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Abstract. We investigate the relationship between regular languages
and syntactic monoid size. In particular, we consider the transformation
monoids of n-state (minimal) deterministic finite automata. We show
tight upper bounds on the syntactic monoid size, proving that an n-
state deterministic finite automaton with singleton input alphabet (in-
put alphabet with at least three letters, respectively) induces a linear
(nn, respectively) size syntactic monoid. In the case of two letter input
alphabet, we can show a lower bound of n
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, for the size of the syntactic monoid of

a language accepted by an n-state deterministic finite automaton. This
induces a family of deterministic finite automata such that the fraction
of the size of the induced syntactic monoid and n

n tends to 1 as n goes
to infinity.

1 Introduction

Regular languages and their implementations have received more and more at-
tention in recent years due to the many new applications of finite automata and
regular expressions in object-oriented modeling, programming languages and
other practical areas of computer science. In recent years, quite a few software
systems for manipulating formal language objects, with an emphasis on regular-
language objects, have been developed. Examples include AMoRE, Automata,
FIRE Engine, FSA, Grail, and INTEX [1, 10]. These applications and imple-
mentations of regular languages motivate the study of descriptive complexity of
regular languages. A very well accepted and studied measure of descriptional
complexity for regular languages is the size, i.e., number of states, of determin-
istic finite automata.

Besides machine oriented characterization of regular languages, they also
obey several algebraic characterizations. It is a consequence of Kleene’s theo-
rem [3], that a language L ⊆ Σ∗ is regular if and only if there exists a finite
monoid M , a morphism ϕ : Σ∗ → M , and a finite subset N ⊆ M such that
L = ϕ−1(N). The monoid M is said to recognize L. The syntactic monoid
of L is the smallest monoid recognizing the language under consideration. It
is uniquely defined up to isomorphism and is induced by the syntactic congru-
ence ∼L defined over Σ∗ by v1 ∼L v2 if and only if for every u,w ∈ Σ∗ we have



uv1w ∈ L ⇐⇒ uv2w ∈ L. The syntactic monoid of L is the quotient monoid
M(L) = Σ∗/ ∼L. In this paper we propose the size of the syntactic monoid as
a natural measure of descriptive complexity for regular languages and study the
relationship between automata and monoid size in more detail.

In most cases, we show tight upper bounds on the syntactic monoid, prov-
ing that there are languages accepted by n-state deterministic finite automata
whose syntactic monoid has a certain size. It is easy to see that for unary reg-
ular languages the size is linear, while that for regular languages over an input
alphabet with at least three letters is maximal, i.e., nn. The challenging part
is to determine the size of the syntactic monoid for regular languages over a
binary alphabet. The trivial lower and upper bounds are n!—induced by the
two generators of Sn—and nn −n!+ g(n), respectively, where g(n) denotes Lan-
dau’s function [4–6], which equals the maximal order of all permutations in Sn.
Compared to the trivial lower bound, where limn→∞
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better, since we present binary regular languages whose syntactic monoid is at
least nn −
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the fraction of this number (for appropriate k and `) and nn tends to 1 as n goes
to infinity.

The paper is organized as follows. In the next section we introduce the nec-
essary notations. Then in Section 3 we prove the easy cases on syntactic monoid
size and devote Section 4 to the study of binary regular languages. Finally, we
summarize our results and state some open problems.

2 Definitions

We assume the reader to be familiar with the basic notions of formal language
theory and semigroup theory, as contained in [2] and [8]. In this paper we are
dealing with regular languages and their syntactic monoid. A semigroup is a non-
empty set S equipped with an associative binary operation, i.e., (αβ)γ = α(βγ)
for all α, β, γ ∈ S. The semigroup S is called a monoid if it contains an identity
element id. If E is a set, then we denote by T (E) the monoid of functions from E
into E together with the composition of functions. We read composition from
left to right, i.e., first α, then β. Because of this convention, it is natural to
write the argument i of a function to the left: (i)αβ = ((i)α)β. The image of a
function α in T (E) is defined as img(α) = { (i)α | i ∈ E } and the kernel of α is
the equivalence relation ≡, which is induced by i ≡ j if and only if (i)α = (j)α.
In particular, if E = {1, . . . , n}, we simply write Tn for the monoid T (E). The
monoid of all permutations over n elements is denoted by Sn and trivially is a
sub-monoid of Tn.

