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2 Dipartimento di Informatica, Università di Pisa, Italy
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Abstract. We propose a framework where behavioural properties of
finite-state systems modelled as graph transformation systems can be
expressed and verified. The technique is based on the unfolding seman-
tics and it generalises McMillan’s complete prefix approach, originally
developed for Petri nets, to graph transformation systems. It allows to
check properties of the graphs reachable in the system, expressed in a
monadic second order logic.

1 Introduction

Graph transformation systems (GTSs) are recognised as an expressive specifica-
tion formalism, especially suited for concurrent and distributed systems [9]: the
(topo)logical distribution of a system can be naturally represented by using a
graphical structure and the dynamics of the system, e.g., the reconfigurations of
its topology, can be modelled by means of graph rewriting rules. Moreover GTSs
can be seen as a proper generalisation of a classical model of concurrency, i.e.,
Petri nets, since the latter are essentially rewriting systems on (multi)sets, the
rewriting rules being the transitions.

The concurrent behaviour of GTSs has been thoroughly studied and a consol-
idated theory of concurrency for GTSs is available, including the generalisation of
several semantics of Petri nets, like process and unfolding semantics (see, e.g., [6,
21, 2]). However, only recently, building on these semantical foundations, some
efforts have been devoted to the development of frameworks where behavioural
properties of GTSs can be expressed and verified (see [12, 15, 13, 22, 20, 1]).

As witnessed, e.g., by the approaches in [17, 10] for Petri Nets, truly concur-
rent semantics are potentially useful in the verification of finite-state systems, in
that they help to avoid the combinatorial explosion arising when one explores all
possible interleavings of events. Still, to the best of our knowledge, no technique
based on partial order (process or unfolding) semantics has been proposed for
the verification of finite-state GTSs.
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In this paper we contribute to this topic by proposing a verification framework
for finite-state graph transformation systems based on their unfolding semantics.
Our technique is inspired by the approach originally developed by McMillan for
Petri nets [17] and further developed by many authors (see, e.g., [10, 11, 24]).
More precisely, our technique applies to any graph grammar, i.e., any set of graph
rewriting rules with a fixed start graph (the initial state of the system), which
is finite-state in a liberal sense: the set of graphs which can be reached from the
start graph, considered not only up to isomorphism, but also up to isolated nodes,
is finite. Hence in a finite-state graph grammar in our sense there is not actually
a bound to the number of nodes generated in a computation, but only to the
nodes which are connected to some edge at each stage of the computation. Some
similarities exist with name-based process calculi, where a process may generate
an unbounded number of names still being essentially finite-state since a finite
number of them is actually used at each time. Existing model-checking tools,
such as SPIN [14], usually do not directly support the creation of an arbitrary
number of objects while still maintaining a finite state space, making entirely
non-trivial their use for checking finite-state GTSs or process calculi agents with
name creation. In the field of process calculi this has led, for instance, to the
introduction of so-called HD-automata [19].

As a first step we face the problem of identifying a finite, still useful frag-
ment of the unfolding of a GTS. In fact, the unfolding construction for GTSs
produces a structure which fully describes the concurrent behaviour of the sys-
tem, including all possible steps and their mutual dependencies, as well as all
reachable states. However, the unfolding is infinite for non-trivial systems, and
cannot be used directly for model-checking purposes.

Following McMillan’s approach, we show that given any finite-state graph
grammar G a finite fragment of its unfolding which is complete, i.e., which pro-
vides full information about the system as far as reachability (and other) prop-
erties are concerned, can be characterised as the maximal prefix of the unfolding
not including cut-off events. A cut-off event is intuitively an event which does
not contribute to generating new states. For Petri nets this is formalised by
defining a cut-off, roughly, as a transition which produces the same marking as
other transitions but with a larger causal history. This notion turns out to be
inappropriate for GTSs, because, due to the possibility of performing “contex-
tual” rewritings (i.e., of preserving part of the state in a rewriting step), an event
can have several different local histories: a problem widely studied, e.g., in the
setting of contextual nets [18, 23, 3, 24]. Consequently, the generalised notion of
cut-off for GTSs must take into account the multiplicity of the local histories.

Unfortunately the characterisation of the finite complete prefix is not con-
structive. Hence, while leaving as an open problem the definition of a general
algorithm for constructing such a prefix, we identify a significant subclass of
graph grammars where an adaptation of the existing algorithms for Petri nets is
feasible. These are called read-persistent graph grammars by analogy with the
terminology used in the work on contextual nets [24].
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The complete finite prefix provides a “compact” representation of the state
space of a system, not only because it avoids the combinatorial explosion arising
from the possible interleavings of concurrent events, but also because several
branches of computations are merged until a real choice point is reached. To
fruitfully exploit the prefix, in the second part of the paper we consider a logic
L2 where graph properties of interest can be expressed, like the non-existence
and non-adjacency of edges with specific labels, the absence of certain paths
(related to security properties) or cycles (related to deadlock-freedom). This is a
monadic second-order logic over graphs where quantification is allowed over (sets
of) edges. (Similar logics are considered in [8] and, in the field of verification,
in [20, 4].) Then we show how a complete finite prefix of a graph grammar can
be used to verify properties of the graphs reachable in G, expressed in the logic
L2. This is done by exploiting both the graphical structure underlying the prefix
and the concurrency information it provides.

The rest of the paper is organised as follows. Section 2 introduces graph
transformation systems and their unfolding semantics. Section 3 characterises
a finite complete prefix for finite-state GTSs and discusses the problem of con-
structing such a prefix. Section 4 introduces a logic for GTSs, showing how it
can be checked over a finite complete prefix. Finally, Section 5 draws some con-
clusions and indicates directions of further research. Two Appendices contain a
detailed definition of the unfolding construction and the proofs for Section 3,
respectively.

This technical report is an extended version of [5] which was published in the
proceedings of CONCUR’04.

2 Unfolding semantics of graph grammars

This section presents the notion of graph rewriting used in the paper. Rewriting
takes place on so-called typed graphs, namely graphs labelled over a structure
that is itself a graph [6]. It can be seen as a set-theoretical presentation of an
instance of algebraic (single- or double-pushout) rewriting (see, e.g., [7]). Next
we review the notion of occurrence grammar, which is instrumental in defining
the unfolding of a graph grammar [2, 21].

2.1 Graph Transformation Systems

In the following, given a set A we denote by A∗ the set of finite strings of elements
of A. Given u ∈ A∗ we write |u| to indicate the length of u. If u = a0 . . . an and
0 ≤ i ≤ n, by [u]i we denote the i-th element ai of u. Furthermore, if f : A → B
is a function then we denote by f∗ : A∗ → B∗ its extension to strings.

A (hyper)graph G is a tuple (VG, EG, cG), where VG is a set of nodes, EG

is a set of edges and cG : EG → VG
∗ is a connection function. A node v ∈ VG

is called isolated if it is not connected to any edge. Given two graphs G,G′, a
graph morphism φ : G → G′ is a pair of total functions 〈φV : VG → VG′ , φE :
EG → EG′〉 such that for every e ∈ EG it holds that φV

∗(cG(e)) = cG′(φE(e)).
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When clear from the context, the subscripts V and E of the components of graph
morphisms will be omitted.

