
On Timed Automata with Discrete

Time—Structural and Language Theoretical

Characterization

Hermann Gruber1, Markus Holzer1, Astrid Kiehn2, and Barbara König3?

1 Institut für Informatik, Technische Universität München,
Boltzmannstraße 3, D-85748 Garching bei München, Germany

email: {gruberh,holzer}@in.tum.de
2 Department of Computer Science and Engineering,

Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
email: astrid@cse.iitd.ernet.in

3 Institut für Formale Methoden der Informatik, Universität Stuttgart,
Universitätsstraße 38, D-70569 Stuttgart, Germany

email: koenigba@fmi.uni-stuttgart.de

Abstract. We develop a structural and language theoretical character-
ization of timed languages over discrete time in terms of a variant of
Büchi automata and languages. The so-called tick automaton is a stan-
dard Büchi automaton with a special “clock-tick”-input symbol modeling
the discrete flow of time. Based on these characterizations we give an al-
ternative proof for the fact that the class of regular timed languages is
closed under complementation and formulate a time-warp lemma which,
similar to a pumping lemma, can be used to show that a timed language
is not regular. The characterizations hold alike for timed automata with
and without periodic clock constraints.

1 Introduction

Timed automata have been introduced in [1] in order to model real-time sys-
tems from a quantitative perspective, to make specification and verification of
models of real-time systems easier. A timed automaton is a Büchi automaton
with a finite set of clocks, which can be independently reset, and where the
automaton can keep track of the time elapsed since the last reset. Several gen-
eralizations have been investigated as, in particular, timed automata with silent
transitions [5] and timed automata with periodic clock constraints [6]. Both
these extensions are equally powerful and strictly increase the expressive power
of timed automata, regardless of the used time semantics, i.e., the interpretation
of the clocks, which assigns some value to each clock. The two major semantics
discussed in the literature are the discrete-time and the dense-time model. Al-
though the latter is more natural from a physical point of view and allows an
easy modelling of real-time systems, it requires decision methods for real-time

? Research partially supported by DFG project SANDS and EPSRC grant R93346/01.

logics, which in general are undecidable [2]. In fact, the class of timed languages
accepted by automata interpreted under the dense-time model is closed under
all positive Boolean operations, but is not closed under complementation [1].
The latter is also true for timed languages over discrete time, except for the
complementation closure, which was shown to hold in [9] in terms of a variant
of monadic second order logic.

However, as recently pointed out by Asarin [3], despite the availability of
tools such as Uppaal and Kronos, the foundations of the theory of timed
languages are comparatively weak compared to the classical theory of finite
automata and regular languages. For instance Asarin states in his open ques-
tion 3: “Give a simple and natural algebraic characterization of a known class
of timed languages—confirming that it is the correct class of languages.” With
the present paper we provide such a structural characterization for the class of
discrete-time languages accepted by timed automata with or without periodic
clock constraints (or equivalently with or without silent transitions). To this end
we transform timed automata into so-called tick automata. A tick automaton
is a Büchi automaton where the input alphabet is equipped with an additional
“clock-tick”-symbol (

√
) modelling the discrete flow of time.4 Intuitively, actions

are occurring inbetween such clock ticks, hence, our time semantics is such that
it allows (finite or infinite) stuttering of actions on a particular time stamp dur-
ing the computation. It turns out that any tick automaton induced by a timed
automaton has a particular

√
-transition structure, namely deterministic tick-

paths ending in (trivial or non-trivial) tick-loops. On the other hand, we can
show that any tick automaton (not necessarily induced by a timed automaton)
can be converted into this normal form. This nicely corresponds to the intuitive
behaviour of time as a sort of deterministic or non-branching flow.

While timed automata in general induce non-trivial tick-loops, the tick-loops
become trivial for aperiodic timed automata. Besides this structural characteri-
zation of timed languages in terms of tick automata, we provide a language theo-
retical characterization for languages accepted by aperiodic timed automata by a
simple condition, which will be called

√
-stretchiness. This condition is closely re-

lated to the aperiodicity condition of regular languages on finite words. Loosely
speaking,

√
-stretchiness tells us that tick actions in direct sequence can only

be counted up to a given threshold, which depends on the language only. We
hope that these characterizations give some further insights into the behaviour
of timed languages.