A deterministic finite automaton is a 5-tuple A = (Q,Σ, δ, q0, F ), where Q is
the finite set of states, Σ is a finite alphabet, δ : Q×Σ → Q denotes the transition
function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. Observe,
that a deterministic finite automaton is complete by definition. As usual, δ is
extended to act on Q×Σ∗ by δ(q, λ) = q and δ(q, aw) = δ(δ(q, a), w) for q ∈ Q,
a ∈ Σ, and w ∈ Σ∗, where λ denotes the empty word of length zero. Unless



otherwise stated, we assume that Q = {1, . . . , n} for some n ∈ N. The language
accepted by the deterministic finite automaton A is defined as

L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F }.

The family of regular languages is the set of all languages which are accepted by
some deterministic finite automaton.

In order to compute the syntactic monoid of a language it is convenient
to consider the transition monoid induced by a finite automaton. Let A =
(Q,Σ, δ, q0, F ) be a deterministic finite automaton. Naturally, each word w ∈ Σ∗

defines a function from Q into Q. The monoid generated by all these functions
thus defined, where w varies over Σ∗, is a sub-monoid of T (Q); it is the tran-
sition monoid M(A) of the automaton A. Clearly, M(A) is generated by the
functions defined by the letters of the alphabet and we have a canonical mor-
phism Σ∗ → M(A). The intrinsic relationship between the transition monoid
M(A) and the syntactic monoid of the language L(A) is as follows: The transi-
tion monoid of the minimal deterministic finite automata is isomorphic to M(L).
This allows the computation of M(L) in a convenient way.

3 Syntactic Semigroup Size—The Easy Cases

We start our investigation on syntactic monoid size with two easy cases, which
mostly follow from results from the literature. We state these results for com-
pleteness only. Firstly, we consider unary regular languages, where we can profit
from the following result on monogenic (sub)semigroups, which can be found
in [2].

Theorem 1. Let α be an element of a semigroup S. Then either all powers
of α are distinct and the monogenic sub-semigroup 〈α〉 := {αi | i ≥ 1 } of S
is isomorphic to the semigroup (N, + ) of the natural numbers under addition,
or there exists positive integers m and r such that αm = αm+r and 〈α〉 =
{α, α2, . . . , αm+r−1}. Here m is called the index and r the period of α.

Then we can estimate the syntactic monoid size of regular languages over a
unary input alphabet as follows:

Theorem 2. Let A be an n-state deterministic finite automaton with a unary
input alphabet. Then a monoid of size n is sufficient and necessary in the worst
case to recognize the language L(A).

Proof. Observe, that the transition graph of a deterministic finite automaton A
with unary input alphabet consists of a path, which starts from the initial state,
followed by a cycle of one or more states. Assume that m is the number of states
of the path starting from the initial state, and r the number of states in the
cycle. Then n = m + r and A, by appropriately numbering the states, induces
the mapping

α =

(
1 2 . . . m m + 1 . . . m + r − 1 m + r
2 3 . . . m + 1 m + 2 . . . m + r m + 1

)



of the semigroup Tn. It is a routine matter to verify that α has index m and
period r. Hence by Theorem 1 the semigroup generated by α equals the n − 1
element set {α, α2, . . . , αm+r−1}. This shows the upper bound n on the monoid
size, since the neutral element has to be taken into consideration, too. On the
other hand, if A was chosen to be a minimal deterministic finite automaton
then the induced transformation monoid equals {id} ∪ {α, α2, . . . , αm+r−1} by
our previous investigation. Therefore, n is also a lower bound for the maximal
syntactic monoid size. ut