Definition 1 (typed graph). Given a graph (of types) T , a typed graph G
over T is a graph |G|, together with a morphism typeG : |G| → T . A morphism
between T -typed graphs f : G1 → G2 is a graph morphism f : |G1| → |G2|
consistent with the typing, i.e., such that typeG1

= typeG2
◦ f .

The graph of types T can be thought of as a set of labels (with some additional
structure) and for any x in a T -typed graph G, its type typeG(x) can be read as
the label of x.

A typed graph G is called injective if the typing morphism typeG is injective.
More generally, given n ∈ N, the graph is called n-injective if for any item x in
T , |type−1

G (x)| ≤ n, namely if the number of “instances of resources” of any type
x is bounded by n. Given two (typed) graphs G and G′ we will write G ' G′ to
mean that G and G′ are isomorphic, and G

...
'G′ when G and G′ are isomorphic

once their isolated nodes have been removed. In the last case we say that G and
G′ are isomorphic up to isolated nodes.

In the sequel we extensively use the fact that given a graph G, any subgraph
of G without isolated nodes is identified by the set of its edges. Precisely, given
a subset of edges X ⊆ EG, we denote by graph(X) the least subgraph of G
(actually the unique subgraph, up to isolated nodes) having X as set of edges.

We will use some set-theoretical operations on (typed) graphs with “compo-
nentwise” meaning. Let G and G′ be T -typed graphs. We say that G and G′ are
consistent if the structure G∪G′ defined as (V|G| ∪ V|G′|, E|G| ∪E|G′|, cG ∪ cG′),
typed by typeG ∪ typeG′ , is a well-defined T -typed graph. In this case also the
intersection G ∩G′, constructed in a similar way, is well-defined. Given a graph
G and a set (of edges) E we denote by G − E the graph obtained from G by
removing the edges in E (formally, |G − E| = (V|G|, E|G| − E, cG′), where cG′

is the restriction of cG, typed by typeG−E which is the restriction of typeG).
Sometimes we will also refer to the items (nodes and edges) in G − G′, where
G and G′ are graphs, although the structure resulting as the componentwise
set-difference of G and G′ might not be a well-defined graph.

Definition 2 (production). Given a graph of types T , a T -typed production
is a pair of finite consistent T -typed graphs q = (L,R), often written L → R,
such that

1. L ∪ R and L do not include isolated nodes;
2. V|L| ⊆ V|R|;
3. E|L| − E|R| and E|R| − E|L| are non-empty.

Informally, a rule L → R specifies that, once an occurrence of L is found in a
graph G, then G can be rewritten by removing (the image in G of) the items
in L − R and adding the items in R − L. The (image in G of the) items in
L ∩ R instead are left unchanged: they are, in a sense, preserved or read by the
rewriting step.
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φ

φ(L∩R)

L∩R L∩R

L R

G H ′ H ′ ] R (H ′ ] R)/≡

Fig. 1. A rewriting step, schematically.

This informal explanation should also motivate Conditions 1–3 above. Con-
dition 1 essentially states that we are interested only in rewriting up to isolated
nodes: by the requirement on L ∪ R, no node is isolated when created and, by
the requirement on L, nodes that become isolated have no influence on further
reductions. Thus one can safely assume that isolated nodes are removed by some
kind of garbage collection. Consistently with this view, by Condition 2 produc-
tions cannot delete nodes. Deletion of nodes could be managed at the price of
introducing heavy technical machinery, which is, in our view, unnecessary, since
the deletion of a node can be simulated by leaving that node isolated. Finally
Condition 3 ensures that every production consumes and produces at least one
edge: a requirement corresponding to T -restrictedness in the theory of Petri nets.

Definition 3 (graph rewriting). Let q = L → R be a T -typed production.
A match of q in a T -typed graph G is a morphism φ : L → G, satisfying the
identification condition, i.e., for any e, e′ ∈ E|L|, if φ(e) = φ(e′) then e, e′ ∈
E|R|. In this case G rewrites to the graph H, obtained as H = ((G − φ(E|L| −
E|R|)) ] R)/≡, where ≡ is the least equivalence on the items of the graph such
that x ≡ φ(x). We write G ⇒q,φ H or simply G ⇒q H.

A rewriting step is schematically represented in Fig. 1. Intuitively, in the
graph H ′ = G − φ(E|L| − E|R|) the images of all the edges in L − R have been
removed. Then in order to get the resulting graph, merge R to H ′ along the
image through φ of the preserved subgraph L∩R. Formally the resulting graph
H is obtained by first taking H ′]R and then by identifying, via the equivalence
relation ≡, the image through φ of each item in L ∩ R with the corresponding
item in R.

Note that by the identification condition if a production requires the deletion
of two edges, then two distinct edges must be actually deleted in G. Instead, two
edges in L which are preserved can be mapped to the same item in G.

Definition 4 (graph transformation system and graph grammar). A
graph transformation system (GTS) is a triple R = 〈T, P, π〉, where T is a
graph of types, P is a set of production names and π is a function which assigns
to each production name q ∈ P a T -typed production π(q) = Lq → Rq. A graph
grammar is a tuple G = 〈T,Gs, P, π〉 where 〈T, P, π〉 is a GTS and Gs is a
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finite T -typed graph, without isolated nodes, called the start graph. We denote
by Elem(G) the (disjoint) union ET ] P , i.e., the set of edges in the graph of
types and the production names. We say that G is finite if the set Elem(G) is
finite.

A T -typed graph G is reachable in G if for some graph G′ ' G, we have Gs ⇒∗
G

G′, where ⇒∗
G is the transitive closure of the rewriting relation induced by the

productions of G.
We remark that Place/Transition Petri nets can be viewed as a very special

subclass of typed graph grammars. Say that a graph G is edge-discrete if its set
of nodes is empty and thus for any edge e in G, cG(e) is the empty string, i.e., the
edge has no connection. Given a P/T net P , let TP be the edge-discrete graph
having the set of places of P as edges. Then any finite edge-discrete graph typed
over TP can be seen as a marking of P : an edge typed over s represents a token
in place s. Using this correspondence, a production Lt → Rt faithfully represents
a transition t of P if Lt encodes the marking pre-set(t), Rt encodes post-set(t),
and Lt ∩ Rt = ∅. The graph grammar corresponding to a Petri net is finite iff
the original net has finitely many places and transitions. It is worth stressing
that the generalisation from edge-discrete to proper graphs radically changes
the expressive power of the formalism. For instance, it can be easily shown that,
unlike P/T Petri nets, the class of grammars considered in this paper is Turing
complete.

Example 1. Consider the graph grammar CP, modeling a system where three
processes of type P are connected to a communication manager of type CM (see
the start graph in Fig. 2, where edges are represented as rectangles and nodes
as small circles). Two processes may establish a new connection with each other
via the communication manager, becoming processes engaged in communication
(typed PE , the only edge with more than one connection). This transformation
is modelled by the production [engage] in Fig. 2: observe that a new node con-
necting the two processes is created. The second production [release] describes
the termination of the communication between the two partners. A typed graph
G over TCP is drawn by labeling each edge or node x of G with “: typeG(x)”.
Only when the same graphical item x belongs to both the left- and the right-
hand side of a production we include its identity in the label (which becomes
“x : typeG(e)”): in this case we also shade the item, to stress that it is preserved
by the production. This example is not meant to be meaningful or realistic, but
rather it has been chosen to illustrate, in a simple situation, the notions and
concepts introduced in the paper.

