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Abstract. We continue our investigation on the relationship between
regular languages and syntactic monoid size. In this paper we confirm
the conjecture on two generator transformation semigroups. We show
that for every prime n ≥ 7 there exist natural numbers k and ` with
n = k + ` such that the semigroup Uk,` is maximal w.r.t. its size among
all (transformation) semigroups which can be generated with two gen-
erators. This significantly tightens the bound on the syntactic monoid
size of languages accepted by n-state deterministic finite automata with
binary input alphabet. As a by-product of our investigations we are able
to determine the maximal size among all semigroups generated by two
transformations, where one is a permutation with a single cycle and the
other is a non-bijective mapping.

1 Introduction

Finite automata are used in several applications and implementations in soft-
ware engineering, programming languages and other practical areas in computer
science. They are one of the first and most intensely investigated computational
models. Since regular languages have many representations in the world of finite
automata it is natural to investigate the succinctness of their different repre-
sentations. Recently, the size of the syntactic monoid as a natural measure of
descriptive complexity for regular languages was proposed in [3] and studied in
detail. Recall, that the syntactic monoid of a language L is the smallest monoid
recognizing the language under consideration. It is uniquely defined up to iso-
morphism and is induced by the syntactic congruence ∼L defined over Σ∗ by
v1 ∼L v2 if and only if for every u,w ∈ Σ∗ we have uv1w ∈ L ⇐⇒ uv2w ∈ L.
The syntactic monoid of L is the quotient monoid M(L) = Σ∗/ ∼L.

In particular, the size of transformation monoids of n-state (minimal) de-
terministic finite automata was investigated in [3]. In most cases tight upper
bounds on the syntactic monoid size were obtained. It was proven that an n-
state deterministic finite automaton with singleton input alphabet (input alpha-
bet with at least three letters, respectively) induces a linear (nn, respectively)
size syntactic monoid. In the case of two letter input alphabet, a lower bound of
nn−

(
n
`

)
`!nk−

(
n
`

)
kk``, for some natural numbers k and ` close to n

2 , and a trivial



non-matching upper bound of nn−n!+g(n), where g(n) denotes Landau’s func-
tion [5–7], which gives the maximal order of all permutations in Sn, for the size
of the syntactic monoid of a language accepted by an n-state deterministic finite
automaton was given. This induces a family of deterministic finite automata
such that the fraction of the size of the induced syntactic monoid and nn tends
to 1 as n goes to infinity, and is the starting point of our investigations.

In this paper we tighten the bound on the syntactic monoid size on two
generators, confirming the conjecture, that for every prime n ≥ 7 there exist
natural numbers k and ` with n = k + ` such that the semigroup Uk,` as in-
troduced in [3] is maximal w.r.t. its size among all (transformation) semigroups
which can be generated with two generators. Since Uk,`, for suitable k and ` is
a syntactic monoid, this sharpens the above given bound for syntactic monoids
induced by n-state deterministic finite automata with binary input alphabet. In
order to show that there is no larger subsemigroup of Tn with two generators,
we investigate all possible combinations of generators. In principle the following
situations for generators appear:

1. Two permutations,
2. a permutation with one cycle and a non-bijective transformation,
3. a permutation with two or more cycles and a non-bijective transformation—

the semigroup Uk,` is of this type, and
4. two non-bijective transformations.

In the forthcoming we will show that for a large enough n the maximal subsemi-
group is of type (3) and that whenever n is prime the semigroup is isomorphic
to some Uk,`. The entire argument relies on a series of lemmata covering the
above mentioned cases, where the second case plays a major role. In fact, as
a by-product we are able to determine the maximal size among all semigroups
generated by two transformations, where one transformation is a permutation
with a single cycle and the other is a non-bijective mapping. In order to achieve
our goal we use diverse techniques from algebra, analysis, and even computer
verified results for a finite number of cases.

The paper is organized as follows. In the next section we introduce the nec-
essary notations. Then in Section 3 we start our investigations with the case
where one is a permutation with a single cycle and the other is a non-bijective
mapping. Next, two permutations and two non-bijective mappings are consid-
ered. Section 5 deals with the most complicated case, where the permutation
contains two or more cycles, and Section 6 is devoted to the main result of this
paper, on the size maximality of the semigroup under consideration. Finally, we
summarize our results and state some open problems.