In the remainder of this section we consider regular languages over an input
alphabet with at least three letters. Obviously, for all n, the elements

α =

(
1 2 . . . n − 1 n
2 3 . . . n 1

)

, β =

(
1 2 3 . . . n
2 1 3 . . . n

)

, and γ =

(
1 2 . . . n − 1 n
1 2 . . . n − 1 1

)

of Tn form a complete basis of Tn, i.e., they generate all of the monoid Tn. In
particular, if n = 2 we find that α = β, and thus two elements suffice for the
generation of T2, while for n = 1 trivially one element is enough to generate all
of T1—here α = β = γ holds. Thus we have shown the following theorem:

Theorem 3. Let A be an n-state deterministic finite automaton with input al-
phabet Σ. Then a monoid of size nn is sufficient and necessary in the worst case
to recognize the language L(A) if either (i) n = 1, or (ii) n = 2 and |Σ| ≥ 2, or
(iii) n ≥ 3 and |Σ| ≥ 3.

Proof. The upper bound nn is trivial. From the above given generators α, β,
and γ we define the deterministic finite automata A = ({Q, {a, b, c}, δ, 1, F ),
where Q = {1, . . . , n}, F = {n} and δ(i, a) = (i)α, δ(i, b) = (i)β, and δ(i, c) =
(i)γ. It remains to prove that A is minimal. In order to show this, it is suffi-
cient to verify that all states of A are reachable and lie in different equivalence
classes. The reachability claim is easy to see, since for every state i ∈ Q we have
δ(1, ai−1) = i and the latter claim follows since for i, j ∈ Q with i < j we find
δ(i, an−j) = i+(n− j) 6∈ F , since i+(n− j) < n, and δ(j, an−j) = n ∈ F . Thus,
i and j are not in the same equivalence class. ut

The question arises, whether the above given theorem can be improved with
respect to the alphabet size. By easy calculations one observes, that for n = 2
this is not the case, since a unary language will only induce a syntactic monoid
of size 2, due to Theorem 2. For n ≥ 3 the following completeness theorem for
unary functions given in [9], shows that an improvement is also not possible.
The completeness result reads as follows.

Theorem 4. Assume n ≥ 3. Then three elements of Tn generate all functions
of Tn if and only if two of them generate the symmetric group Sn and the third
has kernel size n−1. Moreover, no less than three elements generate all functions
from Tn.

Thus, it remains to classify the syntactic monoid size of binary languages in
general, which is done in the remaining part of the paper.



4 Syntactic Semigroup Size—A More Complicated Case

In this section we consider binary languages and the size of their syntactic monoid
in more detail. Compared to the previous section here we are only able to prove
a trivial upper and a non-matching lower bound on the syntactic monoid size
for languages accepted by n-state deterministic finite automata.

The outline of this section is as follows: First we define a subset of Tn by
some easy properties, verify that it is a semigroup and that it is generated by
two generators only. Then, we argue that there is a minimal deterministic finite
automaton, the transition monoid of which equals the defined semigroup and
finally, we determine a lower bound of the semigroup size. The advantage of the
explicit definition of the semigroup is that we don’t have to go into some tedious
analysis of the Green’s relations if the semigroup would be given by generators
only. The subset of Tn we are interested in, is defined as follows:

Definition 1. Let n ≥ 2 such that n = k + ` for some natural numbers k and `.
Furthermore, let α = (1 2 . . . k)(k+1 k+2 . . . n) be a permutation of Sn consist-
ing of two cycles. We define Uk,` as a subset of Tn as follows: A transformation γ
is an element of Uk,` if and only if

1. there exists a natural number m ∈ N such that γ = αm or
2. the transformation γ satisfies that

(a) there exist i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , n} such that (i)γ = (j)γ
and

(b) there exists h ∈ {k + 1, . . . , n} such that h 6∈ img(γ).

