
Distributed Unfolding of Petri Nets?

Paolo Baldan1, Stefan Haar2, and Barbara König3

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
2 INRIA Rennes, Distribcom team, France

3 Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany

baldan@dsi.unive.it stefan.haar@irisa.fr koenigba@fmi.uni-stuttgart.de

Abstract. Petri net unfoldings have been recognised as an efficient
means to fight state space explosion when dealing with concurrent and
distributed systems. Some recent Petri net-based approaches to fault di-
agnosis of distributed systems suggest to factor the problem into local
diagnoses based on the unfoldings of local views of the system, which are
then correlated with diagnoses from neighbouring supervisors. In this
paper we propose a notion of system factorisation expressed in terms of
pullback decomposition. To ensure coherence of the local views and com-
pleteness of the diagnosis, data exchange between the unfolders needs to
be specified with care. We introduce interleaving structures as a for-
mat for data exchange between unfolders, and we propose a distributed
algorithm for computing local views of the unfolding for each system
component. The theory of interleaving structures is developed to prove
correctness of the distributed unfolding algorithm.

1 Introduction

Partial order semantics are often instrumental in providing a compact represen-
tation of the behaviour of concurrent systems: modelling concurrency of events
in an explicit way rather than considering all the possible interleavings of such
events helps in tackling the so-called state explosion problem. In this field, in
recent years there has been a growing interest in the use of unfolding-based
approaches. Originally introduced in the setting of Petri nets, the unfolding se-
mantics [13] is a branching partial order semantics which represents in a single
structure all the possible events in computations, and their mutual relationships:
causal dependencies and conflicts (branching points). Each branch represents a
concurrent execution of the net, in the form of an acyclic conflict-free net. The
unfolding provides an “efficient” representation of the state space of the sys-
tem, not only taking advantage of a partial order representation of concurrency,

? Partially supported by EC RTN 2-2001-00346 SegraVis, MIUR project PRIN
2005015824 ART, European NoE ARTIST (IST-2001-34820), French RNRT project
SWAN (No. 03 S 481), DFG project SANDS, SFB 627 (NEXUS), CRUI/DAAD
Vigoni “Models based on Graph Transformation Systems: Analysis and Verifica-
tion”.

but also keeping together different branches of computations in its branching
structure as long as possible, i.e., until a conflict is reached.

When analysing a complex system it happens frequently that we want to
consider only a small part of such a system: either because the system is inher-
ently distributed and each observer has access only to a local component of it,
or because the system is too big to be analysed or monitored as a whole. In this
paper, we take Petri nets as systems models and their unfolding semantics as
reference semantics, and we view systems as made up of smaller components.
Then we show how the projection of the semantics of the whole system over
each single local component can be computed locally via a distributed unfolding
algorithm, requiring only a minimal interaction between the various components.

The original motivation of this work is not verification, but distributed di-
agnosis of asynchronous systems. The general principle of diagnosis for discrete
event systems (DES) can be stated as follows: not all transitions of a system
are observable; in particular, faults are invisible and have to be deduced from
observation. This deduction—or reconstruction—of faulty behaviours from the
observations is the topic of diagnosis; efforts to force the system into a desired
behaviour or to steer it away from an undesired one are studied in the domain
of control. Although it has an important intersection with diagnosis (in terms of
models and techniques), control is a clearly distinct problem, not addressed by
the present article. Diagnosis can be approached via the construction of finite
automata, the diagnosers, detailed in [18]; the input of a diagnosis procedure is
the language of observed sequences and its output is the language of behaviours
that explain the observations. Communication among diagnosers allows for a de-
centralised diagnosis, in which different diagnoses are proposed by various local
diagnosers and then merged to filter out incompatible local views. See [5] for an
overview and [15, 4] for details. Some authors consider timed extensions [16] or
use Petri nets as system models [9].

The diagnosis approach in [2, 3, 8], which the present work builds upon, differs
from all of the above in the fact that the asynchronous behaviour is captured by
partial order semantics, thus abstracting away time aspects and interleavings of
concurrent events in order to fight state space explosion. The system behaviour
is assumed to be given in the form of a Petri net model, where only a subset
of transitions is observable. Then a sequence (or partially ordered scenario) of
observations, called alarm pattern, is explainable by several net computations.
These explanations are obtained by unfolding the synchronous product of the
model net with the alarm pattern, and extracting the maximal configurations
compatible with the alarm pattern (see [2]). This approach suffers, for large
systems, from the explosion of the size of the global unfolding. Moreover, the
practice in diagnosis for large networks justifies the use of several supervisors
having only a partial view of the network.

This leads to the idea of distributed diagnosis via unfoldings: each supervi-
sor computes a local diagnosis and an exchange of messages with neighbouring
supervisors allows to eliminate branches that do not appear as local traces of
admissible global configurations. Being able to construct the local views of the

2

global unfolding (of prohibitive size in general) without computing it is the heart
of the problem. We remark that we are interested in the projections over the local
components of the unfolding of the whole system rather than in the unfoldings of
the components themselves. This will become clearer in the technical treatment,
but intuitively the reason is that the “autonomous” unfolding of each single
component would lead to “spurious” runs which, although consistent with the
structure of the local component itself, have no counterpart in the behaviour of
the whole system, due to the interactions with the other components. In [3, 8]
Petri net components were fused on places, and the fusion of views was done
through products of event structures obtained using a projection operation with
an exchange of messages relating transition actions.

At a technical level, we will introduce a decomposition/composition mecha-
nism based on pullbacks which allows to view a given Petri net N3 as built as
the join of two components N1 and N2 (or more) along a common interface net
N0. The categorical approach allows to exploit a compositionality result which
plays a basic role in the design of the distributed unfolding algorithm: the un-
folding construction can be expressed as a right adjoint functor between suitable
categories of nets and thus it preserves pullbacks. Hence the unfolding of a net
N3, arising as the the pullback of N1 and N2 along N0, can be obtained as the
pullback of the unfoldings of the single components.

In order to compute the projections of the full unfolding over the various
net components, we propose a distributed algorithm requiring an exchange of
information among such components. The different components communicate
through the interface net, whose unfolding is used to record information about
dependencies on events induced by both components. This information is concep-
tually stored in so-called interleaving structures, whose theory provides a solid
theoretical basis for proving the correctness of the distributed unfolding proce-
dure. More specifically, factorisation results from category theory will be used to
show that the information stored in the interface suffices in order to obtain the
desired result. Interleaving structures have also a partial order representation
which is proposed for efficiency reasons.

The paper is organised as follows. In §2 we lay some general technical ground
for the categorical techniques involved. In §3 we focus on Petri net decomposi-
tion, while in §4 we introduce Petri net unfoldings. In §5 we develop the theory
of interleaving structures, which play a basic role in the distributed unfolding
algorithm presented in §6. In §7 we introduce a partial order representation of
interleaving structures. Finally, in §8 we draw some conclusions, with a look on
related and future work.

2 Notation and Categorical Background

Given a (possibly partial) function f : A 99K B and a ∈ A we will write f(a) ↓
whenever f is defined on a and f(a) ↑, otherwise.

Let A be a set. The powerset of A is denoted by 2A. A multiset of A is
a total function M :A → N. It is called finite if the underlying set {a ∈ A |

3

M(a) > 0} is finite. A finite multiset is sometimes denoted as a formal sum
M =

⊕

a∈A M(a) · a. The set of finite multisets of A is denoted by µA. Union
and difference of multisets are denoted by ⊕ and 	, respectively. A subset X ⊆ A

will be often treated as the multiset
⊕

a∈X 1 · a.
A (finitary) multirelation f : A ↔ B is a multiset of A × B such that

for all a ∈ A the set {b ∈ B | f(a, b) > 0} is finite. The composition of two
finitary multirelations f : A ↔ B and g : B ↔ C is the (finitary) multirelation
g ◦ f : A ↔ C defined as (g ◦ f)(a, c) =

∑

b∈B f(a, b) g(b, c). Any multirelation
f : A ↔ B induces a function µf : µA → µB defined by µf(

⊕

a∈A na · a) =
⊕

b∈B(
∑

a∈A na f(a, b)) · b. We say that a multirelation f : A ↔ B is total if
for any a ∈ A we have

∑

b∈B f(a, b) ≥ 1, injective if for any b ∈ B we have
∑

a∈A f(a, b) ≤ 1, surjective if for any b ∈ B we have
∑

a∈A f(a, b) ≥ 1.
We will refer to some categorical concepts (see also [1]). Below we recall

pullbacks and factorisation structures, of which we will make an extensive use.