2 Definitions

We assume the reader to be familiar with the basic notions of formal language
theory and semigroup theory, as contained in [4] and [9]. In this paper we are
dealing with regular languages and their syntactic monoids. A semigroup is a



non-empty set S equipped with an associative binary operation, i.e., (αβ)γ =
α(βγ) for all α, β, γ ∈ S. The semigroup S is called a monoid if it contains an
identity element id. If E is a set, then we denote by T (E) the monoid of functions
from E into E together with the composition of functions. We read composition
from left to right, i.e., first α, then β. Because of this convention, it is natural to
write the argument i of a function to the left: (i)αβ = ((i)α)β. The image of a
function α in T (E) is defined as img(α) = { (i)α | i ∈ E } and the kernel of α is
the equivalence relation ≡, which is induced by i ≡ j if and only if (i)α = (j)α.
In particular, if E = {1, . . . , n}, we simply write Tn for the monoid T (E). The
monoid of all permutations over n elements is denoted by Sn and trivially is a
sub-monoid of Tn.

The semigroup we are interested in is defined below and was introduced in [3]
in order to study the relation between n-state deterministic finite automata with
binary input alphabet and the size of syntactic monoids.

Definition 1. Let n ≥ 2 such that n = k + ` for some natural numbers k
and `. Furthermore, let α = (1 2 . . . k)(k + 1 k + 2 . . . n) be a permutation of Sn

consisting of two cycles. We define the semigroup Uk,` as a subset of Tn as
follows: A transformation γ is an element of Uk,` if and only if

1. there exists a natural number m ∈ N such that γ = αm or
2. the transformation γ satisfies that

(a) there exist i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , n} such that (i)γ = (j)γ
and

(b) there exists h ∈ {k + 1, . . . , n} such that h 6∈ img(γ).

Observe, that it is always better to choose the element h which is missing in
the image of γ from the larger cycle of α since this yields a larger semigroup Uk,`.
Therefore we can safely assume that k ≤ `.

In [3] it was shown that if gcd{k, `} = 1, then the semigroup Uk,` can be
generated by two generators only. Moreover, in this case, Uk,` is the syntactic
monoid of a language accepted by an n-state deterministic finite automaton,
where n = k + `.

Finally, we need some additional notation. If A is an arbitrary non-empty
subset of a semigroup S, then the family of subsemigroups of S containing A
is non-empty, since S itself is one such semigroup; hence the intersection of the
family is a subsemigroup of S containing A. We denote it by 〈A〉. It is charac-
terized within the set of subsemigroups of S by the properties: (1) A ⊆ 〈A〉 and
(2) if U is a subsemigroup of S containing A, then 〈A〉 ⊆ U . The semigroup 〈A〉
consists of all elements of S that can be expressed as finite products of elements
in A. If 〈A〉 = S, then we say that A is a set of generators for S. If A = {α, β}
we simply write 〈A〉 as 〈α, β〉.

3 Semigroup Size—The Single Cycle Case

In this section we consider the case where one generator is a permutation contain-
ing a single cycle and the other is a non-bijective transformation. This situation



is of particular interest, since it allows us to completely characterize this case
and moreover it is very helpful in the sequel when dealing with two permutations
or two non-bijective transformations.

The outline of this section is as follows: First we define a subset of Tn by
some easy properties—as in the case of the Uk,` semigroup, verify that it is a
semigroup and that it is generated by two generators. The subset of Tn we are
interested in, is defined as follows:

Definition 2. Let n ≥ 2 and 1 ≤ d < n. Furthermore, let α = (1 2 3 . . . n) be
a permutation of Sn consisting of one cycle. We define V d

n as a subset of Tn as
follows: A transformation γ is an element of V d

n if and only if

1. there exists a natural number m ∈ N such that γ = αm or
2. there exists an i ∈ {1, . . . , n} such that (i)γ = (i +n d)γ, where +n denotes

the addition modulo n.