The intuition behind choosing this specific semigroup Uk,` is the following:
We intend to generate it with two transformations, one being the permutation α,
the other a non-bijective transformation β. Since β is non-bijective there are at
least two indices i, j such that (i)β = (j)β. By applying a multiple of α before
applying β the number of index pairs which may be mapped to the same image
can be increased. If the permutation is one cycle of the form (1 2 . . . n) the
number of pairs is only n, whereas in the case of the α above which consists of
two cycles whose lengths do not have a non-trivial common divisor, there are k`
possible pairs to choose from. And if k and ` are chosen close to n

2 , then k` > n.
Next we have to show that Uk,` is indeed a semigroup.

Lemma 1. The set Uk,` is closed under composition and is therefore a (trans-
formation) semigroup.

Proof. Let γ1, γ2 ∈ Uk,` be two transformations. We show that γ1γ2 is also an
element of Uk,`. We have to distinguish the following four cases:

1. The transformation γ1 is of the form αm1 and the transformation γ2 is of the
form αm2 for some m1,m2 ≥ 1. Then clearly γ1γ2 = αm1+m2 is an element
of Uk,`.



2. Let γ1 = αm, for some m ≥ 1, and γ2 satisfies the second condition of
Definition 1, i.e., there are indices i ∈ {1, . . . , k} and h, j ∈ {k +1, . . . , k + `}
such that (i)γ2 = (j)γ2 and h 6∈ img(γ2).
The element h also fails to be a member of img(γ1γ2). Furthermore, because
of the nature of α it holds that i′ = (i)γ−1

1 ∈ {1, . . . , k} and j′ = (j)γ−1
1 ∈

{k + 1, . . . , k + `}. And it holds that (i′)γ1γ2 = (i)γ2 = (j)γ2 = (j′)γ1γ2.
Therefore γ1γ2 satisfies also the second condition of Definition 1.

3. Assume that γ2 = αm, for some m ≥ 1, and γ1 satisfies the second condition
of Definition 1, i.e., there are indices i ∈ {1, . . . , k} and h, j ∈ {k+1, . . . , k+`}
such that (i)γ1 = (j)γ1 and h 6∈ img(γ1).
It obviously holds that (i)γ1γ2 = (j)γ1γ2. And since γ2 = αm and the
permutation α maps elements of its second cycle only to other elements
of the second cycle, it holds that h′ = (h)γ2 6∈ img(γ1γ2), since otherwise
h = (h′)γ−1

2 would be in the image of γ1 which is a contradiction.
4. Finally, let γ1 and γ2 both satisfy the second condition of Definition 1. Then

there are indices i1, i2,∈ {1, . . . , k} and h1, h2, j1, j2 ∈ {k+1, . . . , k+`} such
that (ir)γr = (jr)γr and hr 6∈ img(γr) for 1 ≤ r ≤ 2.
By setting i = i1, j = j1, and h = h2, it is easy to see that γ1γ2 satisfies also
the second part of Definition 1. ut

Before we can prove that Uk,` is generated by two elements of Tk+` we need
some result, which constitutes how to find a complete basis for the symmetric
group Sn. The below given result was shown in [7].

Theorem 5. Given a non-identical element α in Sn, then there exists β such
both generate the symmetric group Sn, provided that it is not the case that n = 4
and α is one of the three permutations (1 2)(3 4), (1 3)(2 4), and (1 4)(2 3).

Now we are ready for the proof that two elements are enough to generate all
of Uk,`, provided that k and ` obey some nice properties.

Theorem 6. Let k, ` ∈ N be two natural numbers with k < ` and gcd{k, `} = 1,
and set n = k+ `. The semigroup Uk,` can be generated with two elements of Tn,
where one element is the permutation α = (1 2 . . . k)(k + 1 k + 2 . . . n) and the
other is an element β of kernel size n − 1.

Proof. The first generator of Uk,` is the permutation α of Definition 1. Now set
π1 = (1 2 . . . k), which will be considered as a permutation in Sn−1. Since π1 is
not the identity and not an element of the listed exceptions, then according to
Theorem 5, there exists a permutation π2 such that π1 and π2 generate Sn−1.
Now define the second generator β of Uk,` as follows: Let (i)β = (i)π2 whenever
1 ≤ i ≤ n − 1 and (n)β = (1)π2. Hence β has kernel size (k + `) − 1 = n − 1.