Definition 1 (pullback). Let C be a category, and f1 : B → D, f2 : C → D

arrows in C. The pullback of f1 and f2 is an object A and a pair of arrows
π1 : A → B, π2 : A → C such that (i) f1 ◦π1 = f2 ◦π2 and (ii) for any object A′

with arrows α1 : A′ → B, α2 : A′ → C such that f1 ◦ α1 = f2 ◦ α2 there exists a
unique arrow γ : A′ → A such that πi ◦ γ = αi (i ∈ {1, 2}).

A′

γ %%

α2

..

α1

��

A
π1

//

π2

��

B

f1

��

C
f2

// D

The object A is called pullback object and denoted by B ×D C.

For instance, for a fixed set Λ of labels, consider the category LSet∗ of Λ-
labelled sets and partial functions. Objects are pairs (A, λ), where A is a set and
λ:A → Λ is a total labelling function, while arrows are label-preserving partial
functions. Given two arrows f1: (B, λB) → (D,λD), f2: (C, λC) → (D,λD) the
pullback object is (A, λA) with

A = {(b, c) | b ∈ B, c ∈ C, f1(b) = f2(c)}

∪ {(b, ∗) | b ∈ B, f1(b) ↑} ∪ {(∗, c) | c ∈ C, f2(c) ↑}

∪ {(b, c) | b ∈ B, c ∈ C, f1(b), f2(c) ↑ and λB(b) = λC(c)}

and λA, π1 and π2 defined in the obvious way.

Definition 2 (factorisation structures). Let C be a category and let E, M

be classes of morphisms in C, closed under composition with isomorphisms. The
pair (E,M) is called a factorisation structure for morphisms in C and C is
called (E,M)-structured whenever

4

– C has (E,M)-factorisations of morphisms, i.e., each morphism f of C has
a factorisation f = m ◦ e with e ∈ E and m ∈ M .

– C has the unique (E,M)-diagonalisation property, i.e., for each commuta-
tive square as shown on the left-hand side below with e ∈ E and m ∈ M

there exists a unique diagonal, i.e., a morphism d such that the diagram on
the right-hand side commutes (i.e., such that d ◦ e = f and m ◦ d = g).

A
e

// //

f
��

B

g
��

C // m
// D

A
e

// //

f
��

B

g
��

d

||

C // m
// D

The classical example of (E,M)-factorisation in Set is the factorisation of a
function f into a surjective and an injective part. In the following, morphisms
from E are drawn using double-headed arrows of the form A � B, whereas
morphisms from M are drawn using arrows of the form A � B.

In any (E,M)-structured category (E,M)-factorisations of morphisms are
unique up to isomorphism, the sets E and M are both closed under composition
and all arrows in M are stable under pullback.

3 Composing Petri Nets

In this section we introduce the basics of Petri nets and the corresponding cate-
gory. Then we present a technique for decomposing Petri nets into smaller com-
ponents (or equivalently to compose Petri nets) along a given interface, showing
how the operation can be interpreted, in categorical terms, as a pullback.

We will consider labelled Petri nets. In the rest of the paper Λ denotes a
fixed label set for all considered Petri nets. In order to obtain a category we
are using Petri net morphisms as introduced in [19]. Note specifically that these
morphisms preserve behaviour, i.e., “more behaviour” is allowed in the target
net than in the source net.

Definition 3 (Petri net). A Petri net is a tuple N = (S, T, λ, •(), () •,m)
where S is the set of places, T is the set of transitions, λ:T → Λ is a labelling
function, •(), () •:T → 2S associate to each transition t ∈ T its pre-set and
post-set, respectively, and m ∈ 2S is the initial marking.

A (Petri net) morphism τ = (η, β):N → N ′ is a pair consisting of a partial
function η:T 99K T ′ and a finitary multirelation β:S ↔ S ′ such that

1. µβ(m) = m′;
2. for any t ∈ T , µβ(•t) = •η(t) and µβ(t •) = η(t) •,

where conventionally •η(t) = η(t) • = ∅ when η(t) ↑. The category of Petri nets
and their morphisms is denoted by PN.

Note that in the above definition the initial marking, and pre- and post-sets
of transitions are proper sets, rather than multisets. Hence the category Safe

5

δα

β

2

3

γ

4

1

(a) N
′

3

5

3

γ

4

δ

1

6

α

2

β

(b) N3

Fig. 1. Two examples of Petri nets.

in [19] is a full subcategory of PN, which in turn is a full subcategory of the
category of semi-weighted nets in [12]. This choice will simplify the presentation;
it can be seen that the results in the mentioned papers which are relevant to our
setting (notably Proposition 10) trivially adapt to our case.

In the sequel we will assume that in any considered Petri net, all transitions
have a non-empty pre-set, a typical property required in unfolding-based ap-
proaches. Moreover we will denote the components of a Petri net N by S, T , λ,
•(), () • and m. Superscripts will carry over to the component names.

Example: Examples of Petri nets can be found in Fig. 1. Initially marked places
are drawn with thick lines. Both nets consist of a loop involving four transitions,
labelled over the set Λ = {α, β, γ, δ}.

For defining formally the local projections of the full unfolding we need some
special classes of Petri net morphisms.

Definition 4 (projection and embedding). A Petri net morphism τ =
(η, β) : N → N ′ is called a projection whenever η and β are surjective. It is
called an embedding if both η and β are total and injective.

It can be shown that PN is (projection,embedding)-structured (pe-structured
for short). Given a PN morphism τ = (η, β) : N → N ′, let τ(N) denote the sub-
net of N ′ including only transitions in η(T). Then the projection τ : N → τ(N)
and the inclusion of τ(N) into N ′ provide a pe-factorisation of τ .

In the following we define how to restrict a Petri net to a subset S0 of its
places. Specifically, a transition t will appear in the new net only if it is connected
to at least one place in S0.

Definition 5 (restricting a net). Let N be a net and let S0 ⊆ S be a subset of
places. Then the restriction of N to S0, denoted [N]S0

= (S0, T0, λ0,
•(), () •,m0),

is defined as follows:

6

N3

τN3,S1

}}||
||

||
|| τN3,S2

!!B
BB

BB
BB

B

N1

τN1,S0
!!B

BB
BB

BB
B

N2

τN2,S0
}}||

||
||

||

N0

Fig. 2. Decomposition of Petri nets.

– T0 = {(t, 0) | t ∈ T ∧ (•t ∩ S0 6= ∅ ∨ t • ∩ S0 6= ∅)},

– λ0((t, 0)) = λ(t),

– •(t, 0) = •t ∩ S0, (t, 0) • = t • ∩ S0 and

– m0 = m ∩ S0.

This induces a morphism τN,S = (η, β):N → [N]S with η(t) = (t, 0), when-
ever (t, 0) ∈ T0 and η(t) ↑ otherwise. Furthermore β(s, s′) = 1, whenever
s = s′ ∈ S0 and β(s, s′) = 0 otherwise.

The next proposition provides a recipe for decomposing Petri nets along some
chosen places, which play the role of interface between the subcomponents.

Proposition 6 (decomposition of Petri nets). Let N3 be a Petri net and
let S3 = S1 ∪ S2. Let S0 = S1 ∩ S2 and construct nets N0, N1, N2 as follows:
N1 = [N3]S1

, N2 = [N3]S2
and N0 = [N1]S0

= [N2]S0
(see Fig. 2). Say that

transitions in Ti − T0 are local to Ni for i ∈ {1, 2} and assume that transitions
local to different nets have distinct labels (formally for any t1 ∈ T1, t2 ∈ T2

if λ1(t1) = λ2(t2) then t1 ∈ T0 or t2 ∈ T0). Then the diagram in Fig. 2 is a
pullback diagram.

Proof. As abbreviation we set τi = (ηi, βi) = τN3,Si
, and τ ′

i = (η′
i, β

′
i) = τNi,S0

for i ∈ {1, 2}.

Assume that there is a net N ′
3 with morphisms δi = (ηδi

, βδi
):N3 → Ni,

i ∈ {1, 2} such that τ ′
1 ◦ δ1 = τ ′

2 ◦ δ2 (see diagram below). Our aim is to show
the existence of a unique morphism δ = (η, β):N ′

3 → N3 such that τi ◦ δ = δi for

7

i ∈ {1, 2}.