The intuition behind choosing this specific semigroup V d
n is the following:

Without loss of generality we can assume that α = (1 2 3 . . . n). By choosing a
non-bijective transformation β which maps two elements 1 ≤ i < j ≤ n onto the
same image one can infer that every transformation γ generated by α and β is
either a multiple of α or maps two elements of distance d := j − i to the same
value. Next we show that V d

n is indeed a semigroup and that V d
n is isomorphic

to V d′

n if gcd{n, d} = gcd{n, d′}. Therefore, it will be sufficient to consider only
divisors of n in the following. We omit the proof of the following lemma.

Lemma 1. The set V d
n is closed under composition and is therefore a (transfor-

mation) semigroup. Moreover, V d
n is isomorphic to V d′

n whenever d = gcd{n, d′}.

Before we can prove that V d
n can be generated by two elements of Tn we

need a result, which constitutes how to find a complete basis for the symmetric
group Sn. The result given below was shown in [8].

Theorem 1. Given a non-identical element α in Sn, then there exists β such
both generate the symmetric group Sn, provided that it is not the case that n = 4
and α is one of the three permutations (1 2)(3 4), (1 3)(2 4), and (1 4)(2 3).

Now we are ready for the proof that two elements are enough to generate all
of the semigroup V d

n . Due to the lack of space we omit the proof of the following
theorem, which is heavily based on Theorem 1.

Theorem 2. Let n ≥ 2 and 1 ≤ d < n. The semigroup V d
n can be generated by

two elements of Tn, where one element is the permutation α = (1 2 3 . . . n) and
the other is an element β of kernel size n − 1.1

In order to determine the size of V d
n , the following theorem, relating size and

number of colourings of a particular graph, is very useful in the sequel.

1 Observe, that there is an n-state minimal deterministic finite automaton A with
binary input alphabet the transition monoid of which equals V d

n . Hence, V d
n is the

syntactic monoid of L(A). Since this statement can be easily seen, we omit its proof.



Theorem 3. Let n ≥ 2 and 1 ≤ d < n with d | n. Denote the undirected graph
consisting of d circles, each of length n

d
, by G. Then

|V d
n | = n + N,

where N = nn−
(
(n − 1)

n

d + (−1)
n

d (n − 1)
)d

is the number of invalid colourings
of G with n colours.

Proof. The subsemigroup V d
n can be obtained from Tn by removing all trans-

formations not satisfying the second part of Definition 2 and by adding the n
multiples of α afterwards. The number of the former transformations can be
determined as follows: Assume that a graph G has nodes V = {1, . . . , n} where
a circle Ck consists of nodes {k, k + d, . . . , k + id, . . . , k + n − d}, for 1 ≤ k ≤ d.
Then one can easily verify that the colourings of G are exactly the transfor-
mations which do not satisfy the second part of Definition 2. The number of
colourings of a graph G with k colours is described by its chromatic polyno-
mial, see, e.g. [10]. Since the chromatic polynomial of a circle Cn with n nodes
is (k − 1)n + (−1)n(k − 1) and the chromatic polynomial of a graph consisting
of disconnected components is the product of the chromatic polynomials of its
components, the desired result follows. ut

Now we are ready to prove some asymptotics on the size of V d
n for some

particular values of d, which are determined first.

Theorem 4. The size of V d
n is maximal whenever

d = max({1} ∪ { d′ | d′ divides n and n
d′

is odd }).
Let Vn denote the semigroup V d

n of maximal size. Then

lim
n→∞

|Vn|
nn

= 1 − 1

e
,

where e is the base of the natural logarithm.

Proof. The maximality of V d
n w.r.t. its size is seen as follows. We first define two

real-valued functions

ueven

n,k (x) =
(

(n − 1)
k

x + (n − 1)
)x

and uodd

n,k (x) =
(

(n − 1)
k

x − (n − 1)
)x

.

The additional index k is present for later use—see Lemma 5. For now we assume
that k = n.

We have |V d
n | = nn + n − ueven

n,n (d) whenever n
d

is even and |V d
n | = nn + n −

uodd
n,n(d) whenever n

d
is odd. Obviously uodd

n,k < ueven

n,k . First we show that ueven

n,k is
strictly monotone by taking the first derivation of lnueven

n,k (x). We obtain

d

dx
ln ueven

n,k (x) = ln
(

(n − 1)
k

x + (n − 1)
)

+ x
(n − 1)

k

x ln(n − 1)
(
− k

x2

)

(n − 1)
k

x + (n − 1)

> ln
(

(n − 1)
k

x

)

− k

x

(n − 1)
k

x ln(n − 1)

(n − 1)
k

x

=
k

x
ln(n − 1) − k

x
ln(n − 1) = 0



Analogously one can show that uodd

n,k is strictly antitone.