We will first show that α and β generate at most the transformations specified
in Definition 1. Let γ therefore be an element generated by α and β. If no β
was used in the generation of γ, then γ = αm, for some natural number m.
Otherwise γ = αmβγ′ for some natural number m (possibly m = 0) and some
transformation γ′. By definition (1)β = (n)β. We set i = (1)α−m and j =



(n)α−m. Since the element 1 is located in the first cycle of α and the element n
is located in the second cycle of α it follows that i ∈ {1, . . . , k} and j ∈ {k +
1, . . . , n}. Furthermore, (i)γ = (i)αmβγ′ = (1)βγ′ = (n)βγ′ = (j)αmβγ = (j)γ.
On the other hand γ can be written as γ = γ ′′βαr, for some r ≥ 0. Since n is
not in the image of β, the same is true for the image of γ ′′β. This implies that
h = (n)αr is not in the image of γ and since n is an element of the second cycle
of α, this implies h ∈ {k + 1, . . . , n}.

Conversely, we show that α and β generate at least the transformations
specified in Definition 1. Clearly transformations of the form γ = αm, for some
m ≥ 1, can be generated easily. Now let γ be a transformation such that (i)γ =
(j)γ and h 6∈ img(γ) for i ∈ {1, . . . , k} and h, j ∈ {k+1, . . . , n}. Since k and ` do
not have a common divisor, the cycles of α can be “turned” independently and
therefore there exists a natural number r ∈ {1, . . . , k`} such that (i)αr = 1 and
(j)αr = n. And there exists a number p such that αp = (1 2 . . . k). Furthermore
there exists a number s such that (n)αs = h.

We are now looking for a transformation γ ′ such that γ = αrβγ′αs and γ′ can
be generated from α and β. This condition can be rewritten to γα−s = αrβγ′.
Both transformation γα−s and αrβ do not have the element n in their image.
So it suffices to show that for every transformation δ on {1, . . . , n − 1} we can
generate a transformation γ′ on {1, . . . , n} such that γ′|{1,...,n−1} = δ. Observe,
that the transformations αp and β (see the definition of β) act as permutations
on the set {1, . . . , n−1} and their restrictions to this set are generators of Sn−1.

We can also generate the transformation η that maps (1)η = (2)η = 1 and is
the identity on {3, . . . , n−1}. This can be done by first creating a transformation
with the same kernel as η. The kernel of β partitions the set {1, . . . , n} into
{{1, n}, {2}, . . . , {n − 1}}. We can now construct a transformation σ that acts
as a permutation on {1, . . . , n − 1} and that maps (2)β 7→ n − 1 and (1)β 7→
k. Therefore the transformation βσα maps 2 to n, and 1 to itself, and has
the same kernel as β. Consequently the transformation βσαβ has the kernel
{{1, 2, n}, {3}, . . . , {n − 1}} and all its images are contained in {1, . . . , n − 1}.
Therefore there exists a permutation σ′ that acts on {1, . . . , n−1} and for which
βσαβσ′ = η. Since this gives us three generators for Tn−1, it is clear that with
these three transformations αp, β, and η we can construct a transformation γ ′

such that γ′|{1,...,n−1} = δ for every transformation δ ∈ Sn−1. ut

Before we continue our investigations estimating the size of Uk,`, we show
that Uk,` is in fact a syntactic monoid of a regular language accepted by some
n-state deterministic finite automaton.

Theorem 7. Let k, ` ∈ N be two natural numbers with k < ` and gcd{k, `} = 1,
and set n = k+ `. Then there is an n-state minimal deterministic finite automa-
ton A with binary input alphabet the transition monoid of which equals Uk,`.
Hence, Uk,` is the syntactic monoid of L(A).