We next discuss the notion of safety for graph grammars [6]. It generalises
the one for P/T nets which requires that each place contains at most one token
in any reachable marking. More generally, we extend to graph grammars the
notion of n-boundedness.

Definition 5 (safe grammar). For a fixed n ∈ N, we say that a graph gram-
mar G is n-bounded if for all graphs H reachable in G there is an n-injective
graph H ′ such that H ′ ...

'H. A 1-bounded grammar will be called safe.
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: P

[engage]

[release]

1:CM

Type graph

Start graph

c1

c2
1:CM

4:PE

5:PE

CM

P

PE

: P

: P:CM

: v

v

: P

: P

:PE

:PE

: P

: P

2: v 2: v : w

1: v : w 1: v : w

w

Fig. 2. The finite-state graph grammar CP.

The definition can be understood by thinking of edges of the graph of types T
as a generalisation of places in Petri nets. In this view the number of different
edges of a graph which are typed on the same item of T corresponds to the
number of tokens contained in a place. Observe that for finite graph grammar,
n-boundedness amounts to the property of being finite-state (up to isomorphism
and up to isolated nodes). In the sequel when considering a finite-state graph
grammar we will (often implicitly) assume that it is also finite.

For instance, the graph grammar CP in Fig. 2 is clearly 3-bounded and thus
finite-state (but only up to isolated nodes).

2.2 Nondeterministic Occurrence Grammars

In this subsection we introduce nondeterministic occurrence grammars, a spe-
cial class of grammars which are used as semantical model for general grammars:
the unfolding construction maps every grammar G into an occurrence grammar
which provides a static description of the computations of G, recording the events
(production applications) which appear in all possible derivations and the de-
pendency relations among them. While for nets it suffices to take into account
only the causality and conflict relations, for grammars the fact that a produc-
tion application not only consumes and produces, but also preserves a part of
the state leads to a form of asymmetric conflict between productions.

When a graph grammar G is safe, and thus reachable graphs are injectively
typed, at every step, for any item t in the type graph every production can
consume, preserve and produce a single item typed t. Hence we can safely think
that a production, according to its typing, consumes, preserves and produces
items of the graph of types. Using a net-like language, we speak of pre-set •q,
context q and post-set q• of a production q. Since we work with graphs considered
up to isolated nodes, we will record in these sets only edges. The proper graphical
structure will always be recoverable from the graph of types.

Definition 6 (pre-set, context, post-set of productions). For any produc-
tion q of a graph grammar G = 〈T,Gs, P, π〉, we define

7



•q = typeLq
(E|Lq| −E|Rq|) q = typeLq

(E|Lq∩Rq|) q• = typeRq
(E|Rq| −E|Lq|)

Furthermore, for any edge e in T we define •e = {q ∈ P : e ∈ q•}, e = {q ∈ P :
e ∈ q}, e• = {q ∈ P : e ∈ •q}. This notation is extended also to nodes in the
obvious way, e.g., for v ∈ VT we define •v = {q ∈ P : v ∈ typeRq

(V|Rq| − V|Lq|)}.

An example of safe grammar can be found in Fig. 3 (for the moment ignore
its relation to grammar CP in Fig. 2). For this grammar, •engage1 = {2:P, 3:P},
engage1 = {1:CM} and engage1• = {5:PE, 6:PE}, while •1:CM = ∅, 1:CM =
{engage1, engage2, engage3} and 3:P • = {engage1, engage3}.

Definition 7 (causal relation). The causal relation of a safe grammar G is
the least transitive relation < over Elem(G) satisfying: for any edge e in the
graph of types T , and for productions q, q′ ∈ P

1. if e ∈ •q then e < q;
2. if e ∈ q• then q < e;
3. if q• ∩ q′ 6= ∅ then q < q′.

As usual ≤ is the reflexive closure of <. Moreover, for x ∈ Elem(G) we denote
by bxc the set of causes of x in P , namely bxc = {q ∈ P : q ≤ x}.

Observe that the fact that an item is preserved by q and consumed by q′, i.e.,
q ∩ •q′ 6= ∅ does not imply q < q′. In this case, the dependency between the two
productions is a kind of asymmetric conflict (see [3, 18, 16, 24]): The application
of q′ prevents q from being applied, so that q can never follow q′ in a derivation
(or, equivalently, when both productions q and q′ occur in a derivation then q
must precede q′).

Definition 8 (asymmetric conflict). The asymmetric conflict relation of a
safe grammar G is the binary relation ↗ over the set of productions P , defined
by q ↗ q′ if:

1. q ∩ •q′ 6= ∅; 2. •q ∩ •q′ 6= ∅ and q 6= q′; 3. q < q′.

Condition 1 is justified by the discussion above. Condition 2 essentially expresses
the fact that the ordinary symmetric conflict is encoded, in this setting, as an
asymmetric conflict in both directions. More generally, we will write q#q′ and
say that q and q′ are in conflict when the causes of q and q′, i.e., bqc ∪ bq′c,
includes a cycle of asymmetric conflict. Finally, since < represents a global order
of execution, while ↗ determines an order of execution only locally to each
computation, it is natural to impose ↗ to be an extension of < (Condition 3).

A nondeterministic occurrence grammar is an acyclic grammar which rep-
resents, in a branching structure, several possible computations beginning from
its start graph and using each production at most once.

Definition 9 ((nondeterministic) occurrence grammar). A safe grammar
O = 〈T,Gs, P, π〉 is called a (nondeterministic) occurrence grammar if
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1. its causal relation ≤ is a partial order, and, for any q ∈ P , the set bqc is
finite and the asymmetric conflict ↗ is acyclic on bqc;

2. the start graph Gs is the generated by the set Min(O) of minimal elements of
〈Elem(O),≤〉, typed over T by the inclusion, i.e., |Gs| = graph(Min(O));4

3. any edge or node x in T is created by at most one production in P , namely
| •x |≤ 1;

4. for each q ∈ P , the typing typeLq
is injective on the “consumed” items in

|Lq| − |Rq|, and typeRq
is injective on the “produced” items in |Rq| − |Lq|.

Since the start graph of an occurrence grammar O is determined by Min(O), we
often do not mention it explicitly.

Intuitively, Conditions 1–3 recast in the framework of graph grammars the anal-
ogous conditions of occurrence nets (actually of occurrence contextual nets [3,
24]). In particular, in Condition 1, the acyclicity of asymmetric conflict on bqc
corresponds to the requirement of irreflexivity for the conflict relation in oc-
currence nets. In fact, notice that if a set of productions forms an asymmetric
conflict cycle q0 ↗ q1 ↗ . . . ↗ qn ↗ q0, then such productions cannot appear
in the same computation, otherwise the application of each production should
precede the application of the production itself; this fact can be naturally in-
terpreted as a form of n-ary conflict. Condition 4, instead, is closely related
to safety and requires that each production consumes and produces items with
multiplicity one. An example of occurrence grammar is given in Fig. 3.

2.3 Concurrent Subgraphs, Configurations and Histories

The finite computations of an occurrence grammar are characterised by special
subsets of productions closed under causal dependencies and with no conflicts
(i.e., cycles of asymmetric conflict).

Definition 10 (configuration). Let O = 〈T, P, π〉 be an occurrence grammar.
A configuration of O is a finite subset of productions C ⊆ P such that

1. ↗C , the asymmetric conflict restricted to C, is acyclic;
2. for any q ∈ C, bqc ⊆ C.