The provided characterizations can be used to show an alternative way to
reprove the complementation closure of timed aperiodic languages, directly in the
framework of Büchi automata, thus reproving the result given in [9]. Moreover,
we develop a sort of pumping lemma, the so called time-warp lemma, which
shows that certain actions in a run of a word on the timed automaton can
be moved along the time axis to the future keeping the acceptance invariant.
To illustrate the strength of the time-warp lemma, we give very simple proofs
for languages that cannot be accepted by any timed (aperiodic) automaton. In

4 Note that our model of time is called the fictitious-clock model in [1].

addition we mention that the time-warp lemma is not limited to the discrete time
semantics, but holds for dense-time semantics as well. Hence this is a (partial)
answer to open question 14—“Develop simple techniques allowing to prove that
a given timed language is not regular”—stated in [3]. All presented results are
effectively constructible and therefore can be used for the verification of discrete
timed systems.

The paper is organized as follows: The next section contains preliminaries on
timed automata and timed languages. Section 3 introduces tick automata, and
shows how to transform timed automata to tick automata, by using the region
automata. The next section is devoted to the structural and language theoretical
characterization of timed languages in terms of tick automata. As a byproduct we
provide the reader with an alternative proof of the complementation problem of
timed languages, by automata theoretical constructions only. Then in Section 5
we develop the time-warp lemma and give some further applications. Finally we
summarize our results in Section 6.

2 Definitions

Timed automata can be considered as Büchi-automata which have been equipped
with a finite number of clocks. These clock run simultaneously and can individ-
ually be reset to 0 by a change of state, which in turn depends on the current
values of the clocks. Timed automata are usually interpreted under a dense time
domain, that is, a clock value can be any real number. This paper only considers
a discrete time semantics which assumes an underlying fictitious clock. For a
discussion of the different time models we refer to [1, 5, 6].

Many variations of timed automata can be found in the literature. The most
general form allows for silent (ε) transitions and as constraints any Boolean
expression over atomic assertions of the form x = c, x < c, and x =m c (compar-
ison modulo m), where x is a clock and c,m ∈ IN , or even direct comparisons of
different clock values. It has been shown in [1] that direct comparisons of clock
values provide an even more succinct representation, and in [5] and [6] that silent
transitions and modulo constraints are mutually expressible and do increase the
power of classical timed automata introduced in [1] (which coincide with ape-
riodic timed automata in our setting). To keep the technical presentation as
simple as possible we use the results of [6, 7] and assume just one clock and a
restricted constraint language. Every timed automaton can effectively brought
into this form though its size might increase substantially.

Definition 1. A timed automaton A = 〈Z,Σ,E, zS , R, {x}〉 is given by a finite
set of states Z, the input alphabet Σ, a start state zS ∈ Z, an acceptance set R ⊆
Z, one clock variable x and the set of transitions E ⊆ Z × Σ × 2Φ × 2{x} × Z,
where Φ = {x = i, x 6= i, x =m i, x 6=m i | 0 ≤ i < m} and m ∈ IN . An aperiodic
timed automaton differs only in the constraint universe Φ = {x = i, x 6= i, x ≥
m | 0 ≤ i < m}.

We will sometimes use the term periodic timed automaton in order to distin-
guish timed automata from aperiodic timed automata.

We denote 〈z, a, ϕ,X, z′〉 ∈ E by z
a,ϕ,X−→ z′, where ϕ is called the constraint set

(or simply constraint) and X the reset set. A configuration 〈z, v〉 of A consists of
a state and a clock assignment. As we consider just one clock, a clock assignment
reduces to an integer v ∈ IN . A timed run on a timed automaton is an infinite
sequence

π = 〈z0, v0〉 a1,t1−→ 〈z1, v1〉 a2,t2−→ 〈z2, v2〉 a3,t3−→ · · · ,

where z0 = zS , ai ∈ Σ and ti ∈ IN such that v0 = 0 and for each i ≥ 0

there is an underlying transition zi
ai+1,ϕ,X−→ zi+1 with (a) vi + ∆i |= ϕ and (b)

vi+1 = vi + ∆i, if X = ∅, and vi+1 = 0, if X = {x}, where ∆i := ti+1 − ti and
t0 = 0, with ∆i ≥ 0. Condition (a) expresses that the guarding constraint ϕ

is satisfied before the transition is taken, while (b) ensures that the clock is
adjusted correctly. A clock assignment satisfies a set of constraints if it satisfies
every constraint contained in the set.