So if there exist divisors d′ such that n
d′

is odd, the semigroup V d
n is maximal

w.r.t. its size whenever we choose the largest such d′. Otherwise there are only
divisors d′ such that n

d′
is even and we choose the smallest of these divisors which

is 1.
Next consider the semigroup Vn = V d

n , for some 1 ≤ d < n. From our previous
investigations one can infer that the following inequalities hold:

nn + n − (n − 1)n − (n − 1) ≤ nn + n −
(
(n − 1)

n

d + (−1)
n

d (n − 1)
)d

≤ nn + n −
(
(n − 1)3 − (n − 1)

)n

3 .

The second half of the inequality follows since the size of V d
n is maximal when-

ever n
d

is odd and 1 ≤ d < n is maximal. This is achieved ideally whenever n
d

= 3.
The rest follows with the monotonicity and antitonicity of the functions ueven

n,n

and uodd
n,n , respectively.

We now determine the limits of the lower and upper bounds. There we find
that

lim
n→∞

nn + n − (n − 1)n − (n − 1)

nn
= lim

n→∞

(

1 +
1

nn
−
(

n − 1

n

)n)

= 1 − lim
n→∞

(
n − 1

n

)n−1

· lim
n→∞

n − 1

n

= 1 − 1

e
,

since limn→∞(1+ 1
n
)n = e, and the limit of the upper bound tends also to 1− 1

e

by similar reasons as above. Hence limn→∞
|Vn|
nn = 1 − 1

e
. ut

From the asymptotic behaviour of the semigroups Vn and Uk,` we immedi-
ately infer the following theorem.

Theorem 5. There exists a natural number N such that for every n ≥ N , there
exist k and ` with n = k + ` such that |Vn| < |Uk,`|.

Proof. The existence of a natural number N satisfying the requirements given
above follows from Theorem 4 and a result from [3], which state that

lim
n→∞

|Vn|
nn

= 1 − 1

e
and lim

n→∞

|Uk(n),`(n)|
nn

= 1,

for suitable k(n) and `(n). ut

The following lemma shows that whenever we have a permutation consisting
of a single cycle and a non-bijective transformation, we obtain at most as many
elements as contained in Vn.

Lemma 2 (A cycle and a non-bijective transformation). If α ∈ Sn such
that α consists of a single cycle and β ∈ Tn\Sn, then |〈α, β〉| ≤ |Vn|.



Proof. Since the permutation α consists of a single cycle, there is a permutation π
such that παπ−1 = (1 2 3 . . . n). We set α′ = παπ−1 and β′ = πβπ−1. Because π
is a bijection, we can infer that |〈α, β〉| = |〈α′, β′〉|. There are two elements i < j
such that (i)β′ = (j)β′. We define d = j − i. It can be easily seen that α′

and β′ generate at most the transformations specified in Definition 2. Therefore
we conclude that |〈α′, β′〉| ≤ |Vn|. ut

Observe, that because of Theorem 5, Lemma 2 implies that there exists a
natural number N such that for every n ≥ N there exist k and ` with n = k + `
such that |〈α, β〉| < |Uk,`|, for every α ∈ Sn such that α consists of a single cycle
and β ∈ Tn\Sn.

4 Semigroup Size—Two Permutations or Non-Bijective

Mappings

In this section we show that two permutations or two non-bijective transforma-
tion are inferior in size to an Uk,` semigroup, for large enough n = k + `. Here
it turns out, that the semigroup Vn is very helpful in both cases. If we take two
permutations as generators, then we can at most obtain the symmetric group Sn.

Lemma 3 (Two permutations). Let n ≥ 2. If α, β ∈ Sn, then |〈α, β〉| < |Vn|.
Sketch of Proof. Obviously, for permutations α and β we have |〈α, β〉| ≤ n!. In
order to prove the stated inequality it suffices to show that n! < |V 1

n |. The details
are left to the reader. ut

Next we consider the case of two non-bijective transformations.