We define a computational order on configurations so that C1 precedes C2

when C1 can be extended to C2 by applying the productions in C2 − C1. Due
to the presence of asymmetric conflicts this order is not simply subset inclusion.
In fact one must be sure that productions in C1 do not prevent the productions
in C2 − C1 from being applied.

Definition 11 (poset of configurations). Given two configurations C1, C2

of an occurrence grammar O we write C1 v C2 if

1. C1 ⊆ C2;

4 Notice that Min(O) ⊆ ET , i.e., it does not contain productions by Condition 3 of
Definition 2.
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2. for any q1 ∈ C1, q2 ∈ C2, if q2 ↗ q1 then q2 ∈ C1.

The set of all configurations of O, ordered by v, is denoted by Conf (O).

Proposition 1 (rechability of graphs generated by configurations). Let
O be an occurrence grammar, C ∈ Conf (O) be a configuration and

G(C) = graph((Min(O) ∪
⋃

q∈C q•) −
⋃

q∈C
•q).

Then a graph G such that G
...
'G(C) can be obtained from the start graph of O,

by applying all the productions in C in any order compatible with ↗.

Due to the presence of asymmetric conflicts, given a production q, the history
of q, i.e., the set of events which must precede q in a computation is not uniquely
determined by q, but it depends also on the particular computation. Essentially,
the history of q can include or not the productions which are in asymmetric
conflict with q.

Definition 12 (history). Let O be an occurrence grammar, let C ∈ Conf (O)
be a configuration and let q ∈ C. The history of q in C is the set of events
C[[q]] = {q′ ∈ C : q′ ↗∗

C q}. We denote by Hist(q) the set of histories of q, i.e.,
Hist(q) = {C[[q]] : C ∈ Conf (O)}.

As in the case of nets, reachable states are characterised in terms of a concurrency
relation.

Definition 13 (concurrent graph). Let O = 〈T, P, π〉 be an occurrence gram-
mar. A finite subset of edges E ⊆ ET is called concurrent, written co(E), if

1. ↗E, the asymmetric conflict restricted to
⋃

x∈Ebxc, is acyclic;
2. ¬(x < y) for all x, y ∈ E.

A subgraph G of T is called concurrent, written co(G), if co(EG).

The maximal concurrent subgraphs G of T corresponds exactly (up to isolated
nodes) to the graphs reachable from the start graph (by means of a deriva-
tion which applies all the productions in

⋃

x∈EG
bxc exactly once in any order

compatible with ↗).

2.4 Unfolding of graph grammars

The unfolding construction, when applied to a grammar G, produces a nondeter-
ministic occurrence grammar U(G) describing the behaviour of G. An unfolding
construction for the double-pushout algebraic approach to graph rewriting has
been proposed in [2]: the construction sketched here is slightly simpler because
productions cannot delete nodes and thus the so-called dangling condition does
not play a role (see also the work on the single-pushout approach to graph
rewriting [21]). A more detailed description of the construction can be found in
Appendix A.

Intuitively, the construction begins from the start graph of G, and then ap-
plies in all possible ways its productions to concurrent subgraphs, recording in
the unfolding each occurrence of production and each new graph item generated
in the rewriting process.
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Definition 14 (unfolding - sketch). Let G = 〈T,Gs, P, π〉 be a graph gram-
mar. The unfolding U(G) = 〈T ′, G′

s, P
′, π′〉 is defined as the “componentwise”

union of the following inductively defined sequence of occurrence graph grammars

U(G)
[n]

.

(n = 0) The grammar U(G)
[0]

consists of the start graph |Gs|, with no produc-
tions.

(n → n + 1) Let q ∈ P be a production of G and let m be a match of q in the

graph of types of U(G)
[n]

, satisfying the identification condition and such that
m(|Lq|) is concurrent.

Then the occurrence grammar U(G)
[n+1]

is obtained by “recording” in U(G)
[n]

the application of q at the match m. More precisely, a new production q′ = 〈q,m〉
is added and the graph of types T [n] is extended by adding to it a copy of each
item generated by the application q, without deleting any item.

The unfolding is mapped over the original grammar by the so-called folding
morphism χ = 〈χT , χP 〉 : U(G) → G. The first component χT : T ′ → T is a graph
morphism mapping each graph item in the (graph of types of) the unfolding to
the corresponding item in the (graph of types of) the original grammar G. The
second component χP : P ′ → P maps any production occurrence 〈q,m〉 in the
unfolding to the corresponding production q of G.

Keeping in mind that productions and items of the graph of types for GTSs
play the role of transitions and place names for Petri nets, we have a clear
analogy between the unfolding constructions for GTSs and Petri nets: in fact,
for Petri nets the unfolding is again a Petri net (taken from a special class)
and the folding morphism maps transitions and places of the unfolding to the
corresponding transition and places of the original net.

The occurrence grammar in Fig. 3 is an initial part of the (infinite) unfolding
of the grammar CP in Fig. 2. For instance, production engage1 is an occurrence
of production engage in CP, applied at the match consisting of the edges 1:CM ,
2:P , 3:P . Unfolding such a match, three new graph items, two edges 5:PE, 6:PE
and a node, are added to the graph of types of the unfolding. Note that the graph
of types of the (partial) unfolding (call it TT ) is typed over the graph of types
TCP of the original grammar (via the folding morphism χT : TT → TCP). This
explains why the edges of the graphs in the productions of the unfolding, which
are typed over TT , are marked with names including two colons.

The unfolding provides a compact representation of the behaviour of G, and
in particular it represents all the graphs reachable in G, in the following sense.

Theorem 1 (completeness of the unfolding). Let G = 〈T,Gs, P, π〉 be a
graph grammar. Then a T -typed graph G is reachable in G iff there exists a
maximal concurrent subgraph X ′ of the graph of types of U(G) such that G '
〈X ′, χT |X′〉.
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3 Finite Prefix for Graph Grammars

We first introduce a generalised notion of cut-off which, for finite-state (up to
isomorphism and up to isolated nodes) graph grammars, allows us to characterise
a finite and complete prefix of the unfolding.

Let G = 〈T,Gs, P, π〉 denote a graph grammar, fixed throughout the section,
and let U(G) = 〈T ′, P ′, π′〉 be its unfolding with χ : U(G) → G the folding
morphism, as in Definition 14. Given a configuration C of U(G), recall from
Proposition 1 that G(C) denotes the subgraph of T ′ reached after the execution
of the productions in C (up to isolated nodes). We shall denote by Reach(C)
the same graph, seen as a graph typed over T by the restriction of the folding
morphism, i.e., Reach(C) = 〈G(C), χT |G(C)〉.

To identify a finite prefix of the unfolding the idea consists of avoiding to keep
in the unfolding useless productions, i.e., productions which do not contribute to
generating new graphs. The definition of “cut-off event” introduced by McMillan
for Petri nets in order to formalise such a notion has to be adapted to this context,
since for graph grammars a production may have different histories.

Definition 15 (cut-off). A production q ∈ P ′ of the unfolding U(G) is called
a cut-off if there exists q′ ∈ P ′ such that Reach(bqc) = Reach(bq′c) and |bq′c| <
|bqc|.