N ′
3

δ1

��

δ2

��

δ

��

N3

τ1

}}||
||

||
||

τ2

!!B
BB

BB
BB

B

N1

τ ′

1

!!B
BB

BB
BB

B
N2

τ ′

2

}}||
||

||
||

N0

First observe that T3 is (isomorphic to) the pullback of η′
1 and η′

2 in the category
LSet∗ (where the labelling is given by the labelling function of N3). This follows
from the fact that every transition in T3 has a non-empty pre-set and therefore
has an image in at least one component net and from the assumption on the
labelling of local transition. Hence there is a unique mapping η:T ′

3 99K T3 such
that ηi ◦ η = ηδi

for i ∈ {1, 2}.
In order to obtain β we show that S3 is the pullback of β′

1 and β′
2 in the

category of multi-relations. We know that β ′
1 ◦ βδ1

= β′
2 ◦ βδ2

. We assume that
an element s′ ∈ S′

3 has the following images

µβδ1
(s′) =

⊕

s1∈S1

ks′

s1
· s1 µβδ2

(s) =
⊕

s2∈S2

`s′

s2
· s2.

It can be shown that whenever β′
1(s1) = β′

2(s2), then ks′

s1
= `s′

s2
. This follows

directly from the commutativity of the diagram and the fact that β ′
1 and β′

2 are
injective (we even have that β′

i(si) = si when defined). Now define a mediating
multi-relation β:S′

3 ↔ S3 as follows:

µβ(s′) =
⊕

s1∈S0

ks′

s1
· s1 ⊕

⊕

s1∈S1\S0

ks′

s1
· s1 ⊕

⊕

s2∈S2\S0

`s′

s2
· s2.

It can be easily seen that β1 ◦β = βδ1
and β1 ◦β = βδ2

. Furthermore since β1, β2

are injective, β is the only multi-relation that can make the diagram commute.
The fact that η is a mediating arrow in LSet∗ and β is a mediating arrow in

the category of multirelations allow to conclude uniqueness and commutativity
for δ = (η, β).

It is left to show that δ = (η, β) is a Petri net morphism. Specifically we
will in the following show that µβ(•t′) = •η(t′) for a transition t′ of N ′

3 (for the
remaining conditions the proof is analogous). We distinguish the following cases:

– ηδ1
(t′) ↓ and ηδ2

(t′) ↓.
Let t1 = ηδ1

(t′), t2 = ηδ2
(t′) and t = η(t′). Note that since local transitions

in different nets must have different labels and t1, t2 have the same label,
there exists necessarily a transition t0 in N0 such that η′

1(t1) = t0 = η′
2(t2).

8

From the decomposition construction we know that •t = •t1 ⊕ •t2 	 •t0.
(Remember that places have the same names in all the nets N0, N1, N2, N3.)
Furthermore, according to the definition of β, it holds that

µβ(•t′) =
⊕

s′∈•t′

µβ(s′)

=
⊕

s′∈•t′





⊕

s1∈S0

ks′

s1
· s1 ⊕

⊕

s1∈S1\S0

ks′

s1
· s1 ⊕

⊕

s2∈S2\S0

`s′

s2
· s2





From the definition of βδ1
we conclude that

•t1 = µβδ1
(•t′) =

⊕

s′∈•t′

⊕

s1∈S1

ks′

s1
· s1.

An analogous equation can be derived for •t2. Finally we can represent •t0
as follows:

•t0 = •(η′
1 ◦ ηδ1

)(t′) = µ(β′
1 ◦ βδ1

)(•t′) =
⊕

s′∈•t′

⊕

s1∈S0

ks′

s1
· s1.

Summing everything up (and remembering that ks′

s1
= `s′

s2
for s1 = s2 ∈ S0)

we obtain:

µβ(•t′) = •t1 ⊕
•t2 	

•t0 = •t = •η(t′).

– ηδ1
(t′) ↓ and ηδ2

(t′) ↑.
We set t1 = ηδ1

(t′) and necessarily η′
1(t1) must be undefined. This implies

that t = η(t′) is only connected to places in S1, and not to places in S2.
Hence we have •t = •t1. Furthermore we have •t′ = m1 ⊕ m, where m1

contains all places mapped to a place of N1 and m contains all places not
mapped anywhere (as above). Because of µβδ2

(•t′) = •ηδ2
(t′) = ∅ there can

be no places of any other kind.
It can be shown that µβ(m1) = •t1 and µβ(m) = ∅. Hence we can conclude
that

µβ(•t′) = µβ(m1 ⊕ m) = µβ(m1) ⊕ µβ(m) = •t1 ⊕ ∅ = •t = •η(t′).

– ηδ1
(t′) ↑ and ηδ2

(t′) ↓.
Analogous to the case above.

– ηδ1
(t′) ↑ and ηδ2

(t′) ↑.
Since any transition in N3 appears either in N1 or in N2 (or in both),
necessarily η(t′) is undefined. Reasoning as in earlier cases we deduce that
µβ(•t′) = ∅, as desired.

ut

Note that, in order to exploit the results about the unfolding, also the com-
ponent nets must not contain transitions with empty pre-set. For safe nets this

9

can be achieved by introducing extra complement places. Henceforth, all decom-
positions are supposed to have this property.

Additionally, decomposition will have to be done in such a way that local
transitions in different components have different labels. Note that, for instance,
in our application area, i.e., the area of diagnosis, it is not restrictive to assume
that transitions in different components can be distinguished and thus are as-
signed different labels. It is worth remarking that, from a technical point of view,
such requirement implies, in particular, that if a transition t of N3 occurs both
in N1 and N2 then it must occur also in N0.

Example: Consider the Petri net N ′
3 in Fig. 1(a). We intend to split the loop along

the places 1 and 3, i.e., we plan to decompose as described in Proposition 6 with
S1 = {1, 2, 3} and S2 = {1, 3, 4}. However, this decomposition would result in
subcomponents N0, N1 and N2 including transitions with empty pre-set. In order
to avoid this problem, we can complement the interface places 1, 3 by adding
two more places 5, 6, thus obtaining the net N3 in Fig. 1(b). Call place p̄ the
complement of place p if p • = •p̄, p̄ • = •p, and p ∈ m ⇔ p̄ 6∈ m. Then 5, 6
are complements for 1, 3. The new net is equivalent to N ′

3 (in a sense which can
be formalised [14]) and can be safely decomposed using S1 = {1, 2, 3, 5, 6} and
S2 = {1, 3, 4, 5, 6}.

We split N3 into two subnets N1, N2 with interface N0 (according to Propo-
sition 6), thus obtaining the pullback in category PN shown in Fig. 3. Note that
neither N1 nor N2 are safe (or even bounded).

4 Unfolding Petri Nets

In this section we recap the unfolding semantics for Petri nets and we discuss
some of its properties which will play a basic role in the development.

Recall that given a Petri net N the dependencies between transitions are
captured by two basic relations, causality and conflict.

Definition 7 (causality, conflict). Let N be a Petri net. Causality is the least
transitive relation <N over S ∪ T such that if s ∈ •t then s <N t and if s ∈ t •

then t <N s. We denote by ≤N the reflexive closure of <N and for any x ∈ S∪T ,
bxc = {y ∈ S ∪ T | y ≤N x}.

Conflict is the least relation #N over S ∪ T such that (i) if •t ∩ •t′ 6= ∅ and
t 6= t′ then t#N t′ and (ii) if t#N t′ and t <N t′′ then t′′#N t′.

Occurrence nets are basically acyclic nets where each place is generated by
at most one transition. They are used to unfold Petri nets as described below.

Definition 8 (occurrence net). An occurrence net is a net N satisfying the
following requirements:

1. if t • ∩ t′ • 6= ∅ then t = t′ (any place is in the post-set of at most one
transition);

2. ≤N is a partial order and btc is finite for any t ∈ T ;

10

α

3

4

δ

5

γ

1

6

β

5

3

γβ

2 4

α δ

1

6

5

3

γβ

α

1

6

δ

β

3

5

γ

δ

1

6

α

2

N0

N3

N2N1

Fig. 3. Decomposing a loop as a pullback of nets.

3. the initial marking m is the set of ≤N -minimal places;
4. #N is irreflexive.

We denote by ON the full subcategory of PN having occurrence nets as objects.