Lemma 4 (Two non-bijective transformations). Let n ≥ 2. If both α and β
in Tn \ Sn, then |〈α, β〉| < |Vn|.
Proof. Since α and β are both non-bijective, there are indices j1 < k1 and
j2 < k2 such that (j1)α = (k1)α and (j2)β = (k2)β. In this case we can construct
a permutation π such that (i1)π = j1, (i1 +n 1)π = k1 for some index i1 and
(i2)π = j2, (i2 +n 1)π = k2 for some index i2. If j1 = j2, then it is the case
that i1 = i2, similarly if j1 = k2, then i1 = i2 +n 1, etc. This means that
all transformations generated by παπ−1 and πβπ−1 satisfy the second part of
Definition 2 for d = 1. According to Definition 2 the set 〈παπ−1, πβπ−1〉, and
therefore also 〈α, β〉 which is isomorphic, have less elements than V 1

n , since at
least the permutations are missing. Thus, the stated claim follows. ut

5 Semigroup Size—Two and More Cycles

Finally we consider the case where one of the generators is a permutation α
consisting of two or more cycles and the other is a non-bijective transformation.
In this case we distinguish two sub-cases, according to whether the non-bijective
transformation β merges elements from the same or different cycles of α. We start
our investigation with the case where there are i and j such that (i)β = (j)β
and both are located within the same cycle of α.



Lemma 5 (An arbitrary permutation and a non-bijective mapping
merging elements from the same cycle). There exists a natural number N
such that for every n ≥ N the following holds: Let α, β ∈ Tn be transformations
where α is a permutation. Furthermore let β be a non-bijective transformation
such that (i)β = (j)β and both i and j are located in the same cycle of α. Then
there exist k and ` with n = k + ` such that |〈α, β〉| < |Uk,`|.

Proof. We assume that i and j are located in the same cycle of length m with
distance d w.r.t. their location within the cycle. We can assume that d divides m,
otherwise we can find an isomorphic semigroup where this is the case, following
the ideas of the proof of Lemma 1.

With a similar argument as in the proof of Theorem 3 we can deduce that
the semigroup generated by α and β contains at most some permutations and
the invalid colourings of a graph G, where G consists of d circles of length m

d

and n−m isolated nodes. The number of valid colourings of such a graph equals

((n − 1)
m

d + (−1)
m

d (n − 1))dnn−m.

Therefore we conclude |〈α, β〉| ≤ nn + n! −
(
(n − 1)

m

d + (−1)
m

d (n − 1)
)d

nn−m.
Similar reasoning as in the proof of Theorem 4 shows that

nn + n! −
(
(n − 1)

m

d + (−1)
m

d (n − 1)
)d

nn−m

≤ nn + n! − nn

(
(n − 1)(n − 2)

n2

)n

3

and

lim
n→∞

nn + n! − nn
(

(n−1)(n−2)
n2

)n

3

nn
= 1 − 1

e
.

Hence, a similar asymptotic argument as in the proof of Theorem 5 shows that
there is a natural number N such for every n ≥ N the size of the semigroups on n
elements under consideration is strictly less than the size of Uk,`, for suitable k
and ` with n = k + `. ut

Finally, we consider the case where the non-bijective transformation β merges
elements from different cycles of the permutation α. In the remainder of this sec-
tion we assume n = k+` to be a prime number. The reasons for this assumption
is that k and ` are always coprime, which guarantees that Uk,` can be generated
by two generators only.

Lemma 6 (A permutation with two or more cycles and a non-bijective
mapping merging elements from different cycles). Let n be a prime num-
ber and let α, β ∈ Tn be transformations where α is a permutation consisting
of m ≥ 2 cycles. Furthermore let β be a non-bijective transformation such that
(i)β = (j)β and i and j are located in different cycles of α. Then there exist k
and ` with n = k + ` such that |〈α, β〉| ≤ |Uk,`|.



Proof. We define U := 〈α, β〉 and show that |U | ≤ |U ′|, where U ′ is generated by
a two-cycle permutation α′ and a non-bijective mapping β′ that merges elements
of different cycles, as described below in detail.