A production q is called a strong cut-off if for all Cq ∈ Hist(q) there exists a
q′ ∈ P ′ and Cq′ in Hist(q′) such that

1. Reach(Cq) ' Reach(Cq′) and
2. |Cq′ | < |Cq|.

The truncation of U(G) is the greatest prefix T (G) of U(G) not containing strong
cut-offs.

The proofs of the following theorems can be found in Appendix B.

Theorem 2 (completeness of the truncation). The truncation T (G) is a
complete prefix of the unfolding, i.e., for any reachable graph G of G there is a
configuration C in Conf (T (G)) such that Reach(C)

...
'G.

For finite n-bounded grammars, where the number of possible states (up to
isomorphism and up to isolated nodes) is finite, the truncation of the unfolding
of the grammar is finite.

Theorem 3 (finiteness). Let G be a finite graph grammar. If G is n-bounded
then the truncation T (G) is finite.

Unfortunately, the proof of the above theorems does not suggest immediately
a way of constructing the truncation for finite-state graph grammars. While
leaving the solution for the general case as an open problem, we next discuss
how a finite complete prefix can be derived for still interesting classes of graph
grammars.
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Let G be a finite-state graph grammar. The problem essentially resides in
the difficulty of finding an order of generation for the productions which ensures
that, whenever a production q′ is classified as a strong cut-off by looking only
at the partial informations provided by the prefix under construction, then q′

is really a strong cut-off. More precisely, consider a production q which satisfies
the defining properties of a strong cut-off, but only with respect to a given prefix
of the unfolding (i.e., in Definition 15, q′, Hist(q) and Hist(q′) are taken in the
prefix and not in the full unfolding). Later the prefix can be extended with a
new production q′ which is in asymmetric conflict with q, i.e., such that q′ ↗ q.
But in this way q gains new possible histories containing q′, and such histories
may generate new graphs, not generated by other productions.

The obvious idea of generating a production q in the prefix only after all
the productions q′ such that q′ ↗ q (and q′ not in conflict with q) have been
inserted does not work, in general, since ↗ might not be finitary and thus the
set of productions which should be generated before a given q can be infinite. In
other words, the set of possible histories for a production can be infinite.

The prefix can be constructed if we limit our attention to classes of graph
grammars where the set of possible histories for each production is finite. In
particular, this holds whenever the asymmetric conflict becomes inessential, in
the sense that it is subsumed by the other relations. We call this property “read-
persistence” since, viewing graph grammars as generalised Petri nets, it appears
as the graph grammar theoretical version of the read-persistence for contextual
nets as formulated in [24].

Definition 16 (read-persistence). An occurrence grammar O = 〈T, P, π〉 is
called read-persistent if for any q1, q2 ∈ P , if q1 ↗ q2 then q1 ≤ q2 or q1#q2. A
graph grammar G is called read-persistent if its unfolding U(G) is read-persistent.

It can be shown that an adaptation of the algorithm originally proposed
in [17] for ordinary nets and extended in [24] to read-persistent contextual nets,
works for read-persistent graph grammars. In particular, the notion of strong cut-
off can be safely replaced by the weaker notion of (ordinary) cut-off. Roughly,
the algorithm works on a graph grammar G as follows:

1. Start from the initial graph of G;
2. Let M be the set of possible new productions (pairs q′ = 〈q,m〉, where q is

a production in G and m is a concurrent match of the left-hand side of q in
the type graph of the current prefix).

3. While M 6= ∅
– Take q′ ∈ M (with minimal |bq′c|) and let M := M − {q′};
– If q′ is not a cut-off, then unfold q′, adding it to the prefix (see Defini-

tion 14);
– Update M ;

An obvious class of read-persistent grammars consists of all the grammars G
where productions do not preserve any edge, i.e., where for any production q the
intersection Lq ∩ Rq is a discrete graph. Note that, as far as reachable graphs
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are concerned, such grammars are as expressive as the general ones, since the
preservation of an edge can be simulated by deleting and creating again the
edge with the same connections. Instead, in this way the degree of concurrency
of the system might decrease since while two rewriting steps “preserving” the
same item can run concurrently, their encodings using productions that delete
and create again the item are forced to be executed sequentially. Technically,
this encoding might increase the number of causal dependencies and thus may
make the complete prefix larger. More generally, a grammar is read-persistent
whenever any two productions q1 and q2 such that q1 ∩ •q2 6= ∅ cannot be
applicable at the same time.

Observe that, for instance, the grammar CP in our running example is read-
persistent, since the communication manager CM , the only edge preserved by
productions, is never consumed. Its truncation is the graph grammar T (CP)
depicted in Fig. 3.

Denote by TT the type graph of the truncation. Note that applying the
production [release] to any subgraph of TT matching its left-hand side would
result in a cut-off: this is the reason why T (CP) does not include any instance
of production [release]. The start graph of the truncation is isomorphic to the
start graph of grammar CP and it is mapped injectively to the graph of types
TT in the obvious way.

1:CM

: 2: P

: 3: P

: 2: P

: 4: P

: 3: P

: 4: P

: 5:PE

: 6:PE

: 8:PE

: 9:PE

: 10:PE

1: 1:CM

1: 1:CM

1: 1:CM 1: 1:CM

[engage 1]

[engage 2]

[engage 3]

2: 11: v

2: 11: v

Type graph

2: P

3: P

4: P

5:PE

6:PE

7:PE

8:PE

10:PE

9:PE

11: v

1: 1:CM

1: 1:CM

12: w

13: w

14: w

2: 11: v

2: 11: v

: 12: w

2: 11: v

2: 11: v

: 13: w

: 14: w

: 7:PE

Fig. 3. The truncation T (CP) of the graph grammar in Fig. 2.

In general, the truncation of a grammar like CP but where n processes are

connected to CM in the start graph, will contain n(n−1)
2 productions. If we would

consider all possible interleavings we would end up with an exponential number
of productions.
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4 Exploiting the prefix

In this section we propose a monadic second-order logic L2 where some graph
properties of interest can be expressed. Then we show how the validity of a
property in L2 over all the reachable graphs of a finite-state grammar G can be
verified by exploiting a complete finite prefix.

4.1 A logic on graphs

Let us first introduce the monadic second order logic L2 for specifying graph
properties. Quantification is allowed over edges, but not over nodes (as, e.g., in
[8]).

Definition 17 (Graph formulae). Let X1 = {x, y, z, . . .} be a set of (first-
order) edge variables and let X2 = {X,Y, Z, . . .} be a set of (second-order) vari-
ables representing edge sets. The set of graph formulae of the logic L2 is defined
as follows, where ` ∈ Λ, i, j ∈ N:

F ::= x = y | ci(x) = cj(y) | type(x) = ` | x ∈ X (Predicates)

F ∨ F | F ∧ F | ¬F (Connectives)

∀x.F | ∃x.F | ∀X.F | ∃X.F (Quantifiers)

We denote by free(F ) and Free(F ) the sets of first-order and second-order vari-
ables, respectively, occurring free in F , defined in the obvious way.