Proof. By Theorem 6 the semigroup Uk,` is generated the permutation α =
(1 2 . . . k)(k + 1 k + 2 . . . n) and by an element β of kernel size n− 1. Define the
deterministic finite automaton A = (Q, {a, b}, δ, 1, F ), where Q = {1, . . . , n},



F = {k, n}, and δ(i, a) = (i)α and δ(i, b) = (i)β for all i ∈ Q. In order to show
that Uk,` is the syntactic monoid of L(A) we have to prove that all states are
reachable and belong to different equivalence classes. For reachability we argue
as follows: Obviously, the transition monoid of A equals Uk,` by construction.
Thus, all states are reachable since Uk,` contains all constant functions. For the
second claim we distinguish three cases:

1. Let i, j ∈ {1, . . . , k} with i < j. Then δ(i, ak−j) 6∈ F and δ(j, ak−j) = k ∈ F .
Thus, states i and j are inequivalent.

2. Let i, j ∈ {k + 1, . . . , n} with i < j. Then a similar argumentation as above
shows that both states are not equivalent.

3. Finally, let i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , n}. Here we can not exclude
that k − i = n − j. Nevertheless, since gcd{k, `} = 1 it follows in that case
that δ(i, ak−iak) = k and k ∈ F , while δ(j, ak−iak) 6∈ F . This implies that
both states are inequivalent, too.

This completes our proof and shows that A is a minimal deterministic finite
automaton. Hence, A’s transition monoid equals the syntactic monoid of L(A).

ut

In order to determine the size of Uk,` the following lemma, relating size and
number of colourings of a particular graph, is very useful in the sequel.

Lemma 2. Let n = k + ` for some naturals numbers k and ` satisfying k < `
and gcd{k, `} = 1. Denote the complete bipartite graph with two independent
sets C and D having k and ` nodes, respectively, by Kk,`. Then

|Uk,`| = k` + N,

where N is the number of invalid colourings of Kk,` with colours from {1, . . . , n},
such that at least one colour from the set {k + 1, . . . , n} is missing.

Proof. We assume, without loss of generality, that V = {1, . . . , n} is the set of
nodes of Kk,` and that C = {1, . . . , k} and D = {k+1, . . . , n}. Thus every (valid
or invalid) colouring of Kk,` can be considered as a transformation of Tn and vice
versa. It is rather straightforward to see that the transformations of Uk,` satis-
fying the second part of Definition 1 coincide exactly with the invalid colourings
of Kk,`, where at least one colour from the set {k + 1, . . . , n} is missing. ut

Now we are ready to estimate the size of Uk,` and prove some asymptotics
for particular values of k and `.

Theorem 8. Assume n ≥ 3. Let n = k + ` for some natural numbers k and `
obeying k < ` and gcd{k, `} = 1. Then

|Uk,`| ≥ nn −
(

n

`

)

`!nk −
(

n

`

)

kk``.



Moreover, for every n there exists k(n) and `(n) satisfying the above properties
and `(n) − k(n) ≤ 4, such that

lim
n→∞

|Uk(n),`(n)|
nn

= 1.

Proof. By our previous investigation on the relationship between the size of Uk,`

and the number of (in)valid colourings of the complete bipartite graph Kk,` we
have

Uk,` ⊇ Tn − { γ ∈ Tn | {k + 1, . . . , n} ⊆ img(γ) }
︸ ︷︷ ︸

A

−{ γ ∈ Tn | γ is a valid colouring of the graph Kk,` }
︸ ︷︷ ︸

B

.

This is also due to the fact that every permutation is a valid colouring of Kk,`.
Thus, in order to determine |Uk,`| it is sufficient to estimate the size of A

and B. We over-estimate both sets in the forthcoming. Let

A′ = { (γ, a1, . . . , a`) | γ ∈ A and γ(ai) = k + i, for 1 ≤ ai ≤ n }.