A configuration of an occurrence net N , formalising the intuitive idea of
“concurrent run”, is a subset C ⊆ T such that C is left-closed w.r.t. ≤N and
free of conflicts. A set of places X ⊆ S is called concurrent, written conc(X), if
bXc is a configuration and ¬(s <N s′) for all s, s′ ∈ X.

We are now ready to define the unfolding of a Petri net. The unfolding con-
struction unwinds a given net N into an occurrence net, starting from the initial
marking, firing transitions in all possible ways and recording the corresponding
occurrences. For the sake of presentation we give an equational definition.

Definition 9 (unfolding). Let N be a Petri net. Its unfolding U(N) and the
folding morphism τN = (η, β) : U(N) → N are the occurrence net and net
morphism determined by the following recursive equations, where the components
of the unfolding are primed:

m′ = {〈∅, s〉 | s ∈ m}

S′ = m′ ∪ {〈{t′}, s〉 | t′ = 〈X, t〉 ∈ T ′ ∧ s ∈ t •}

T ′ = {〈X, t〉 | X ⊆ S′ ∧ conc(X) ∧ t ∈ T ∧ µβ(X) = •t}

11

For t′ = 〈X, t〉 ∈ T ′ : •t′ = X and t′ • = {〈{t′}, s〉 | s ∈ t •}

η(t′) = t iff t′ = 〈X, t〉

β(s′, s) = 1 iff s′ = 〈x, s〉 (x ∈ 2T ′

)

Observe that items in the unfolding are enriched with their causal histories.
Place s′ = 〈x, s〉 records its generator x (x is empty when the place is in the
initial state, otherwise x is a singleton) and the place s in the original Petri net;
transition t′ = 〈X, t〉 represents a firing of t that consumes the resources in X.

Proposition 10 (right adjoint [19, 12]). The construction U of Definition 9
extends to a functor U : PN → ON, which is right adjoint to the inclusion of
ON into PN.

Right adjoints preserve limits (see [11, 1]) and hence also pullbacks, which are
special limits. As a consequence the unfolding of a pullback in PN is the pullback
(in ON) of the unfoldings of the component nets. More precisely, given a pullback
τ ′
i :N3 → Ni, τi:Ni → N0 (i ∈ {1, 2}) in PN, we have that U(τ ′

i):U(N3) →
U(Ni), U(τi):U(Ni) → U(N0) (i ∈ {1, 2}) is a pullback in ON. This result will
play a central role in the rest of this paper.

Example: Unfolding the nets N0, N1, N2 and N3 of Fig. 3 we obtain the occur-
rence nets O0, O1, O2 and O3 in Fig. 4 (ignore the shaded places and transitions
for the moment). Transitions in the occurrence nets are named by using their
label, with an additional index. The morphisms to the original nets are the obvi-
ous ones suggested by the labelling. By the considerations above, the occurrence
net O3 arising as unfolding of N3 is the pullback of O1 and O2 along O0.

The aim of this paper is to compute—in a distributed way—the projection
of U(N3) to U(Ni), i.e., the local view of component Ni, when taking into ac-
count the behaviour of the other component. The intuitive idea of local view is
formalised by using factorisations.

It can be shown that, taking projections and embeddings as in Definition 4,
the category ON is pe-structured. The only delicate point is to show that given
an occurrence net morphism τ : O1 → O2, the net τ(O1) as defined in Section 3
is a well-defined occurrence net, but this follows from the fact that occurrence
net morphisms reflect causal chains (see [19], Lemma 3.3.6).

Definition 11 (projection of occurrence nets). Let τ = (η, β):O1 → O2 be
an ON morphism and let τp:O1 → O1

2, τe:O1
2 → O2 be the pe-factorisation of

τ . Then the occurrence net O1
2 is called the projection of O1 onto O2.

Roughly in O1
2 we leave out all elements (places and transitions) of O2 that

are not in the image of τ .

Example: Consider the unfoldings of our running example in Fig. 4. The shaded
places and transitions in O0, O1 and O2 identify the projections O3

0, O3
1, O3

2.
Transitions in O1 and O2 which disappear in the projection intuitively represent
events that are infeasible if the net components interact. For instance, consider

12

�������
�������
�������
�������

�������
�������
�������
�������

... ...

...

...

5

O2 = U(N2)O1 = U(N1)

O3 = U(N3)

O0 = U(N0)

1 5

α1

6

δ1 β1

3

α2 γ1

6 5

δ2 β′
1

β2

1 3 3

γ′
1

5

1 5

α1 β1

6 3

δ1 γ1

1

α2 β2

6 3
3

51

1 1

3

β1

α1 γ1

6 5

δ1 β2

1

α2 γ2

6 5

δ2δ′
1

1 5

α1

6

β1

3

γ1

5

δ1

1

α2

6

β2

3

γ2

5

δ2

1

1

2

2

4

4

2

4

2

4

...

... ...

... ...

...

Fig. 4. Composition of unfoldings as pullback of occurrence nets.

13

α

γ

β

N2

t0

t2

t1

ϕ2
��

α

γ γ

β

t0

t′
2

t′′
2

t1

N1

ϕ1
//

γ

βα

N0

t0

t2

t1

Fig. 5. Projecting dependency relations over the interface.

transition β′
1 in O1. From the point of view of N1, transition δ1 is a cause for

β′
1. However, through the interface, transition β ′

1 in N1 corresponds to β1 in N2

and in this latter net β1 is a cause for δ1. Hence β′
1 turns out to be not firable.

5 Interleaving Structures and Their Properties

In order to be able to compute the local projection of the unfolding, intuitively,
each net component needs to know the behavioural constraints on the events
of the interface net imposed by the other components. Unfortunately, the idea
of simply representing dependencies between events, i.e., causality and conflict,
with prime event structures and projecting to the interface the additional de-
pendencies derived in each component net does not work. Consider, for instance,
the occurrence nets in Fig. 5, where morphisms ϕi map any transition in Ni to
the only transition in the interface net with the same label. Since the two γ-
labelled transitions in N1 are fused in N0, the projection of causalities in N1 to
N0 would result in an or-causality between {t0, t1} and t2, i.e., in saying that
t2 can be caused by either t0 or t1, a phenomenon that is not expressible in a
prime event structure. Still, from N2 we obtain the information that t2 must be
fired before t1. By combining this knowledge we discover that t0 < t1 < t2 is the
only possible order in which the transitions of N0 can be executed. However, as
mentioned above, prime event structures are not sufficiently rich to model this
situation. It can be shown that similar problems arise when considering more
general partial order models including Winskel’s general event structures [19].

The search for structures suitable to express possible orderings of events and
forming a category with nice factorisation properties leads us to so-called in-
terleaving structures. As their name suggests, these structures do not rely on
partial orders, which one would like to have for efficiency reasons. Hence our

14

solution is the following: in order to obtain a clean theory we work with inter-
leavings for now and explain afterwards how they can be efficiently represented
by a data structure based on partial orders and specifically on occurrence nets
(see Section 7).

5.1 Interleaving structures

For a set A, denote by A∗ the set of finite sequences of elements of A, and by
A� the subset of sequences in A∗ in which each element occurs at most once.
A (partial) function f : A 99K B induces a function f : A∗ → B∗ (still denoted
by f), where for r ∈ A∗ its image f(r) is defined in the obvious way (apply f

pointwise, removing from the sequence elements on which f is undefined.)

Definition 12 (interleaving structures). An interleaving structure is a tuple
I = (E,R, λ) where E is a set of events, λ:E → Λ a labelling of events and
R ⊆ E�, called the set of runs, satisfying:

1. R is prefix-closed,
2. R contains the empty run ε,
3. every event e ∈ E occurs in at least one run.

The components of an interleaving structure I will be denoted by EI , RI ,
λI , whereas the components of Ii will also be denoted by Ei, Ri, λi.

Definition 13 (interleaving morphisms). Let Ii = (Ei, Ri, λi) with i ∈
{1, 2} be interleaving structures. An interleaving morphism from I1 to I2 is
a partial function θ:E1 99K E2 on events such that

1. λ2(θ(e)) = λ1(e) whenever θ(e) ↓ (i.e., function θ preserves labels)
2. for every r ∈ R1 it holds that θ(r) ∈ R2.

The category of interleaving structures and interleaving morphisms is denoted
by Ilv.

Observe that by Condition (2) above, θ must be injective on the events
occurring in any single run. Below we show that pullbacks can be constructed
in a quite straightforward way in Ilv.