Given a T -typed graph G, a formula F in L2, and two fixed valuations σ :
free(F ) → E|G| and Σ : Free(F ) → P(E|G|) for the free first- and second-
order variables of F , respectively, the satisfaction relation G |=σ,Σ F is defined
inductively, in the usual way; for instance:

G |=σ,Σ x = y ⇐⇒ σ(x) = σ(y)

G |=σ,Σ ci(x) = cj(y) ⇐⇒ |cG(σ(x))| ≥ i ∧ |cG(σ(y))| ≥ j ∧ [cG(σ(x))]i = [cG(σ(y))]j

G |=σ,Σ type(x) = ` ⇐⇒ typeG(σ(x)) = `

G |=σ,Σ x ∈ X ⇐⇒ σ(x) ∈ Σ(X)

G |=σ,Σ ∀X.F ⇐⇒ G |=σ,Σ′ F for any Σ′ such that Σ
′(Y ) = Σ(Y )

for Y ∈ X2 − {X}, and Σ′(X) ∈ P(EG)

The logic L2 can be used to express quite interesting properties of graphs. The
presence of second-order quantifiers allows, for example, to write a closed formula
that is satisfied by all and only acyclic graphs, a property not expressible in the
first-order fragment. Note that, although arbitrary quantification over nodes is
not allowed, if the graph of types T is fixed, it is possible to refer to a non-
isolated node using a term of the form ci(x). Note also that the maximum arity
of edges in T is a bound also for the arity of edges in T -typed graphs.

It can be shown that the logical equivalence induced by L2 on finite graphs is
graph isomorphism up to isolated nodes, i.e., two (finite) graphs are isomorphic
up to isolated nodes iff they satisfy the same formulae in L2.
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4:P

3:P

2:P

engage2 engage3engage1

1:CM

5:PE 6:PE 7:PE 8:PE 9:PE 10:PE

Fig. 4. The Petri net underlying the truncation T (CP) in Fig. 3

A simple, but fundamental observation is that, while for n-bounded graph
grammars the graphical nature of the state (nodes, edges and their connections)
plays a basic role, for any occurrence grammar O we can can forget about the
graphical nature of the states and view O as an occurrence contextual net (i.e.,
a Petri net with read arcs, see, e.g., [3, 24]).

Definition 18 (Petri net underlying an occurrence grammar). Let O =
〈T ′, P ′, π′〉 be an occurrence grammar. The contextual Petri net underlying O,
denoted by Net(O), is the Petri net having the set of edges ET ′ as places and a
transition for every production q ∈ P ′, with pre-set •q, post-set q• and context q.

For instance, the Petri net Net(T (CP)) underlying the truncation of CP (see
Fig. 3) is depicted in Fig. 4. Read arcs are represented as dotted undirected lines.

Let G = 〈T,Gs, P, π〉 be a fixed finite-state graph grammar and consider the
truncation T (G) = 〈T ′, P ′, π′〉 (actually, all the results hold for any complete
finite prefix of the unfolding). Notice that, by completeness of T (G), any graph
reachable in G is (up to isolated nodes) a subgraph of the graph of types T ′ of
T (G), typed over T by the restriction of the folding morphism χ : U(G) → G.
Also observe that a safe marking m of Net(T (G)) can be seen as a graph typed
over the type graph T of the original grammar G: take the least subgraph of T ′

having m as set of edges, i.e., graph(m), and type it over T by the restriction of
the folding morphism. With a slight abuse of notation this typed graph will be
denoted simply as graph(m).

We show how any formula φ in L2 can be translated to a formula M(φ)
over the safe markings of Net(T (G)) such that, for any marking m reachable in
Net(T (G))

graph(m) |= φ iff m |= M(φ).

The syntax of the formulae over markings is

φ ::= e | ¬φ | φ ∧ φ | φ ∨ φ | φ → φ,

where the basic formulae e are place (edge) names, meaning that the place is
marked, i.e., m |= e if e ∈ m. Logical connectives are treated as usual.
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Definition 19 (Encoding graph formulae into multiset formulae). Let
T (G) be the truncation of a graph grammar G, as above. Let F be graph formula
in L2, let σ : free(F ) → ET ′ and Σ : Free(F ) → P (ET ′). The encoding M is
defined as follows:

M [x = y, σ, Σ] =



true if σ(x) = σ(y)
false otherwise

M [ci(x) = cj(y), σ, Σ] =

8

<

:

true if |cT ′(σ(x))| ≥ i ∧ |cT ′(σ(y))| ≥ j

∧ [cT ′(σ(x))]i = [cT ′(σ(y))]j
false otherwise

M [type(x) = `, σ, Σ] =



true if χT (σ(x)) = `

false otherwise

M [x ∈ X, σ, Σ] =



true if σ(x) ∈ Σ(X)
false otherwise

M [F1 ∨ F2, σ, Σ] = M [F1, σ, Σ] ∨ M [F2, σ, Σ]

M [F1 ∧ F2, σ, Σ] = M [F1, σ, Σ] ∧ M [F2, σ, Σ]

M [¬F, σ, Σ] = ¬M [F, σ, Σ]

M [∃x.F, σ, Σ] =
_

e∈ET ′

(e ∧ M [F, σ ∪ {x 7→ e}, Σ])

M [∀x.F, σ, Σ] =
^

e∈ET ′

(e → M [F, σ ∪ {x 7→ e}, Σ]

M [∃X.F, σ, Σ] =
_

E⊆ET ′ , co(E)

“

^

E ∧ M [F, σ, Σ ∪ {X 7→ E}]
”

M [∀X.F, σ, Σ] =
^

E⊆ET ′ , co(E)

“

^

E → M [F, σ, Σ ∪ {X 7→ E}]
”

where, for E = {e1, . . . , en}, the symbol
∧

E stands for e1 ∧ . . . ∧ en. If F is
closed formula (i.e., without free variables), we define M [F ] = M [F, ∅, ∅].

Note that, since every reachable graph in G is isomorphic to a subgraph of T ′,
typed by the restriction of χT , the encoding resolves the basic predicates by
exploiting the structural information of T ′. When a first-order variable x in a
formula is mapped to an edge e, we take care that the edge is marked, and,
similarly, when a second-order variable X in a formula is mapped to a set of
edges E, such a set must be covered. Observe that in this case E is limited to
range only over concurrent subsets of edges. In fact, if E is a non-concurrent set,
then no reachable marking m will include E, i.e., m 6|=

∧

E.

It is possible to show that the above encoding is correct.

Proposition 2 (correctness of the encoding). Let T (G) be the truncation
of G. Let φ be a formula in L2. Then for any pair of valuations σ : X1 → ET ′

and Σ : X2 → P(ET ′), and for any safe marking m over ET ′

graph(m) |=σ,Σ φ ⇔ m |= M [φ, σ,Σ]
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4.2 Checking properties of reachable graphs

Let G = 〈Gs, T, P, π〉 be a finite-state graph grammar. We next show how a
complete finite prefix of G can be used to check whether, given a formula F ∈ L2,
there exists some reachable graph which satisfies F . In this case we will write
G |= ♦F . Note that the same algorithm allows to check “invariants” of a graph
grammars, i.e., to verify whether a property F ∈ L2 is satisfied by all graphs
reachable in G, written G |= �F . In fact, it trivially holds that G |= �F iff
G 6|= ♦¬F .

Let T (G) = 〈T ′, P ′, π′〉 be the truncation of G (or any complete prefix of the
unfolding) and let Net(T (G)) be the underlying Petri net. The formula produced
by the encoding in Definition 19 can be simplified by exploiting the mutual
relationships between items as expressed by the causality, (asymmetric) conflict
and concurrency relation.

