote type systems checking
the conjunction respectively disjunction of Y1 and Y2. A type system checking a
negated property can only be constructed in very special cases.

6 Conclusion and Comparison to Related Work

Several type systems for process calculi have been proposed, each checking dif-
ferent properties of processes, e.g. I/O-capabilities [19], confluence [17], secrecy
in security protocols [1] or deadlock-freedom [10]. This paper is an attempt to
integrate these approaches and to propose one single generic type system which
can be instantiated in order to verify invariant properties of processes. Our type
system seems to be especially well-suited for properties related to the geometry
of processes and messages represented in the process graph.

In [8] Kohei Honda proposes a general framework for type systems, satisfying
the condition of strict additivity, i.e. two process connected to each other via
several ports can be typed if and only if connections via one port only can be
typed. As Honda remarks in his paper, strict additivity is sometimes too strong,
e.g. in the case of deadlock-freedom. The type system presented in this paper is
semi-additive, i.e. the “if and only if” is replaced by “only if”. In contrast to [8]
our method of instantiation is restricted, but this enables us to prove the subject
reduction property for all possible type systems.

There is, of course, a trade-off between generality and the percentage of
processes which can be typed: e.g. in the case of I/O-capabilities our type system
is less powerful than the type system introduced in [19], which can partly be
explained by the very general nature of our type system and partly by the fact
that the type system in [19] does not have principal types.

We believe, however, that this type system can serve as a starting point for
further research.

We will finish by dicussing two existing extensions of this type system which
we were not able to present here due to limited space:

– Sometimes labelling processes with lattice elements does not seem to be
sufficient. E.g. if we want to type confluent processes [17], typing involves
the counting of processes and messages adjacent to a certain port. (In this
case we have to demand that there is at most one process listening and at
most one message waiting at a certain port.) Counting is also necessary if we
want to design a type system checking (2) in the conditions for deadlocks
or if we attempt to introduce linear types as in [11].
An extension of our type system is based on latttice-ordered monoids rather
than on lattices.

– It is not very difficult to extend the process calculus to a calculus where
higher-order communication is possible, i.e. where entire processes can be
sent as the content of a message. The corresponding extension of the type
system is not very hard.
We have to add environments, describing the type of the variables in a pro-
cess graph. Furthermore it is necessary to slightly change the linear mapping
L and rule (T-ABSTR).

Another future area of research is the use of the results of the type system in
order to establish bisimilarity of processes (as in [1]).

References

1. Mart́ın Abadi. Secrecy by typing in security protocols. In Theoretical Aspects of
Computer Software, pages 611–638. Springer-Verlag, 1997.

2. Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewritings.
Mathematical Systems Theory, 20:83–127, 1987.

3. Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical
Computer Science, 96:217–248, 1992.

4. Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson. Con-
trol flow analysis for the pi-calculus. In CONCUR ’98, pages 84–98. Springer-
Verlag, 1998. LNCS 1466.

5. Roy L. Crole. Categories for Types. Cambridge University Press, 1993.
6. H. Ehrig. Introduction to the algebraic theory of graphs. In Proc. 1st International

Workshop on Graph Grammars, pages 1–69. Springer-Verlag, 1979. LNCS 73.
7. Annegret Habel. Hyperedge Replacement: Grammars and Languages. Springer-

Verlag, 1992. LNCS 643.
8. Kohei Honda. Composing processes. In Proc. of POPL’96, pages 344–357. ACM

Press, 1996.
9. Kohei Honda and Nobuko Yoshida. Combinatory representation of mobile pro-

cesses. In POPL ’94, pages 348–360. ACM Press, 1994.
10. Naoki Kobayashi. A partially deadlock-free typed process calculus. In LICS ’97,

pages 128–139. IEEE, Computer Society Press, 1997.
11. Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the

pi-calculus. In POPL ’96, pages 358–371. ACM SIGACT/SIGPLAN, 1996.
12. Yves Lafont. Interaction nets. In POPL ’90, pages 95–108. ACM Press, 1990.
13. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I. Tech.

Rep. ECS-LFCS-89-85, University of Edinburgh, Laboratory for Foundations of
Computer Science, 1989.