Now assume that the m cycles in α have lengths k1, . . . , km, i.e., n =
∑m

i=1 ki.
Furthermore the sets of elements of the m cycles are denotes by C1, . . . , Cm and
|Ci| = ki. Without loss of generality we may assume that β merges elements of
the first two cycles C1 and C2. We now consider the following two cases according
to which element is missing in the image of β:

1. There is an element h which is not contained in the image of β and moreover,
h is not located in the first two cycles of α. So let us assume that it is located
in the third cycle C3. Let α′ be a permutation with two cycles, where the
elements of the first cycle are C ′

1 = C2 ∪
⋃m

i=4 Ci and the elements of the
second cycle are C ′

2 = C1 ∪C3. In the cycles these elements can be arranged
in an arbitrary way. We now set k = k2 +

∑m
i=4 ki and ` = k1 + k3 . Since

n = k + ` and n is prime, it follows that gcd{k, `} = 1. Similar to the
construction for the Uk,` one can now find a transformation β′ such that α′

and β′ generate a semigroup U ′ isomorphic to Uk,`. That means, the elements
of U ′ are exactly the multiples of α′ and all transformations γ which satisfy
(i)γ = (j)γ, for i ∈ C ′

1 and j ∈ C ′
2, and where at least one element of C ′

2 is
missing in the image of γ.

Now let us compare the sizes of U and U ′. First consider only the non-
bijective transformations of U ′. This includes at least all non-bijective trans-
formations generated by α and β, since the first cycle of α′ includes C2

and the second cycle of α′ includes C1 and C3. So for any non-bijective γ
generated by α and β there are indices i ∈ C1, j ∈ C2, h ∈ C3 such that
(i)γ = (j)γ and h 6∈ img(γ). This implies that γ can be generated by α′

and β′ as well. However, U may contain more permutations than U ′. In the
worst case, if gcd{ki, kj} = 1 for all pairs of cycle lengths with i 6= j, then U
contains

∏m

i=1 ki permutations, whereas U ′ contains only k` permutations,
which might be less. We show that this shortcoming is already compensated
by the number of transformations with image size n − 1.

The semigroup U contains k1k2k3(n − 1)! mappings with image size n − 1.
We first choose the two elements which are in the same kernel equivalence
class, for which there are k1k2 possibilities, then we choose the element of
the image that is missing, for which there are k3 possibilities, and finally we
distribute the n−1 elements of the image onto the kernel equivalence classes.
In the same way we can show that there are k`2(n−1)! transformations with
image size n − 1 in U ′. Now define k′ =

∑m

i=4 ki and observe, that k′ might
be equal to 0. Then we conclude that

k`2 − k1k2k3 = (k2 + k′)(k1 + k3)
2 − k1k2k3

= (k2 + k′)(k2
1 + 2k1k3 + k2

3) − k1k2k3

= k2
1k2 + k1k2k3 + k2k

2
3 + k′k2

1 + 2k′k1k3 + k′k2
3

≥ k1 + k2 + k3 + k′ = n.



Therefore U ′ contains at least n! more transformations of image size n − 1
than U . This makes up for the missing permutations, since there are at
most n! of them.

2. The missing element h of the image of β is located in one of the first two
cycles. Then an analogous construction as in (1) shows how to construct
suitable α′ and β′ such that |U | ≤ |〈α′, β′|. Due to the lack of space the
details are left to the reader.

This completes our proof and shows that |〈α, β〉| ≤ |Uk,`|, because in both cases
semigroup U ′ is isomorphic to some Uk,`, for appropriate k and `. ut

6 On the Maximality of Uk,` Semigroups

Now we are ready to prove the main theorem of this paper, namely that the size
maximal semigroup has |Uk,`| elements, for some k and `, whenever n = k + ` is
a prime greater or equal than 7. Observe, that the following theorem strengthens
Lemma 5.

Theorem 6. Let n ≥ 7 be a prime number. Then the semigroup Uk,`, for some k
and ` with n = k + `, is maximal w.r.t. its size among all semigroups which can
be generated with two generators.

Proof. Since all other cases have already been treated in the Lemmata 3, 4,
and 6, it is left to show that Uk,` has more elements than the semigroup V ,
where V is generated by α and β and latter mapping merges elements located in
the same cycle of α. Note that k and ` are trivially coprime whenever n = k + `
is a prime.

We have shown in Lemma 5 that

|V | ≤ nn + n! − nn

(
n(n − 1)(n − 2)

n3

)n

3

= nn + n! − (n(n − 1)(n − 2))
n

3 .