Proposition 3 (simplification). Let F be any formula in L2, let σ : free(F ) →
ET ′ and Σ : Free(F ) → P(ET ′) be valuations. If m is a marking reachable in
Net(T (G)) and η is a marking formula obtained by simplifying M [F, σ,Σ] with
the Simplification Rule below:

If S ⊆ ET ′ and ¬co(S) then replace the subformula
∧

S by false.

then graph(m) |=σ,Σ F iff m |= η.

Algorithm. The question “G |= ♦F?” is answered by working over Net(T (G)) as
follows:

– Consider the formula over markings M [F ] (see Definition 19);
– Express M [F ] in disjunctive normal form, i.e., as a disjunction of conjunc-

tions of atoms (literals or negation of literals) as below, where ai,j can be e
or ¬e for e ∈ ET ′ .

η =

n
∨

i=1

ki
∧

j=1

ai,j ; .

– Apply the Simplification Rule in Proposition 3, as far as possible, thus ob-
taining a formula η′;

– For any conjunct in η′ of the kind e1 ∧ . . . ∧ eh ∧ ¬e′1 ∧ . . . ∧ ¬e′l proceed as
follows:
• Take the configuration C = b{e1, . . . , eh}c (observe that co({e1, . . . , eh}),

otherwise we could remove the conjunct by the Simplification Rule of
Proposition 3).

• Consider the safe marking reached after C, i.e., mC = (m0 ∪
⋃

t∈C t•)−
⋃

t∈C
•t, where m0 is the initial marking of Net(T (G)) (minimal places).

Surely mC includes {e1, . . . , eh}. Hence, the only reason why the conjunct
can not be true is that mC includes some of the {e′1, . . . , e

′
l}. In this case

look for a configuration C ′ ⊇ C, which enriches C with transitions which
consume the e′j but not the ei.
To this aim take all the conflict free sets of the following form
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S′ = {t1, . . . , tl : ∀i ∈ {1, . . . , l}. ti ∈ e′i
•}

Conclude with success iff for some such S ′

1. for any t ∈ bS′c, for any i ∈ {1, . . . , h}. ei 6< t
2. C ∪ bS′c is a configuration.

– The formula ♦F holds if and only if this check succeeds for at least one
conjunct.

It can be shown that the above algorithm is correct. In particular, note that
in point 2 above we can disregard the fact that an event has multiple histories.
In fact, if C ∪ bS′c includes a conflict (cycle of asymmetric conflicts) we will
surely not be able to get rid of it by considering larger histories for the events
involved.

Observe that the Simplification Rule can be applied at any stage of the
above process, in particular also during or immediately after the translation
from a graph formula to a formula on markings. In practice, this might be quite
convenient since it can allow to avoid the transformation into disjunctive normal
form of relevant fragments of the formula.

As an example, suppose that we want to check that our sample graph gram-
mar CP satisfies �F , where F is a L2 formula specifying that every engaged
process is connected through connection c2 to exactly one other engaged pro-
cess, i.e.,

F = ∀x.(type(x) = PE ⇒ ∃y.(x 6= y ∧ type(y) = PE ∧ c2(x) = c2(y)

∧ ∀z.(type(z) = PE ∧ x 6= z ∧ c2(x) = c2(z) ⇒ y = z))).

The encoding φ = M [F ] simplifies to

φ ≡ (5:PE ⇐⇒ 6:PE ) ∧ (7:PE ⇐⇒ 8:PE ) ∧ (9:PE ⇐⇒ 10:PE )

and we have to check that the truncation does not satisfy

♦¬φ = ♦[(5:PE ∧ ¬6:PE ) ∨ (¬5:PE ∧ 6:PE ) ∨ (7:PE ∧ ¬8:PE )

∨ (¬7:PE ∧ 8:PE ) ∨ (9:PE ∧ ¬10:PE ) ∨ (¬9:PE ∧ 10:PE )],

which can be done by using the described verification procedure.

5 Conclusions

We have discussed how the finite prefix approach, originally introduced by
McMillan for Petri nets, can be generalised to graph transformation systems.
A generalised notion of cut-off has been introduced which allows to charac-
terise, for any graph grammar which is finite-state, up to isomorphism and up
to isolated nodes, a finite complete prefix of the unfolding as (the largest) cut-
off free prefix. A complete finite prefix can be constructed for some classes of
graph grammars, but the problem of constructing it for general, possibly non-
read-persistent grammars remains open and represents an interesting direction
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of further research. Also, it would be interesting to try to determine an upper
bound on the size of the prefix, with respect to the number of reachable graphs.

We have shown how the complete finite prefix can be used to model-check
some properties of interest for graph transformation systems. We plan to gen-
eralise the verification technique proposed here to allow the model-checking of
more expressive logics where temporal modalities can be arbitrarily nested, like
the one studied in [10] for Petri nets. We intend to implement the model-checking
procedure described in the paper and, as in the case of Petri nets, we expect
that its efficiency could be improved by refined cut-off conditions (see, e.g., [11])
which help to decrease the size of the prefix.

An alternative approach could be based on the encoding of finite-state graph
grammars into simpler formalisms, where a theory of verification is already avail-
able. Some attempts for the translation of finite-state graph grammars into Petri
nets are not encouraging, suggesting that a direct approach is preferable. In fact
the degree of concurrency drastically decreases in the encoding and, since all
the possible graphical configurations of the system must be represented by the
structure of the net, one gets an enormous explosion in the number of transi-
tions and places. Further complications relate to the fact that the grammars of
interest are finite-state only up to isolated nodes.

The conceptual relation with HD-automata and the existence of several en-
codings of process calculi for mobility into graph rewriting systems, also suggest
the possibility of exploiting the complete finite prefix to verify behavioural prop-
erties of mobile systems. Checking our technique against concrete case studies
coming from this field appears as a stimulating direction of further research.

As mentioned in the introduction, some effort has been devoted recently to
the development of suitable verification techniques for GTSs. The papers [12,
13] present a general theory of verification without providing directly applicable
techniques. In [15, 1, 4] one can find techniques which are applicable to infinite-
state systems: the first defines a general framework based on types for graph
rewriting, while the second is based on the construction of suitable approxima-
tions of the behaviour of the GTS. Instead, the papers [22, 20] concentrate on
finite-state GTSs. They both generate a suitable labelled transition system out
of a given finite-state GTS and then [22] resorts to model-checkers like SPIN,
while [20] discusses the decidability of the model-checking problem for a logic,
based on regular path expressions, allowing to talk about the history of nodes
along computations. The main difference with respect to our work is that they
do not exploit a partial order semantics, with an explicit representation of con-
currency, and thus considering the possible interleavings of concurrent events
these techniques may suffer of the state-explosion problem.
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A Unfolding construction for graph grammars

A basic ingredient of the unfolding is the gluing operation. It can be seen as
a “partial application” of a production at a given match, in the sense that it
generates the new items as specified by the production (i.e., items of right-hand
side not in the left-hand side), but items that should have been deleted are
not affected: intuitively, this is because such items may still be used by another
production in the nondeterministic unfolding.