Proposition 14 (pullbacks in Ilv). Let θi: Ii → I0, i ∈ {1, 2} be two inter-
leaving morphisms. Their pullback in Ilv, denoted by πi: I3 → Ii, i ∈ {1, 2} can
be constructed as follows:

– Define E′
3 as the pullback in the category of labelled sets and partial functions,

and let π′
i:E

′
3 → Ei be the standard partial projections.

– Define R3 = {r ∈ (E′
3)

� | π1(r) ∈ R1 ∧ π2(r) ∈ R2}.
– Let E3 ⊆ E′

3 be the subset of events in E ′
3 that occur in at least one run in

R3. Furthermore let πi = π′
i|E3

:E3 → Ei be the projections restricted to E3.
– Finally set λ3((e1, e2)) = λ1(e1) = λ2(e2), λ3((e1, ∗)) = λ1(e1) and λ3((∗, e2)) =

λ2(e2) for all events in E3.

15

Then I3 = (E3, R3, λ3) is the pullback object.

Proof. Let I be another interleaving structure with morphisms δi: I → I1 such
that θ1 ◦ δ1 = θ2 ◦ δ2. We have to show that there exists a unique morphism
δ: I → I3 such that πi ◦ δ = δi. This is illustrated by the diagram below.

I δ1

��

δ2

""

δ

��

I3
π1

//

π2

��

I1

θ1

��

I2
θ2

// I0

Since E′
3 is the pullback of θ1, θ2 in the category LSet∗ of labelled sets and

partial functions we obtain a unique function δ:E 99K E ′
3 such that the diagram

commutes in LSet∗.
Let us first observe that for any run r ∈ R we have δ(r) ∈ R3. In fact,

δi(r) ∈ Ri for i ∈ {1, 2}. Thus, since π′
i(δ(r)) = δi(r) for i ∈ {1, 2}, we conclude

that δ(r) ∈ R3. This immediately implies that δ(E) ⊆ E3, and thus we can view
δ as a partial function E 99K E3. In fact, given any e ∈ E there must be a run
r where e occurs. Since δ(r) ∈ R3, we deduce that either δ(e) ↑ or δ(e) ∈ E3.

It remains to show that δ is an interleaving morphism. We have already
proved that for any r ∈ R its image δ(r) ∈ R3. Furthermore for an event e ∈
E it holds that λ(δ(e)) = λ(πi(δ(e))) = λ(δi(e)) = λ(e) whenever πi(δ(e)) is
defined for some i. If neither π1(δ(e)) nor π2(δ(e)) is defined, then δ(e) must be
undefined. Hence we conclude. ut

5.2 Factorisation Structures

We next study factorisations of interleaving structures, showing how to obtain
a factorisation structure for Ilv. This is needed in order to project information
about possible interleavings of events from each component down to the interface,
where it can be read by the other component.

Definition 15 (projection, embedding). An interleaving morphism θ: I1 →
I2 is called projection if the induced function on runs θ:R1 → R2 is surjective.
Morphism θ is called embedding if the mapping on events is a total injection.

Observe that by definition any projection θ : I1 → I2 is surjective on the set of
events. In fact, any event e2 ∈ E2 occurs in at least one run r2 ∈ R2. Since θ is
a projection, there exists r1 ∈ R1 such that θ(r1) = r2 and thus there must be
some event e1 ∈ E1, occurring in r1, such that θ(e1) = e2.

Given any morphism θ: I1 → I2 in Ilv, a projection-embedding factorisation

I1
θp

→ I1
2

θe

→ I2 can be obtained by taking as the runs of I1
2 all runs in I2 having

16

a preimage under θ, and defining the set of events of I1
2 and θp, θe appropriately.

The interleaving structure I1
2 is also called projection of I1 to I2 via θ.

Next we show that the category of interleaving structures is pe-structured.

Proposition 16 (Ilv (E,M)-structured). The category Ilv is (E,M)-structured
where E is the set of projections and M is the set of embeddings.

Proof. The fact that E and M are closed under isomorphisms is obvious, while
the possibility of factorising any morphism follows from the considerations in
Section 5.

It remains to show that Ilv has the unique (E,M)-diagonalisation property.
Consider a square as below where e ∈ E, m ∈ M

IA
e

// //

f

��

IB

g

��

d

~~

IC
// m

// ID

and let us show the existence and uniqueness of a morphism d making the dia-
gram commute. Morphism d exists uniquely in Set∗ since e is epi and m is mono
in Set∗, and it can be defined by assigning to eB the unique eC ∈ EC such that
m(eC) = g(eB).

The function d is an Ilv-morphism. In fact, for any rB ∈ RB , let rB =
e1 . . . en. Since e is a projection there exists rA ∈ RA such that e(rA) = rB .
Thus it is easy to conclude that d(rB) = f(rA) ∈ RC , as desired. ut

Not only the embeddings, but also the projections are stable under pullbacks
in Ilv. Note also that an analogous proposition does not hold in ON. This is
one of the reasons for resorting to interleaving structures.

Proposition 17 (stability of projections under pullbacks). In the cate-
gory Ilv projections are stable under pullbacks.

Proof. Let πi: I3 → Ii, θi: Ii → I0 for i ∈ {1, 2} be a pullback in the category
of interleaving structures and assume that θ1 is a projection.

I3
π1

//

π2

����

I1

θ1

����

I2
θ2

// I0

We have to show that π2 is a projection. Take a run r2 ∈ R2. We have θ2(r2) ∈ R0

and hence—since θ1 is a projection—there exists a run r1 ∈ R1 with θ1(r1) =
θ2(r2). The situation is as follows: r0 = e1 . . . en and we have ri = ri

0e
i
1r

i
1 . . .

ri
n−1e

i
nri

n where θi(e
i
j) = ej and θe(ri

j) = ε (the empty run).

We now set s1
j = (e′1, ∗) . . . (e′k, ∗) whenever r1

j = e′1 . . . e′k and s2
j = (∗, e′1) . . .

(∗, e′k) whenever r2
j = e′1 . . . e′k. We define

r3 = s1
0s

2
0(e

1
1, e

2
1)s

1
1s

2
1 . . . s1

n−1s
2
n−1(e

1
n, e2

n)s1
ns2

n

17

and it is easy to see that πi(r3) = ri for i ∈ {1, 2}. Hence r3 ∈ R3 by Propo-
sition 14. Summing up, we have shown that for any r2 ∈ R2 there exists a run
r3 ∈ R3 such that π2(r3) = r2. Thus π2 is a projection. ut

5.3 Projections of Interleaving Structures and Occurrence Nets

Every occurrence net O can be associated with an interleaving structure Ilv(O)
whose set of events coincides with the set of transitions of the net.

Definition 18. Let O = (S, T, λ, •(), () •,m) be an occurrence net. Its interleav-
ing structure is Ilv(O) = (T,R, λ), where R consists of all runs r ∈ T� such
that for every prefix r′ of r the events occurring in r′ form a configuration of O.

In the following an element r ∈ RIlv(O) will be called a run of O.

Lemma 19. The mapping Ilv can be extended to a functor Ilv : ON → Ilv.

Proof. The only thing to show is that for any occurrence net morphism τ =
(η, β) : O1 → O2 the mapping η : Ilv(O1) → Ilv(O2) is an Ilv-morphism, i.e.,
that for any r1 ∈ RIlv(O1) its image η(r1) ∈ RIlv(O2). This follows immedi-
ately from the fact that occurrence net morphisms preserve configurations (see,
e.g., [19]. ut

The functor Ilv does not preserve pullbacks. Consider for instance the pull-
back in ON depicted in Fig. 6. Transitions marked with αi respectively βi have
label α and β and their indices are used to represent the ON morphisms. The
corresponding interleaving structures Ilv(Oi) for i ∈ {0, 1, 2} has sets of runs
{ε, α}, {ε, α, αβ} and {ε, α1, α2}, respectively. If we take the pullback of Ilv(ϕ1)
and Ilv(ϕ2) we obtain an interleaving structure with three (instead of four) events
α1, α2, β. The set of runs is the prefix closure of {α1β, α2β}.

Still we can establish a useful relation between pullbacks in the category of
occurrence nets and in Ilv.

Lemma 20. Consider a pullback diagram in ON as shown in the left-hand side
below and take its image through the Ilv functor, thus obtaining the outer square
in the right-hand diagram below. Furthermore let I ′

3 be the pullback in Ilv of θ1

and θ2. Then the mediating morphism δ: Ilv(O3) → I ′
3 is a projection.