It is easy to see that that |A| ≤ |A′| and furthermore |A′| =
(
n
`

)
`!nk = n`nk

where n` = n(n − 1) · · · (n − ` + 1) denotes the falling factorial. We first choose
the values of the ai, then assign a different element of {k + 1, . . . , k + `} to
each of them and finally assign an arbitrary element to each of the remaining k
pre-images. For B we argue as follows: Let

B′ = { (γ,X, Y ) | γ ∈ B, X ] Y = {1, . . . , n}, |X| = k, |Y | = `,

({1, . . . , k})γ ⊆ X, and ({k + 1, . . . , n})γ ⊆ Y }.

One observes, that |B| ≤ |B′| and furthermore |B′| =
(
n
`

)
kk``, since we first

choose the elements of Y (which gives us automatically the elements of X), then
we assign a colour from X to the nodes in {1, . . . , k}, and afterwards we assign
a colour from Y to the nodes in {k + 1, . . . , k + `}. This shows that

|Uk,`| ≥ nn −
(

n

`

)

`!nk −
(

n

`

)

kk``.

For the asymptotic result, we first show the following claim: Assume n ≥ 3.
Then there exists k, ` ∈ N such that n = k + `, ` − k ≤ 4, and gcd{k, `} = 1.

We argue as follows: Whenever n = 2m + 1 then set k = m and ` = m + 1.
If n is even, we have to distinguish the following two cases: Either n = 4m, then
we can set k = 2m − 1 and ` = 2m + 1, both can not be divided by 2 and since
`− k = 2 there is no other candidate for a common divisor. If n = 4m + 2, then
we can set k = 2m − 1 and ` = 2m + 3. Since ` − k = 4, the only candidates
for common divisors are 2 and 4, but clearly k and ` are not divisible by any of
them. This proves the existence of some k and `, which are close to n

2 .



Then the asymptotic result is seen by using Stirling’s approximation for the

factorials, proving that both |A|
nn

and |B|
nn

converge to 0 whenever n goes to infinity.
Let A′ and B′ be the sets defined above. We obtain

|A|
nn

≤ |A′|
nn

=
n`nk

nn
=

n!

`!nn−k
=

1

nn−k
·
√

2πn
(

n
e

)n
(1 + Θ( 1

n
))

√
2π`

(
`
e

)`
(1 + Θ( 1

`
))

=

√
n

`

(n

e

)k 1

``

1 + Θ( 1
n
)

1 + Θ( 1
`
)

Since both k and ` are close to n
2 as shown above, we can infer that the last

factor converges to 1 whenever n goes to infinity. Furthermore, since k ≤ n
2 ≤ `,

it follows that
√

n

`

(n

e

)k 1

``
≤

√
2

(n

e

)n

2 1
(

n
2

)n

2

≤
√

2

(
2

e

)n

2

.

Thus, the last term obviously converges to 0 whenever n goes to infinity. For the
fraction of |B| and nn we do similar. We find

|B|
nn

≤ |B′|
nn

=
1

nn

n!

k!`!
kk``

=
1

nn

√
2πn

(
n
e

)n

√
2πk

(
k
e

)k √
2π`

(
`
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kk``

1 + Θ( 1
n
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(1 + Θ( 1
k
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`
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=
1√
2π

√
n

k`

1 + Θ( 1
n
)

(1 + Θ( 1
k
))(1 + Θ( 1

`
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Again the last factor converges to 1. Now it holds that

√
n

k`
=

√
n

kn − k2
=

1
√

k − k2

n

3n

8
≤k≤n

2≤ 1
√

3n
8 − n

4

=

√

8

n
,

where 3n
8 ≤ k ≤ n

2 follows for large enough n, since k and n
2 differ only by a

constant. And the last term converges to 0 whenever n goes to infinity. This
proves the second statement of our result. ut

Now we come to the main result of this section. Recall that g(n) denotes
Landau’s function [4–6], which gives the size of the maximal subgroup of Sn

which can be generated by one generator.

Theorem 9. Assume n ≥ 3 and let A be a n-state deterministic finite automata.
Then a monoid of size nn−n!+g(n) is sufficient to recognize the language L(A)
and a monoid of size

nn −
(

n

`

)

`!nk −
(

n

`

)

kk``,

where n = k + `, `−k ≤ 4, and gcd{k, `} = 1 for some natural numbers k and `,
is necessary in the worst case.