Definition 20 (gluing). Let q : Lq → Rq be a T -typed production, G a T -typed
graph and m : Lq → G a graph morphism. We define, for any symbol ∗, the
gluing of G and Rq, according to m and marked by ∗, denoted by glue∗(q,m,G),
as the graph with untyped component 〈V,E, c〉, where:

V = V|G| ∪ m∗(V|Rq|) E = E|G| ∪ m∗(E|Rq|)

with m∗ defined by:

m∗(x) =

{

m(x) if x ∈ |Lq| ∩ |Rq|;
〈x, ∗〉 otherwise.

The connection function and the typing are inherited from G and Rq.

Note that the graph Rq is glued to G, by keeping unchanged the identity of the
items already in G and recording in each newly added item from Rq the given
symbol ∗.

The unfolding of a graph grammar is obtained as the limit of a chain of
occurrence grammars, each approximating the unfolding up to a certain causal
depth. Roughly, the causal depth of a production q is the length of the longest
chain of productions q1 < . . . qn < q. For any graph item x in T , if x is in the
start graph it has causal depth 0, otherwise it has the same causal depth as the
(unique) production q such that x ∈ q•.

The unfolding construction here is slightly simplified with respect to the
original one in [2], since rules never delete nodes and thus one can avoid to
check the dangling condition. A second change is that all matches which differ
only for an automorphism of the left-hand side not affecting the preserved graph
are considered indistinguishable. More precisely, given a production q, we say
that two matches m,m′ : Lq → G are equivalent, if there is automorphism
α : Lq → Lq such that α|Lq∩Rq

is the identity and m ◦ α = m′. The idea
is that two equivalent matches contribute to producing new reachable graphs
exactly in the same way and thus only one of them can be considered. Formally,
considering only non-equivalent matches we do not affect the completeness of
the full unfolding.

Definition 21 (unfolding). Let G = 〈T,Gs, P, π〉 be a graph grammar. We

inductively define, for each n, an occurrence grammar U(G)
[n]

= 〈T [n], P [n], π[n]〉
and a pair of mappings χ[n] = 〈χT

[n] : T [n] → T, χP
[n] : P [n] → P 〉. Then the

unfolding U(G) and the folding morphism χG : U(G) → G are defined as the

componentwise union of U(G)
[n]

and χ[n], respectively.
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(n = 0) The components of the grammar U(G)
[0]

are T [0] = |Gs|, P [0] = π[0] = ∅.
Moreover χT

[0] = typeGs
, χP

[0] = ∅.

(n → n + 1) Let q ∈ P be a production in G and m : Lq → 〈T [n], χR
T

[n]
〉 be

a match satisfying the identification condition, where m(|Lq|) is a concurrent
subgraph of T [n]. Assume that no match equivalent to m has been unfolded yet and
that m consumes an item of minimal depth among those consumed by matches

which have not yet been unfolded. Then U(G)
[n+1]

is defined by:

– P [n+1] = P [n] ∪ {〈q,m〉} and χP
[n+1] = χP

[n] ∪ {(〈q,m〉, q)}

– The T -typed graph 〈T [n+1], χR
T

[n+1]
〉 is defined as glue〈q,m〉(q,m, 〈T [n], χR

T

[n]
〉).

– The production π[n](〈q,m〉) has the same untyped components as π(q). The
typing of the left-hand side is determined by m, and each item x of the right-
hand side which is not in the left-hand side is typed over the corresponding
new item 〈x, 〈q,m〉〉 of the graph of types.

The occurrence grammar U(G)
[n+1]

is obtained by extending U(G)
[n]

with a pos-
sible application of a production q at a match m which is a concurrent subgraph
of the graph of types. The new production 〈q,m〉, which intuitively represents
the occurrence of q at match m, includes the match m in its name to record the
“history” of the occurrence. The graph of types T [n] is extended by adding to it
a copy of each item generated by the application q, marked by 〈q,m〉 (in order
to keep trace of the history), as formally expressed via the gluing operation. The
morphism χ[n] is extended consequently.

B Proofs of the completeness and finiteness of the

truncation

We first need a preliminary lemma.

Lemma 1 (strong cut-off elimination). For any given configuration C ∈
Conf (U(G)) there exists a configuration C ′ without strong cut-offs such that
Reach(C) ' Reach(C ′).

Proof. We show that if q ∈ C is a strong cut-off then we can obtain a configu-
ration C ′ such that Reach(C) ' Reach(C ′) and |C ′| < |C|.

In fact, let q ∈ C be a strong cut-off. Therefore there exists a production q′

in the unfolding and Cq′ ∈ Hist(q′) such that

Reach(C[[q]]) ' Reach(Cq′) and |Cq′ | < |C[[q]]|. (1)

We show by induction on k = |C| − |C[[q]]| that we can find a configuration C ′,
with Cq′ v C ′, such that Reach(C) ' Reach(C ′) and |C ′| − |Cq′ | = |C| − |C[[q]]|,
thus, by (1), |C ′| < |C|.

(k = 0) Obvious, since C = C[[q]] one can just choose C ′ = Cq′ .
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(k → k + 1) In this case C \C[[q]] 6= ∅. Let q1 ∈ C \C[[q]], maximal w.r.t. (↗C)∗.
Therefore C1 = C\{q1} is a configuration and C1[[q]] = C[[q]], by the choice of
q1. Thus by inductive hypothesis there exists a configuration C ′

1 s.t. Cq′ v C ′
1

and

Reach(C1) ' Reach(C ′
1) and |C ′

1| − |Cq′ | = |C1| − |C1[[q]]|.

Since Reach(C ′
1) ' Reach(C1), the production χP (q1), which was executable

in Reach(C1), is still executable in Reach(C ′
1) and thus C ′

1 can be extended
with a production q′1 in such a way that C ′ = C ′

1 ∪ {q′1} satisfies all the
requirements. ut

Theorem 2 (completeness of the truncation) The truncation T (G) is a
complete prefix of the unfolding, i.e., for any reachable graph G of G there is a
configuration C in Conf (T (G)) such that Reach(C)

...
'G.

Proof. We know, by the “completeness” of the (full) unfolding (Theorem 1) that
there exists a finite configuration C ∈ Conf (U(G)) such that Reach(C)

...
'G.

By Lemma 1, there exists a finite configuration C ′ in Conf (U(G)) such that
Reach(C ′) ' Reach(C), which does not contain strong cut-offs. Such configura-
tion must belong to Conf (T (G)), otherwise we could construct a strong cut-off-
free prefix of the unfolding greater than T (G). ut

Theorem 3 (finiteness of the truncation) Let G be a finite graph grammar.
If G is n-bounded then the truncation T (G) is finite.

Proof. Take T (G). By definition of strong cut-off, being T (G) strong cut-off
free, for any production q in T (G) we can find a local configuration (history)
Cq ∈ Hist(q) such that

for any q′ in U(G), for any Cq′ ∈ Hist(q′), if Reach(Cq) ' Reach(Cq′) then
|Cq′ | ≥ |Cq|.

Let G(T, n) be the set of n-bounded graphs typed over T , let P be the set of
productions in the truncation and consider the function τ : P → G(T, n), defined
by τ(q) = Reach(Cq). By the condition above, it is easy to see that τ(q1) = τ(q2)
implies |Cq1

| = |Cq2
|. Since given a production q of the unfolding clearly for any

C ∈ Hist(q), we have |C| ≥ depth(q), one concludes that for any G ∈ G(T, n),
τ−1(G) is finite, since the number of productions in the unfolding up to a fixed
causal depth is finite. Therefore T (G) is finite. ut
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