O3
χ1

//

χ2

��

O1

ξ1

��

O2
ξ2

// O0

Ilv(O3)
δ1

//

δ2

��

δ '' ''

I1

θ1

��

I ′
3π2

vvnnnnnnnn

π1
99rrrrrr

I2
θ2

// I0

Proof (Sketch). First notice that we can decompose the functor Ilv into the
standard functor Ev : ON → PES from occurrence nets to the category PES of
prime event structures [19], which is a right adjoint, and a functor Ilv ′ : PES →

18

O3

τ1

��

τ2
// O2

ϕ2

��

O1

ϕ1
// O0

α1

β1

α2

β2

τ1

��

τ2
//

α1 α2

ϕ2

��

α

β

ϕ1
//

α

Fig. 6. Functor Ilv does not preserve pullbacks.

Ilv. Thus, if we take the prime event structures Ei underlying the occurrence
nets Oi, i.e., Ei = Ev(Oi), we obtain a pullback square in the category PES, as
illustrated below.

E3
δ1

//

δ2

��

E1

θ1

��

E2
θ2

// E0

Thus we have to show that there is a projection from Ilv ′(E3) to I ′
3.

Let r3 = e1 . . . en ∈ R′
3 be a run of I ′

3. Hence there exist runs ri = πi(r3) ∈ Ri

which correspond to configurations in E1, E2. Now let E be an event structure
with events E = {e1, . . . , en} such that ei+1 causally depends on ei. There exist
morphisms δ′i: E → Ei such that δ′i(ej) = πi(ej), since πi(E) is a configuration in
Ei that can be “executed” in that order.

Furthermore commutativity, i.e., θ1 ◦ δ′1 = θ2 ◦ δ′2 follows from the commu-
tativity of the diagram consisting of θ1, θ2, π1, π2. Since E3 is the pullback of
E0, E1, E2 there must be a unique morphism δ′: E → E3 such that δi ◦ δ′ = δ′i.

Since Ilv ′ is a functor, we can also consider δ′ as an interleaving morphism.
Hence r = δ′(e1) . . . δ′(en) is a run in Ilv(O3). We have that πi(δ(δ

′(ej))) =
δi(δ

′(ej)) = δ′i(ej) = πi(ej). The elements of E3 are uniquely determined by
their projections and hence we have δ(δ′(ej)) = ej . This implies that δ(r) = r3

and thus δ is a projection as required. ut

We can now relate projections of occurrence nets to projections of interleaving
structures.

19

Lemma 21. Let τ :O1 → O2 be an occurrence net morphism. The projection
of O1 to O2 can be obtained by taking the interleaving structure morphism
θ = Ilv(τ): I1 → I2 and determining the projection-embedding factorisation

I1
θp

→ I1
2

θe

→ I2 of θ. In order to obtain the projection O1
2 take the subnet of

O2 containing only transitions in the image of θe.

Proof. This is an easy consequence of the characterisation of the projection-
embedding factorisations in the two categories Ilv and ON (respectively PN).

ut

Summing up, we obtain a procedure for determining the projection of a
pullback object in the category of occurrence nets without actually constructing
the pullback.

Proposition 22. Let τi:Oi → O0, i ∈ {1, 2} be two occurrence net morphisms
and let ξi:O3 → Oi, i ∈ {1, 2} be their pullback. Then the projection O3

1 and the
morphism O3

1 → O1 can be determined (without computing O3) as follows:

– Determine the interleaving structures I0, I1, I2 corresponding to O0, O1, O2,
i.e., Ii = Ilv(Oi), including their morphisms θi = Ilv(τi): Ii → I0, i ∈ {1, 2}.

– Compute the projection-embedding factorisation I2
θ

p
2→ I2

0

θe
2→ I0 of θ2.

– Take the pullback of θ1 and θe
2 and obtain the morphism δe

1: I
3
1 → I1.

– Now take the subnet of O1 that contains the transitions in the image of δe
1

(as described in Lemma 21).

This gives the projection O3
1 of O3 to O1 with morphism O3

1

ξe
1→ O1.

Ilv(O3) //

����

I2

θ
p
2����

θ2

{{

I3
1

//
��

δe
1

��

I2
0
��
θe
2

��

I1
θ1

// I0

PB

O3
//

ξ
p
1 ����

O2

τ2

��

O3
1
��

ξe
1

��

O1 τ1

// O0

Proof. We start by constructing I ′
3 as the pullback of θ1 and θ2. This gives

δ: I3 → I ′
3 with I3 = Ilv(O3) as a mediating morphism, which according to

Lemma 20 is a projection.

Then we take the pullback of θ1 and θe
2 resulting in a split of the larger

pullback as shown below. Specifically, since θe
2 is an embedding and thus it is

preserved by pullbacks, we conclude that also δe
1 is an embedding. In the same

way Proposition 17 implies that δ
p
1 is a projection.

20

I3 = Ilv(O3)

��
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

))SSSSSSSSSSSSSSSSS

δ
%% %%

I ′
3

δ
p
1

����

// I2

θ
p
2

����

I3
1

//
��

δe
1

��

I2
0

PB

��

θe
2

��

I1
θ1

// I0

PB

Since projections compose, we can conclude that δ
p
1 ◦ δ is also a projection, i.e.,

the pair δ
p
1 ◦ δ, δe

1 is the unique (projection,embedding)-factorisation of Ilv(ξ1).
Hence, according to Lemma 21, we can restrict O1 to the transitions in the

image of δe
1 and obtain O3

1. ut

6 An Algorithm for Distributed Unfolding

We can now present a distributed unfolding algorithm based on interleaving
structures. The algorithm takes as input a pair of net morphisms τi:Ni → N0,
i ∈ {1, 2} obtained by decomposing a Petri net N3 as described in Proposition 6.
Then it builds, in a stepwise fashion, the remaining morphisms of the commuting
diagram in Fig. 7, where O

j
i is the projection of U(Nj) over U(Ni). When ξi =

(ηi, βi), we will sometimes write ξi(t) instead of ηi(t).

O
3

2

δ2

��

ξ2

%% %%JJJJJJ

O
3

1

ξ1
// //

δ1

��

O
3

0

δ0

��

N2
τ2

&&LLLLLL

N1

τ1
// N0

Fig. 7. Nets and morphisms involved in Algorithm 1.

Algorithm 1 (distributed unfolding) Denote intermediate states of the oc-
currence nets and morphisms by Ō0, Ō1, Ō2, ξ̄i, δ̄j . Start with occurrence nets

21

corresponding to the initial places of N0, N1, N2 and the appropriate corre-
sponding morphisms. At any step transform the morphisms ξ̄i, δ̄i as follows: let
j ∈ {1, 2}

(1) Look for a concurrent subset of places X in Ōj such that δ̄j(X) is the preset
of a transition t in Nj and furthermore4

(*) there exists a run r of Ōj that contains all causes of X and no
consequences of X with ξ̄j(r) ∈ ξ̄3−j(RIlv(Ō3−j)).

(2) Add t′ = 〈X, t〉 with postset {〈{t′}, s〉 | s ∈ t •} to Ōj ;
Update δ̄j by adding t′ 7→ t and 〈{t′}, s〉 7→ s.

(3) If τj(t) = t0 is defined,
add a new transition t′0 = 〈ξ̄j(X), t0〉 with postset {〈{t′0}, s0〉 | s0 ∈ t0

•}
to Ō0, unless it is already present;

Update δ̄0 by adding t′0 7→ t0 and 〈{t′0}, s0〉 7→ s0;
Update ξ̄j by adding t′ 7→ t′0 and 〈{t′}, s〉 7→ 〈{t′0}, τj(s)〉.

Assuming that there are two unfolders and a third process which manages
the interface information (i.e., which records the projections of the runs of both
components) then the checking of Condition (*) and step (3) are performed by
unfolder j together with the interface manager, whereas the remaining steps can
be performed by unfolder j on its own. Hence communication between unfolders 1
and 2 is restricted to communication via the interface manager. Furthermore we
will suggest in Section 7 how to efficiently check Condition (*).