Proof. The upper bound nn − n! + g(n) is immediate, since we assume that
only one of the two generators is a permutation and the lower bound follows by
Theorems 7 and 8. ut

Moreover, we obtain the following corollary, which we state without proof:

Corollary 1. There is a sequence L1, L2, . . . of binary regular languages such
that

lim
n→∞

|M(Li)|
nn

= 1,

and each Li is accepted by a minimal deterministic finite automaton with ex-
actly n states. ut

5 Conclusions

We have studied the relationship between the size of a deterministic finite au-
tomaton A and the size of the syntactic monoid, which is necessary to recognize
the language L(A).

n |Sn| = n! |Uk,`| max (n) nn − n! + g(n) |Tn| = nn

k `

3 6 1 2 13 24 24 27
4 24 1 3 133 176 236 256
5 120 2 3 1857 2110 3011 3125

1 4 1753
6 720 1 5 27311 32262 (?) 45942 46656
7 5040 3 4 607285 610871 (?) 818515 823543

2 5 610871
1 6 492637

8 40320 3 5 13492007 13492007 (?) 16736911 16777216
1 7 10153599

9 362880 4 5 323534045 323534045 (?) 387057629 387420489
2 7 306605039
1 8 236102993

10 3628800 3 7 8678434171 8678434171 (?) 9996371230 10000000000
1 9 6122529199

11 39916800 5 6 256163207631 258206892349 (?) 285271753841 285311670611
4 7 258206892349
3 8 251856907425
2 9 231326367879
1 10 175275382621

Table 1. Sizes of some investigated semigroups.



In most cases, we were able to prove tight upper bounds. The only exception
are binary regular languages were we have presented a non-matching upper and
lower bound. We summarize some computed values on the size of some of the
semigroups (monoids) involved in Table 1.

There, the number max (n) denotes the size of the maximal transformation
semigroup (monoid) with two generators, which might not coincide with the size
of some Uk,`. A table entry with a question mark indicates that the precise value
is not known and thus is a conjecture. The generators for the groups with 24,
176, 2110, and 32262 elements all contain a single cycle permutation (1 2 . . . n).
However, already for n = 7, the case where one of the generators is the cycle is
beat by our semigroup Uk,`.

It remains to tighten the bound on the syntactic monoid size on two genera-
tors in future research. To understand the very nature of this question it seems
to be very important, to precisely characterize the maximal size transformation
semigroup on two generators, in a similar way as the generators for Tn and Sn

are characterized in Theorems 4 and 5. We conjecture, that for every n ≥ 7, there
exists natural numbers k and ` with n = k + ` such that the semigroup Uk,` is
maximal under all two generator transformation semigroups (monoids).
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4. E. Landau. Über die Maximalordnung der Permutationen gegebenen Grades.

Archiv der Mathematik und Physik, 3:92–103, 1903.
5. J.-L. Nicolas. Sur l’ordre maximum d’un élément dans le groupe sn des permuta-

tions. Acta Arithmetica, 14:315–332, 1968.
6. J.-L. Nicolas. Ordre maximum d’un élément du groupe de permutations et highly

composite numbers. Bulletin of the Mathematical Society France, 97:129–191, 1969.
7. S. Piccard. Sur les bases du groupe symétrique et les couples de substitutions qui

engendrent un groupe régulier. Librairie Vuibert, Paris, 1946.
8. J.-E. Pin. Varieties of formal languages. North Oxford, 1986.
9. A. Salomaa. On the composition of functions of several variables ranging over a

finite set. Annales Universitatis Turkuensis, 41, 1960. Series AI.
10. D. Wood and S. Yu, editors. Automata Implementation, Proceedings of the 2nd In-

ternational Workshop on Implementing Automata, number 1436 in LNCS, London,
Canada, September 1997. Springer.