A timed run π is called accepting if Inf (π) ∩ R 6= ∅, where Inf (π) denotes
the set of states occurring infinitely often in π. From a timed run π we extract
the timed word w(π) = 〈a1, t1〉〈a2, t2〉〈a3, t3〉 . . . ∈ (Σ × IN)

ω
, which, as usual,

is the constituent of the timed language of A:

Lω(A) = {w(π) ∈ (Σ × IN)
ω | π is an accepting run on A }.

Note, that by definition the time stamp sequence is monotonously increasing.
Moreover, we diverge from the literature in that we do not demand non-zenoness,
that is, each run indeed diverges in time. By doing so, we simplify the construc-
tions to come. As shown in [5], non-zenoness can be enforced by an additional
automata theoretical construction.

3 From Timed Automata to Tick Automata

The fictitious clock semantics suggests another way of behaviour description:
rather than equipping an event with the current clock time, the ticking of the
clock can be modeled by a particular tick-action,

√
. For instance, the finite

timed word 〈a, 1〉〈b, 3〉〈a, 3〉〈a, 7〉 corresponds to
√

a
√√

ba
√√√√

a. We call the
latter representation the ticked-version of the former.

Definition 2. Let w = 〈a1, t1〉〈a2, t2〉 . . . 〈ai, ti〉 . . . be a timed word. Its ticked

version is w√ =
√∆0a1

√∆1a2 . . . ai−1

√∆i−1ai . . . with ∆i = ti+1−ti and t0 = 0.
Let untick(w√) = w be the inverse operation. Then the ticked version of a timed
language L is defined as L√ := {w√ ∈ (Σ] {√})ω | untick(w√) ∈ L }, where]
denotes the disjoint union of sets.

We show in this section that every (discrete) timed automaton A can be repre-
sented as a Büchi-automaton with a distinguished

√
-action such that (Lω(A))√

coincides with the ω-language of the Büchi automaton. We denote this Büchi au-
tomaton by A√ and call it the tick automaton of A. In general, a tick automaton
is a Büchi automaton with a new action

√
representing a tick of an underlying

fictitious clock. A tick automaton B is given by 〈Z,Σ] {√}, E, zS , R〉, where
Z, Σ, zS and R are interpreted as in the case of timed automata but E sim-
plifies to E ⊆ Z × Σ] {√} × Z. A word w is in the accepted language Lω(B)
if (1) the word w contains infinitely many non-

√
actions and (2) the underlying

run of w contains infinitely many occurrences of acceptance states (the usual
Büchi acceptance condition). Note that condition (1) and (2) give an adequate
counterpart to languages accepted by timed automata. Since we do not require
non-zenoness there, we do not demand infinitely many

√
-actions occurring in w

as acceptance condition.
To express the timed behaviour of an automaton as a tick automaton we use

the concept of regions which have been introduced in [1] in order to describe
the untimed behaviour of a timed automaton. A region equates all those clock
valuations which are undistinguishable under progress of time or clock resetting
with respect to the evaluation of constraints, i.e., a region is an equivalence class.

As we deal with one clock x only, the regions are simply described by the
region expressions x = i and x ≥ m ∧ x =m i, for 0 ≤ i < m, and in case of
aperiodic timed automata by x = i and x ≥ m, for 0 ≤ i < m, where m is the
constant in the definition of an automaton. Note that in both cases, the clock
regions provide a partition on the time domain IN . Two clock valuations v and v′

are equivalent, v ∼ v′, if they satisfy the same region expression. The following
lemma ensures soundness of our construction.