Furthermore from [3] it follows that

|Uk,`| ≥ nn −
(

n

`

)

`!nk −
(

n

`

)

kk``.

We use Stirling’s approximation in the version

√
2πn

(n

e

)n

< n! <
√

2πn
(n

e

)n

e
1

12

given in [1, 11]. In this way we obtain an upper bound for |V | and a lower bound
for |Uk,`| , see the proof in [3], as follows:

|V | ≤ nn +
√

2πn
(n

e

)n

e
1

12 − (n(n − 1)(n − 2))
n

3

and



|Uk,`| ≥ nn −
(
√

2

(
2

e

)n

2

e
1

12 +
√

8
1√
n

e
1

12

)

nn.

The upper bound for |V | is smaller than the lower bound for |Uk,`| whenever

√
2

(
2

e

)n

2

e
1

12 +
√

8
1√
n

e
1

12 <

(
(n − 1)(n − 2)

n2

)n

3

︸ ︷︷ ︸

A(n)

−
√

2πn

(
1

e

)n

e
1

12

︸ ︷︷ ︸

B(n)

.

The function A(n) is monotone and converges to 1
e
≈ 0.3678794412 while the

function B(n) is antitone and converges to 0. For n ≥ 20 we have A(n) > 0.358
and B(n) < 10−7, and therefore A(n)−B(n) > 0.35 =: c. We set c1 = 0.01 and
c2 = 0.34 and solve the equations

√
2

(
2

e

)n

2

e
1

12 < c1 and
√

8
1√
n

e
1

12 < c2.

These equations are satisfied if

n > 2
log
(

c1
1√
2
e−

1

12

)

log 2
e

≈ 32.81753852 and n >

(√
8

c2
e

1

12

)2

≈ 81.75504594,

i.e., whenever n ≥ 82.
The remaining cases for 7 ≤ n ≤ 81 have been checked with the help of the

Groups, Algorithms and Programming (GAP) system for computational discrete
algebra. To this end we have verified that |V | ≤ |Uk,`|, for some k and `, where
the upper bound for |V | from Lemma 5 and the exact value of |Uk,`| was used.2

It turned out that |Vn| is maximal w.r.t. size for all V semigroups. ut

7 Conclusions

We have confirmed the conjecture in [3] on the size of two generator semigroups.
In the end, we have shown that for prime n, such that n ≥ 7, the semigroup
generated by two generators with maximal size can be characterized in a very
nice and accurate way. The cases 2 ≤ n ≤ 6 are not treated in this paper, but we

2 The formula given below did not appear in [3] and gives the exact size of the Uk,`

semigroup: Let k, ` ∈ N such that gcd{k, `} = 1. The semigroup Uk,` contains exactly

|Uk,`| = k` +

n
X

i=1

  

n

i

!

−

 

n − `

i − `

!! (

n

i

)

−

i
X

r=1

(

k

r

)(

`

i − r

)!

i!

elements, where n = k + `. Here
˘

n

i

¯

stands for the Stirling numbers of the second
kind and denotes the number of possibilities to partition an n-element set into i

non-empty subsets.



were able to show that in all these cases the semigroup Vn contains a maximal
number of elements. Here 2 ≤ n ≤ 5 were done by brute force search using the
GAP system and n = 6 by additional quite involved considerations, which we
have to omit to due the lack of space. Moreover, we have completely classified
the case when one generator is a permutation consisting of a single cycle.

Nevertheless, some questions remain unanswered. First of all, what about
the case when n ≥ 7 is not a prime number. We conjecture, that Theorem 6 also
holds in this case, but we have no proof yet. Also, the question how to choose k
and ` properly remains unanswered. In order to maximize the size of Uk,` one
has to minimize the number of valid colourings—see [3]—which is minimal if k
and ` are close to n

2 . This clashes with the observation that the cycle α from
which an element in the image of β is missing should be as large as possible.
Nevertheless, to maximize the size of Uk,` we conjecture that for large enough n
both k and ` are as close to n

2 as the condition that k and ` should be coprime
allows. Again a proof of this statement is still missing. In order to understand
the very nature of the question much better, a step towards its solution would
be to show that the sequence |Uk,`| for fixed n = k+` and varying k is unimodal.
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