A transition t in the occurrence net Ō0 is called valid if it appears in one of
the runs of R = ξ̄1(RIlv(Ō1))∩ ξ̄2(RIlv(Ō2)). A transition t′ of Ōj for j ∈ {1, 2} is

valid if ξ̄j(t
′) ↑ or there is a run rt′ in Ōj such that ξ̄j(rt

′) ∈ R. Note that the
algorithm will never generate a transition having a non-valid cause. Furthermore
transitions of Ō0 might at some point not be valid but become valid at a later
stage when corresponding pre-images have been generated by both unfolders.

Example: The above algorithm, applied to our running example, produces the
shaded subparts of the nets in Fig. 4. For instance transition β ′

1 will never be
added to Ō1. This transition may follow the run α1δ1α2, but there is no run r

in O2 for which we have ξ2(r) = α1δ1α2 = ξ1(α1δ1α2).

In order to ensure that every enabled transition will eventually be chosen, the
algorithm unfolds breadth-first: the sets X computed in step (1) of one round
have to be worked out completely before those from the next round.

Proposition 23 (correctness of distributed unfolding). We denote the
(infinite) unions of the sequences of nets produced by the algorithm above by Ō0,
Ō1 and Ō2. By restricting Ō0, Ō1, Ō2 to the valid transitions (and their pre-
and post-sets plus the initial places), one obtains exactly the occurrence nets O3

0,
O3

1, O3
2, where O

j
i is the projection of U(Nj) over U(Ni).

4 Condition (*) basically states that transition t can be fired after a run r of Oj and
this run r is consistent with the behaviour of the other component. That is, there is
a way to synchronise r and some run of O3−j .

22

Proof. Let Ii = Ilv(Oi) where Oi = U(Ni) for i ∈ {0, 1, 2}. Consider the
diagram below which is obtained by determining the (projection,embedding)-
factorisations in Ilv and where all squares—apart from the top left square—are
pullbacks. The pullback consisting of the composition of the two bottom squares
is determined as explained in Proposition 22. Similar considerations apply to
the pullback consiting of the composition of the two right squares. Then—by
standard pullback decomposition—we can split these two pullbacks obtaining
the bottom right square. From the fact that projections and embeddings are
preserved by pullbacks, we can then classify the arrows accordingly as shown in
the diagram below.

I3
// //

����

I3
2

// //

����

I2

θ2

����

I3
1

// //
��

��

I3
0

// //
��

��

I2
0

PB

��

ϕ2

��

I1
θ1

// // I1
0

PB

//
ϕ1

// I0

PB

We will assume that all embeddings preserve the identities of items, i.e., that
they map any transition t to itself. Since this fixes the mappings ϕi, it follows
that θi(t) = ξ̄i(t) when applied to a transition t of Ōi.

In the following we will denote the restrictions of the occurrence nets Ō0,
Ō1, Ō2 to valid transitions by Ô0, Ô1, Ô2. We start by showing that Ô0 equals
O3

0. Clearly Ô0 is a subnet of O0 and, but construction, it contains exactly the
transitions occurring in the runs of ξ̄1(RIlv(Ō1))∩ ξ̄2(RIlv(Ō2)). Let us denote the
interleaving structure with all these runs and all events that are contained in at
least one run by I.

According to Lemma 21 it is sufficient to prove that I is equal to I3
0 . We will

do this by showing that I is the pullback object of I1
0 → I0 and I2

0 → I0.

For this we first have to show that there are embeddings I → I i
0 for i ∈

{1, 2}. We actually prove that RI ⊆ RIi
0

. Let r be a run of I. It follows that

r ∈ ξ̄1(RIlv(Ō1)), i.e., there exists a run r′ of Ō1 with ξ̄1(r
′) = r. This implies

that r = ξ̄1(r
′) = θ1(r

′) and thus, by the properties of interleaving morphisms,
r ∈ RI1

0

. The condition for I2
0 can be shown analogously.

Now, assume that there is an interleaving structure I ′ with morphisms ηi: I
′ →

Ii
0 for i ∈ {1, 2} such that ϕ1 ◦ η1 = ϕ2 ◦ η2. We will show that there exists a

unique morphism η: I ′ → I with ηi(r
′) = η(r′) for every run r′ of I ′ (see diagram

below).

23

I ′

η1

!!

η

��

η2

��

I //

��

I2
0

ϕ2

��

I1
0 ϕ1

// I0

The only way to define η is to set η(t) = η1(t) = η2(t). Note that η1(t) is
defined if and only if η2(t) is defined and both elements are equal (this follows
from the fact that ϕi(t) = t). This implies immediately that ηi(r

′) = η(r′) for
every run r′ of I ′. However it is not yet clear that η: I ′ → I is a well-defined
interleaving structure morphism.

Hence we show that η(r′) ∈ RI for every run r′ of I ′ by induction on the
length of r′. If r′ = ε, then we have η(r′) = ε and by definition ε ∈ RI . If
r′ = r′′t, then we have, by the induction hypothesis, η(r′′) ∈ RI .

Now we distinguish two cases: whenever η1(t) and η2(t) are undefined, we
have that η(t) is undefined, which implies that η(r′) = η(r′′) ∈ RI . If, on the
other hand, η1(t) = η2(t) = t0 for some transition t0 of O0, we conclude that—
since ηi(r

′′t) is a run of Ii
0 and the θi are projections—there must be runs riti

of Ii with θi(riti) = ηi(r
′′t).

We can easily show by induction on the length of ri that ri must (eventually)
be a run of Ōi. (Observe that for every prefix r′i of ri we have that ξ̄i(r

′
i) = θi(r

′
i)

and θi(r
′
i) is—because of prefix closure—a run of I and hence of ξ̄3−i(RIlv(Ō3−i))

and so Condition (*) of the algorithm is satisfied.)

Then—again by Condition (*)—the transition ti can at some point be added
to Ōi and it will be since Condition (*) continues to hold. That means that at
some point in the algorithm riti will be contained in Ilv(Ōi) and so η(r′) =
θi(riti) = ξ̄i(riti) will be contained in ξ̄i(RIlv(Ōi)) for i ∈ {1, 2}. This implies
that η(r′) is contained in I.

We continue by showing that Ô1 equals O3
1. Again it is sufficient to show

that Ô1 contains exactly the transitions contained in I3
1 . We first show that

every transition t of Ô1 is contained in I3
1 . Since t is valid there exists a run rt

in Ō1 such that ξ̄1(rt) = θ1(rt) ∈ RI = RI3

0

. Furthermore rt is also a run of O1

and hence of I1. This means that rt is contained in I3
1 by pullback properties.

And this implies that t is an event of I3
1 .

For the other direction, let t be an event of I3
1 . Hence there must be a run of

the form rt in I3
1 . If the image of t is defined, i.e., θ1(t) = t′, then there exists a

run θ1(rt) = r′t′ in I3
0 = I. This means that all events of r can be added to Ō1

since they are all valid and their causes are also valid (see also Condition (*)).
Finally t can be added to Ō1 as a valid transition. This implies that t is contained
in Ô1. If instead θ1(t) is undefined then we can show that it can be added to Ō1

24

using the same argument as above. Furthermore it is trivially valid and hence
again contained in Ô1.

The case of Ô2 can be shown analogously. ut

7 Partial Order Representation for Interleaving

Structures

In order to obtain efficient data structures for storing interleaving structures, we
represent an interleaving structure I (over events of a fixed occurrence net O) as
an occurrence net morphism γ:P → O, total but not necessarily injective, such
that I results as the projection of Ilv(P) along γ.

Recall that the distributed algorithm constructs the occurrence nets Ō0, Ō1,
Ō2 with morphism ξi : Ōi → Ō0 (i ∈ {1, 2}). The interface manager needs
to store the interleaving structures arising as the projection of Ilv(Ōi) (for i ∈
{1, 2}) over Ō0, and to operate on them. As suggested above, these interleaving
structures are represented as morphisms γi : Pi → Ō0, where the Pi are suitable
occurrence nets.