Lemma 3. Let v and v′ be clock valuations with v ∼ v′. Then

1. v |= ϕ if and only if v′ |= ϕ for any clock constraint ϕ occurring in A, and
2. (v + ∆) ∼ (v′ + ∆) for any ∆ ∈ IN .

For the tick automaton A√ we pair the states of A with its regions. The
transitions are induced by the transitions of A which are now split into a delay
and an action part.

Definition 4 (Automaton A√). Let A = 〈Z,Σ,E, zS , R, {x}〉 be a timed au-
tomaton. Then A√ is the tick automaton 〈Z ′, Σ]{√}, E′, z′S , R′〉, where the set
of states is Z ′ = { 〈z, α〉 | z ∈ Z,α a region expression }, the initial state equals
z′S = 〈zS , x = 0〉, R′ = { 〈z, α〉 | z ∈ R } and E′ contains

1. 〈z, α〉 a−→ 〈z′, α〉 if there is z
a,ϕ,∅−→ z′ in A such that α |= ϕ (non-reset

transitions),

2. 〈z, α〉 a−→ 〈z′, x = 0〉 in A√ if there is z
a,ϕ,{x}−→ z′ in A such that α |= ϕ

(reset transitions),

3. 〈z, α〉
√
−→ 〈z, α + 1〉 for all states 〈z, α〉 ∈ Z ′ (tick transitions).

Observe that the non-reset and reset transitions are executed without any
delay. The delay that might be necessary in A to move from state z to z ′ is
performed in A√ by the respective number of

√
-transitions. These transitions

lead to the immediate time successor of the current region but do not leave
state z. A time successor α+k of a region expression α is defined by α+k = [v+k]
for α = [v].

Theorem 5. Let A be a timed automaton. Then

(Lω(A))√ = Lω(A√) ∩ {w ∈ (Σ] {√})ω | w contains infinitely many a ∈ Σ }.

The size of A√ is determined by the number of states and transitions. The
number of states of A√ is |Z ′| = |Z| × (number of regions). We have |Z ′| =
|Z| · 2m for the case of periodic clock constraints, and |Z ′| = |Z| · (m + 1) for
automata using only aperiodic constraints. The number of transitions is bound
by |E| · (m + 1) + |Z| · (m + 1) = (|E| + |Z|)(m + 1) for the aperiodic case, and
by |E| · 2m + |Z| · 2m = (|E| + |Z|) · 2m in general.

Example 6. Figure 1 shows an aperiodic timed automaton with accepted lan-
guage

L1 = { 〈ai, ti〉i≥1 | ∃k ≥ 0 : (∀i < k : ai = a ∧ ti = 2i)

∧ (ak = b ∧ tk > 2k) ∧ (∀j > k : aj = a) }.

Its tick automaton is also given in Figure 1, where α0 = (x = 0), α1 = (x = 1),
α2 = (x = 2), and β = (x ≥ 3) are the region expressions.

1

2

a, (x = 2), {x}

b, (x ≥ 3), ∅

a, true, {x}

〈1, α0〉 〈1, α1〉 〈1, α2〉 〈1, β〉

〈2, α0〉 〈2, α1〉 〈2, α2〉 〈2, β〉

√ √ √
√

a

b

a

√ √ √
√

a

a

a

Fig. 1. A timed automaton with aperiodic clock constraints (Example 6) and its cor-
responding tick automaton.

We now have a closer look at the structure of the tick automaton A√. It
follows immediately from the definition that there is no branching with respect
to tick-transitions. For aperiodic automata we can additionally observe that
there are no non-trivial cycles in which the transitions are labelled by

√
only,

while in arbitrary timed automata the length of tick-cycles is m, where m is the
constant of the modulo constraints. Formally, these properties read as follows:

1. Tick determinism: z
√
−→ z′ and z

√
−→ z′′ imply z′ = z′′.

2. Tick-cycle freedom: z1

√
−→ z2

√
−→ · · ·

√
−→ zn and z1 6= z2 imply z1 6= zn.