14. Robin Milner. Operational and algebraic semantics of concurrent processes. In
Jan van Leeuwen, editor, Formal Models and Semantics, Handbook of Theoretical
Computer Science, volume B, pages 1201–1242. Elsevier, 1990.

15. Robin Milner. The polyadic π-calculus: a tutorial. Tech. Rep. ECS-LFCS-91-180,
University of Edinburgh, Laboratory for Foundations of Computer Science, 1991.

16. Robin Milner. Pi-nets: a graphical form of pi-calculus. In European Symposium on
Programming, pages 26–42. Springer-Verlag, 1994. LNCS 788.

17. Uwe Nestmann and Martin Steffen. Typing confluence. In ERCIM Workshop on
Formal Methods in Industrial Critical Systems, pages 77–101, 1997.

18. Joachim Parrow. Interaction diagrams. Nordic Journal of Computing, 2:407–443,
1995.

19. Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
In LICS ‘93, pages 376–385, 1993.

20. Antonio Ravara and Vasco T. Vasconcelos. Behavioural types for a calculus of
concurrent objects. In Euro-Par ’97. Springer-Verlag, 1997.

21. David Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD
thesis, University of Edinburgh, 1995. ECS-LFCS-96-345.

22. P. Urzyczyn. Positive recursive type assignment. In J. Wiedermann and P. Hájek,
editors, Mathematical Foundations of Computer Science 1995. Springer-Verlag,
1995. LNCS 969.

23. Nobuko Yoshida. Graph types for monadic mobile processes. In FST/TCS ’96,
pages 371–386. Springer-Verlag, 1996.

A Process graphs and the asynchronous polyadic

π-calculus

In order to show how process graphs are related to the π-calculus we give an encoding,
transforming a subset of all process graphs to expressions in the asynchronous polyadic
π-calculus.

Definition 7. (Encoding) Let P be a process graph such that χP is duplicate-free,
i.e. bχP ci = bχP cj implies i = j. And we assume that the same condition is satisfied
for all process graphs occurring inside of P . Let N be the name set of the π-calculus
and let t ∈ N ∗ such that |t| = ar(P). We define Θt(P) inductively as follows:

Message: Θa1...an
(messn) := an〈a1 . . . an−1〉.0

Replication: Θt(procm(!P)) :=! Θt(P)

Process Abstraction: Θa1...am
(procm(λ

(n)
k (P))) := ak(x1 . . . xn).Θa1...amx1...xn

(P)
where x1, . . . , xn ∈ N are fresh names.

Process Graph Construction:
Θt(

Nn

i=1(Pi, ζi)) := (ν µ(VD\EXTD))(Θµ(ζ1(χm1
))(P1) | . . . | Θµ(ζn(χmn

))(Pn))
where ζi : mi → D, i ∈ {1, . . . , n} and µ : VD → N is an arbitrary mapping such
that µ restricted to VD\EXTD is injective and µ(χD) = t.
If n = 0 (i.e. if the process graph is identical to D) we set Θt(

N0
i=1(Pi, ζi)) := 0.

The set of all process graphs satisfying the condition in the definition above is closed
under reduction and corresponds exactly to the asynchronous part of the polyadic
π-calculus without summation. (We rely on the syntax and semantics given for its
synchronous version in [19], omitting sort annotations.)

Proposition 4. Let p be an arbitrary expression in the asynchronous polyadic π-
calculus without summation. Then there exists a process graph P (satisfying the condi-
tion in definition 7) and a duplicate-free string t ∈ N ∗ such that Θt(P) ≡ p.

Furthermore for process graphs P, P ′ satisfying the condition in definition 7 and
for every duplicate-free string t ∈ N ∗ with |t| = ar(P) = ar(P ′) it is true that:

− P ≡ P ′ implies Θt(P) ≡ Θt(P
′) − P → P ′ implies Θt(P) → Θt(P)

− Θt(P) → p with p 6= wrong implies that there exists a process graph Q with P → Q

and Θt(Q) ≡ p

The proposition implies that one calculus can match the reductions of the other step
by step. The main difference of the calculi lies in their interface towards the environ-
ment. How these interfaces are converted into one another is described by the string
t.