We remark that the occurrence nets Pi and the morphisms γi can be con-
structed incrementally, without ever generating the represented interleaving struc-
tures. In fact, all the operations needed for the algorithm can be performed
directly on this representation:

– Adding a transition ti to Ōi.
Assume, for instance, that a transition t1 is added to the net Ō1. If ξ1(t1) ↑
then γ1 : P1 → O1 stays unchanged.
If instead, ξ1(t1) = t0, for some t0 in Ō0, then we insert t1 into P1, but
we also have to reconstruct the missing conflicts and causalities by using
additional places. More specifically:

• Causality : Take any place s1 ∈ •t1 on which ξ1 is undefined. Then in Ō1

go backward in the causality chains that lead to s1, until a transition t′1
in the domain of ξ1 is reached in each chain. If T ′

1 is the set of all such
transitions, add places to P1 establishing a causal dependency between
each maximal transition in T ′

1 and t1.
• Conflict : Take any place s1 ∈ •t1 on which ξ1 is undefined. Then in Ō1

go backward in all causality chains that lead to s1, until a transition
in the domain of ξ1 is reached in each chain. For any direct conflict
with a transition t′1 found in this way, follow its causal descendants until
a transition in the domain of ξ1 is reached. If T ′

1 is the set of all such
transitions, add places to P1 establishing a conflict between each minimal
transition in T ′

1 and t1.
For instance, assume that the net Ō1 to which we are adding transition t1
has the shape depicted below and assume that morphism ξ1 is undefined
on items marked by ∗. Then we must add to P1 places which induce the
direct conflicts t1#t′1 and t1#t′′1 .

25

∗ ∗ ∗

t′
1

t′′
1

t1

∗

∗

∗

∗

– Intersection
The intersection of the set of runs of two interleaving structures represented
by γi:Pi → O for i ∈ {1, 2} can be computed by constructing the pullback
of these morphisms in ON.

– Existence of a run.
Given γi:Pi → Ō0, a morphism ξj : Ōj → Ō0 and a set of places X in Ōj , we
want to check whether there exists a run r of Ōj that contains all causes of
X and none of its consequences with ξj(r) ∈ Rγi(Ilv(Pi)) (see Condition (*)
in Algorithm 1).
To this aim, add a dummy transition t′ with •t′ = X to Ōj and set ξj(t

′) ↑.
Then take the pullback of (the new) ξj and γi and check whether the pullback
net contains a transition that is mapped to t′.
Similarly this procedure can be used to check the validity of transitions.

We remark that that—although not detailed in this paper—the pullback of
two occurrence net morphisms can be computed in an efficient and straightfor-
ward way.

8 Conclusion

We have presented a distributed algorithm for Petri net unfoldings based on
pullback decompositions, whose use allows to factor the global unfolding into lo-
cal views. In fact, computation of the—potentially large—global unfolding of a
distributed system is avoided; local supervisors develop their local views, guided
by message exchange with their peers through interface unfoldings. For the data
structures used in this communication, event structures would appear as a natu-
ral choice, but for all considered branches of event structures (e.g., prime, bundle,
stable, general event structures) important properties concerning factorisations
and projections were lacking. This difficulty has been overcome by introducing
the category of interleaving structures, which has been shown to enjoy the needed
properties. The investigation of partially ordered models and related categories
for the correlation of local views is a theme for future investigation.

We gave a distributed unfolding algorithm in the case of two peers interact-
ing through an interface. This calls for a generalisation to an arbitrary number

26

of peers and unfolders. If all components share the same interface, this gener-
alisation is straightforward: we only have to replace pullbacks by so-called wide
pullbacks of diagrams with several arrows, having a common target object. The
case where, for instance, the system consists of three components, and the in-
terface between component 1 and component 2 is different from the interface
between component 1 and component 3 is not straightforward and represents a
matter of future investigation.

The task we addressed is closely related to that of [3, 8], so the differences de-
serve to be pointed out. A first one resides in the notion of system factorisation:
[3, 8] use a composition operation between Petri nets based on place fusion, so
transition occurrences have to be communicated between components and a so-
phisticated label coding is used to determine the local effect of a transition. Our
approach essentially relies on a composition operation along an explicit interface,
formalised as a pullback in a suitable category of nets; in the pullback decompo-
sition, transitions acting on shared places are necessarily shared themselves. This
contributed to making the algorithm simpler and easier to understand. More-
over, moving from the (computationally hard) products of event structures used
in [3, 8] to the pullback of interleaving structures (possibly computed through
their partial order net representation) can lead to a gain in efficiency for the
algorithm.

More generally, the fact that our approach is developed in a categorical set-
ting suggests a way for adapting it to different computational models, e.g., vari-
ations of Petri nets or more expressive models, like graph transformation sys-
tems [17]. This will only require to verify that the needed properties are satisfied
by the category of models at hand.

An approach to distributed unfoldings that uses so-called augmented pro-
cesses is developed in [6, 7]. The main difference resides in the fact that the
projection distinguishes more instances of events. In order to clarify this fact,
assume that t is a transition of N0 and thus also of N1. Suppose t has pre-places
in S1 − S0; then in general, for a given occurrence of t seen by N0, say e0, there
are several occurrences e1 of the same transition seen by N1. These differ for
having different histories in N1, which project to the same history in N0. In
an augmented process such situations are reflected in the projection by keeping
different instances of e0 where the events in N1 can project. Progressive fusion
in that approach leads to a hierarchy of process types, studied in detail in [6, 7],
which have greater width w.r.t. conflict than the resulting local unfolding.

Finally, distributed unfolding is orthogonal to the parallelisation of Petri net
unfoldings in [10]: that work parallelizes the computation of the global unfolding
to gain efficiency, while we strive to avoid that computation altogether.

Acknowledgements. We are grateful to Andrea Corradini and Eric Fabre for
fruitful discussions on preliminary versions of this work.

27

References

1. J. Adamek, H. Herrlich, and G.E. Strecker. Abstract and Concrete Categories -
The Joy of Cats. Wiley, 1990.

2. A. Benveniste, E. Fabre, Claude Jard, and S. Haar. Diagnosis of asynchronous
discrete event systems, a net unfolding approach. IEEE Trans. on Automatic
Control, 48(5):714–727, 2003.

3. A. Benveniste, S. Haar, E. Fabre, and C. Jard. Distributed monitoring of concur-
rent and asynchronous systems. In Proc. of CONCUR’03, volume 2761 of LNCS,
pages 1–26. Springer, 2003.

4. R. Boel and J. van Schuppen. Decentralized failure diagnosis for discrete event
systems with costly communication between diagnosers. In Proc. 6th Int. Workshop
on Discrete event Systems (WODES), pages 175–181, 2002.

5. C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer
Academic, 1999.

6. E. Fabre. Factorization of unfoldings for distributed tile systems, part 1: Reduced
interaction case. Technical Report 4829, INRIA, May 2003.

7. E. Fabre. Factorization of unfoldings for distributed tile systems, part 2: General
case. Technical Report 5186, INRIA, May 2004.

8. E. Fabre, A. Benveniste, S. Haar, and C. Jard. Distributed monitoring of con-
current and asynchronous systems. Discrete Event Dynamic Systems: theory and
application, 15(1):33–84, 2005.

9. S. Genc and S. Lafortune. Distributed Diagnosis of discrete-event systems using
Petri net unfoldings. In W.M.P. van der Aalst and E. Best, editors, Proc. of
ICATPN 2003, volume 2679 of LNCS, pages 316–336. Springer, 2003.

10. K. Heljanko, V. Khomenko, and M. Koutny. Parallelisation of the petri net un-
folding algorithm. In Proc. of TACAS’02, volume 2280 of LNCS, pages 371–385.
Springer, 2002.

11. S. Mac Lane. Categories for the working mathematician. Springer, 1971.
12. J. Meseguer, U. Montanari, and V. Sassone. Process versus unfolding semantics

for Place/Transition Petri nets. Theoret. Comp. Sci., 153(1-2):171–210, 1996.
13. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,

Part 1. Theoret. Comp. Sci., 13:85–108, 1981.
14. W. Reisig. Petri Nets. An Introduction. Number 4 in EATCS Monographs on

Theoretical Computer Science. Springer Verlag, 1982.
15. S. L. Ricker and J. van Schuppen. Decentralized failure diagnosis with asyn-

chronous communication between diagnosers,. In Proc. of the European Control
Conference, 2001.

16. S.L. Ricker and K. Rudie. Distributed knowledge for communication in decen-
tralized discrete-event systems. In Proc. of the IEEE Conference on Decision and
Control (CDC), 2001.

17. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol.1: Foundations, volume 1. World Scientific, 1997.

18. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis.
Diagnosability of discrete-event systems. IEEE Trans. on Automatic Control,
40(9):1555–1575, 1995.

19. G. Winskel. Event structures. In Petri Nets: Applications and Relationships to
Other Models of Concurrency, volume 255 of LNCS, pages 325–392. Springer, 1987.

28