3. Constant tick-cycle length: z1

√
−→ · · ·

√
−→ zn

√
−→ z1 and z1, . . . , zn are pair-

wise distinct implies n = m where m is the constant given in the constraint
universe of periodic timed automata.

Note that a tick-loop, i.e., a transition z
√
−→ z, does not count as a tick-cycle.

Theorem 7. Let A be a timed automaton and A√ its corresponding tick au-
tomaton. Then the following implications hold:

1. If A is aperiodic then A√ is tick-deterministic and tick-cycle free, and
2. if A is periodic then A√ is tick-deterministic and has a constant tick-cycle

length.

The converse of the theorem given above is shown in Section 4 on struc-
tural characterizations. Observe that for timed languages in general, due to the
correspondence of ε-transitions and modulo constraints [6], there is an easy con-
struction that transforms an arbitrary tick automaton into an equivalent timed

automaton. We introduce a new clock x, replace each tick transition z
√
−→ z′ in

the tick automaton by an ε-transition z
ε,x=1,{x}−−−→ z′ and then use the fact that

timed automata with silent actions can be transformed into equivalent ε-free
timed automata with modulo constraints. In passing we have hence shown the
following corollary:

Corollary 8. For each tick automaton A there is a periodic timed automaton B

such that Lω(A) = (Lω(B))√.

4 Characterizations of Aperiodic Timed Languages

In this section we develop a structural and language theoretical characterization
of aperiodic timed languages in terms of tick automata and languages, respec-
tively. An application of both characterizations to the complementation problem
is given in Subsection 4.3.

4.1 Structural Characterization of Aperiodic Timed Languages

We give a structural characterization of timed languages accepted by aperiodic
timed automata. We state first that every tick-cycle free aperiodic tick automa-
ton can be made tick-deterministic.

Lemma 9. Each tick-cycle free tick automaton A can be effectively transformed
into a tick automaton B such that Lω(A) = Lω(B) and B is tick-deterministic
and tick-cycle free.

For a tick-deterministic tick automaton A, which is tick-cycle free, it is now
straightforward to define a timed automaton B with one clock x such that
(Lω(B))√ = Lω(A). Here B contains the set of states of A. For each path

z
a−→ z0

√
−→ · · ·

√
−→ zn

b−→ zn+1 where a and b are non-
√

actions, we ei-

ther introduce a transition z0

b,x=n,{x}−−−→ zn+1 if there is no tick loop at zn or

z0

b,x≥n,{x}−−−→ zn+1 in the presence of such a loop. For the initial state zS we
proceed similarly. Furthermore we introduce appropriate acceptance states and
convert the constraints into the form of Definition 1. Hence we can give the
following structural characterization of aperiodic timed languages.

Theorem 10. A tick automaton A is language equivalent to a tick-deterministic
and tick-cycle free tick automaton if and only if there is an aperiodic timed
automaton B such that Lω(A) = (Lω(B))√.

4.2 Language Theoretical Characterization of Aperiodic Timed
Languages

We give a language theoretical characterization of timed language accepted by
aperiodic timed automata. To be more precise, we define a condition, which holds
exactly for all languages which are tick versions of aperiodic timed languages and
vice versa. The condition reads as follows:

Definition 11 (
√

-stretchy). A language L ⊆ (Σ]{√})ω is called
√

-stretchy
if and only if there exists an n ∈ IN such that (1) for each infinite sequence
w1, w2, w3, . . . of finite words over the alphabet Σ] {√} and for each infinite
sequence i1, i2, i3, . . . of nonnegative numbers

w1

√n
w2

√n
w3

√n
. . . ∈ L ⇐⇒ w1

√n+i1w2

√n+i2w3

√n+i3 . . . ∈ L

and (2) for every w ∈ (Σ] {√})∗, v ∈ (Σ] {√})ω and each nonnegative
number i,

w
√n

v ∈ L ⇐⇒ w
√n+i

v ∈ L.

The following lemma immediately follows by definition.

Lemma 12. A language L ⊆ (Σ] {√})ω is
√

-stretchy if and only if the com-
plement of L, i.e., the language (Σ] {√})ω \ L, is

√
-stretchy.

Moreover, it is not hard to see that every language accepted by a tick au-
tomaton A√, where A is aperiodic, is

√
-stretchy. This is due to the fact, that

whenever A√ has read a block of
√

which is long enough it must be in a state,
which corresponds to the maximal clock region. Since this state must have a
tick-loop, one can enlarge the

√
-block by an arbitrary number of

√
’s without

changing the acceptance of the original word. Thus, the
√

-stretchy condition is
satisfied for n = m + 1, where m is the maximal constant occurring in the set of
clock constraints of the timed aperiodic automaton A. In terms of A√, one can
choose the number of its states as a suitable n.

Before we prove the converse relation, i.e., that every
√

-stretchy ω-regular
language over the alphabet Σ] {√} accepted by a tick automaton A√ corre-
sponds to an aperiodic timed language, we need the following technical lemma.

Lemma 13. Let L ⊆ (Σ ∪ {√})ω be a
√

-stretchy language accepted by a tick
automaton A. Then a tick automaton B can be effectively constructed from A

such that Lω(B) = L and B is tick-cycle free.

Proof. Let n be the constant from the
√

-stretchy condition, which is satisfied
by L. It suffices to show that every non-trivial strongly connected component of√

-transitions can be eliminated from the tick automaton A, without changing
the accepted language.

Fix one non-trivial strongly connected component of
√

-transitions and let S

be the set of all states contained within this component. Without loss of gen-
erality we may assume that there is no a-transition leading from z to z ′ with
z, z′ ∈ S. Define Rs,s′ be the set of all words representing a path from s to s′,
which lies completely within S. Observe that Rs,s′ is regular for every s, s′ ∈ S.
Then for every s, s′ ∈ S such that s has an in-going non-

√
transition and s′ an

outgoing a-transition to a state t, which is not contained in S, we proceed in
three steps: (1) Introduce a new edge from s to t labeled with the regular ex-
pressions: (i) All expressions of the form wa with w ∈ Rs,s′ and |w| < n and (ii)√n√∗

a. (2) If there is an accepting state s′′ ∈ S, then introduce a new accepting
state t′, which is appropriately connected to all successors of t, and introduce a
new edge from s to t′ labeled with the regular expressions: (i) All expressions of
the form wa with w ∈ Rs,s′′Rs′′,s′ and |w| < n and (ii)

√n√∗
a. (3) Finally, one

removes all
√

-transitions, which were once part of the strongly connected cycle,
and converts the regular expression on the newly introduced edges to paths,
the structure of which contains no non-trivial tick cycles. This completes the
description of the construction. It remains to verify the correctness.

Consider step (1) in more detail. The only way to eventually accept a word w,
which is not in the language is to use a word from the expression

√n√∗
a go-

ing from s to t via s′. Then we distinguish two cases: The new edge is tra-
versed infinitely or finitely often. We only prove the former case, since the latter
can be shown by similar arguments. Now assume that the edge under consid-
eration is traversed infinitely often and w = w1

√n+c1aw2

√n+c2aw3

√n+c3 . . .

where the substrings of the form
√n+cia, for ci ≥ 0, are due to the new edge.

Then we distinguish two cases: If w1

√n
aw2

√n
aw3

√n
. . . is in L, then so is w.

Otherwise, assume that w1

√n
aw2

√n
aw3

√n
. . . is not a member of L, but w

is accepted by the new machine. Then instead of using the newly introduced
edge, we alter the computation such that one particular path from s to t via s′′

within the strongly connected cycle is taken. Thus, we end up with a word
w′ = w1

√n+c
aw2

√n+c
aw3

√n+c
. . . for some constant c, which is also accepted

by the original Büchi automaton, and hence lies in L—the accepting states that
were seen infinitely often in the run of w do not belong to S \ {s}. Then we
immediately obtain a contradiction, because by the

√
-stretchy condition also

the word w1

√n
aw2

√n
aw3

√n
. . . has to be accepted, which was ruled out by our

assumption. Thus, step (1) does not alter the accepted language.

Furthermore, when removing the
√

-transitions that were once part of the
strongly connected component in step (3), we have to consider computations
that visit a possible acceptance state belonging to S. This is done in step (2).
By a similar reasoning as above one observes that the newly introduced edge
together with the acceptance state t′ does not alter the underlying language.
Moreover, the same holds for step (3), where the

√
-transitions that were part

of the strongly connected component are deleted. Thus, Lω(B) = Lω(A). ut

Finally, we state the main result of this section, which is an immediate con-
sequence of our previous considerations.

Theorem 14. A language L ⊆ (Σ]{√})ω is a
√

-stretchy language accepted by
a tick automaton if and only if the language untick(L) is accepted by an aperiodic
timed automaton, where untick(L) := { untick(w√) | w√ ∈ L }.

4.3 Application to Complementation

We show that the (discrete) languages obtained from timed automata are closed
under complementation, thus reproving Wilke’s result [9] by automata the-
oretical constructions only—observe that the complementation of timed lan-
guages is done with respect to timed words, where the time stamp sequence is
monotonously increasing.

Theorem 15. The classes of languages obtained from timed automata and ape-
riodic timed automata are closed under complementation.

Proof. In the aperiodic case convert a timed automaton into a tick automaton
according to the algorithm given in the previous section. Then we complement
the Büchi automaton with any complementation algorithm (for instance the
one described in [8]). This results in a tick automaton (with n states), where
Lemma 13 can be applied, resulting in a Büchi automaton which is tick-cycle
free. Finally, applying the conversion for a tick-deterministic and tick-cycle free
Büchi automaton into an aperiodic timed automaton solves the complementation
problem via our structural characterization. Observe that all steps are effectively
constructible since the constant for the

√
-stretchy condition can be estimated

by the size of the automaton (which is n in our case).
In the periodic case the proof is analogous and even simpler since it does not

require Lemma 13. ut

5 Time-Warp of Timed Languages

Based on our language theoretical characterization of timed languages we show
that certain actions in a timed word can be “time-warped,” i.e., all time stamps
are shifted by a common distance to the future along the time axis. This leads
us to the time-warp lemma, which is similar in flavour to a pumping lemma,
and thus allows us to identify certain languages as not acceptable by any timed
automaton—compare with the pumping lemmata of [4].

Before we introduce the time-warp lemma we need some more notations in or-
der to simplify the presentation. For a timed word w = 〈a1, t1〉〈a2, t2〉 . . . 〈ai, ti〉 . . .

define its ∆-timed representation as w∆ = 〈a1,∆1〉〈a2,∆2〉 . . . 〈ai,∆i〉 . . ., where
∆i = ti − ti−1 with t0 = 0. Then the ∆-version of the timed language L is de-
fined as L∆ = {w∆ ∈ (Σ × IN)ω | w ∈ L }. Now we are ready for the time-warp
lemma, the proof of which immediately follows from the given characterizations
of languages accepted by timed and aperiodic timed automata in Corollary 8
and Theorem 10. Thus we omit the proof.

Lemma 16 (Time-warp lemma5). Let L be a the language accepted by an
aperiodic timed automaton. Then there exists a constant n, such that for every
word w∆ = 〈ai,∆i〉i≥1, every index set J ⊆ { i ∈ IN | ∆i ≥ n }, and for every
function f : J → IN we have w∆ ∈ L∆ if and only if time-warpJ,f (w∆) ∈
L∆, where time-warpJ,f (w∆) is defined to be the ∆-timed word 〈ai,∆

′
i〉i≥1 with

∆′
i = ∆i + f(i), if i ∈ J , and ∆′

i = ∆i otherwise. The statement remains
valid in case L is a language accepted by a periodic timed automaton in general,
provided that the all quantified functions f : J → IN obey the additional property
range(f) ⊆ { kn | k ≥ 0}.

With the time-warp lemma we can prove that certain languages are not ac-
ceptable by any timed automaton. For instance, consider the language of “conver-
gent response time,” which is defined as follows—the language is taken from [1]:

L = { 〈ai, ti〉i≥1 | ∀i ≥ 1 : a2i−1 = a ∧ a2i = b

∧ ∃c ≥ 0 : ∃i ≥ 1 : ∀j > i : t2j < t2j−1 + c }.

We show that L is not acceptable by any timed automaton. Assume to the
contrary that the language L is accepted by some timed automaton A. Then
let n be the constant mentioned in Lemma 16. Now consider the ∆-timed word
w∆ = 〈a, 1〉〈b, n〉〈a, 1〉〈b, n〉〈a, 1〉〈b, n〉 . . ., which obviously is in L∆. Let J =
{ 2i | i ≥ 1 } and define the function f : IN → IN by f(i) = i · n. But then
time-warpJ,f (w∆) is not an element of the ∆-representation of the language
under consideration, since the response times clearly diverge for the warped
word. Thus, language L is not acceptable by any (aperiodic) timed automaton.

For practical purposes it would be nice if at least the complement of L is
acceptable by a timed automaton, as this would be enough to do timed model
checking. Unfortunately, this is not the case as the closure under complementa-
tion and the following (stronger) theorem show.

Theorem 17. Let L ⊆ (Σ × IN)ω be a non-empty timed language such that
L ⊆ D, where language D is implicitly defined via its ∆-representation, which
is D∆ = { 〈ai,∆i〉i≥1 | ∀c ≥ 0 : ∃i ≥ 1 : ∆i > c }. Then L is not acceptable by
any timed automaton.

5 It is worth mentioning, that the time-warp lemma generalizes to dense time se-
mantics, i.e., real valued clocks. Note that the statements in the remaining part of
this section are also valid for the dense time semantics, although in the results and
arguments discrete time is used, only.

Finally, we come back to the language L of convergent response time. Obvi-
ously, language L can be parameterized according to the response time c. This
leads us to languages Lc, for c ≥ 0, which are appropriately defined. In [1] it
was shown that these languages are acceptable by deterministic timed Muller
automata—for a formal definition of timed Muller automata we refer to [1]—
and moreover it was conjectured that these languages are not acceptable by any
deterministic timed (Büchi) automaton. The theorem given below solves this
conjecture.

Theorem 18. Let c ≥ 2. Then the timed language Lc of constant response
time c is not acceptable by any deterministic timed automaton.

6 Conclusions

We have given structural and language theoretical characterizations for regu-
lar discrete timed languages, in the periodic as well as in the aperiodic case
by means of introducing so-called tick automata and tick languages. The char-
acterizations have several applications and furthermore we have developed the
time-warp lemma, a tool very similar to a pumping lemma which can be con-
veniently used in order to show that certain languages can not be accepted by
(aperiodic) timed automata. We hope that these results contribute to a more
basic theory for timed languages as envisioned in [3].

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

2. R. Alur and T. Henzinger. Logics and models of real time: a survey. In Real Time:

Theory in Practice, number 600 in LNCS. Springer, 1992.
3. Eugene Asarin. Challenges in timed languages: From applied theory to basic theory?

EATCS Bulletin, 83:106–120, June 2004. Appeared in The Concurrency Column.
4. D. Beauquier. Pumping lemmas for timed automata. In Proc. of FOSSACS ’98,

number 1378 in LNCS, pages 81–94. Springer, January 1998.
5. B. Berard, A. Petit, V. Diekert, and P. Gastin. Characterization of the expressive

power of silent transitions in timed automata. Fundamenta Informaticae, 36(2-
3):145–182, 1998.

6. Ch. Choffrut and M. Goldwurm. Timed automata with periodic clock constraints.
Journal of Automata, Languages and Combinatorics, 5(4):371–404, 2000.

7. Th. A. Henzinger, P. W. Kopke, and H. Wong-Toi. The expressive power of clocks.
In Proc. of ICALP ’95, number 944 in LNCS, pages 417–428, Springer, July 1995.

8. A. Pnueli and M. Vardi. Automata-theoretic approach to automated verification—
lecture notes. http://www.cs.rice.edu/~vardi/av.html, 1999.

9. Th. Wilke. Specifying time state sequences in powerful logics and timed automata.
In Formal Techniques in Real-Time and Fault-Tolerant Systems, number 863 in
LNCS, pages 694–715. Springer, 1994.

