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Abstract. In recent years there have been several approaches for the
automatic derivation of labels from an unlabeled reactive system. This
can be done in such a way that the resulting bisimilarity is automatically
a congruence. One important aspect that has not been studied so far is
the treatment of reduction rules with negative application conditions.
That is, a rule may only be applied if certain patterns are absent in the
vicinity of a left-hand side. Our goal in this paper is to extend the bor-
rowed context framework to label derivation with negative application
conditions and to show that bisimilarity remains a congruence. An im-
portant application area is graph transformation and we will present a
small example in order to illustrate the theory.

1 Introduction

Bisimilarity is an equivalence relation on states of transition systems, associating
states that can match each other’s moves. In this sense, bisimilar states can not
be distinguished by an external observer. Bisimilarity provides a powerful proof
technique to analyze the properties of systems and has been extensively studied
in the field of process calculi since the early 80’s. Especially for CCS [1] and the
π-calculus [2, 3] an extensive theory of bisimulation is now available.

Congruence is a very desirable property that a bisimilarity may have, since it
allows the exchange of bisimilar systems in larger systems without effect on the
observable behavior. Unfortunately, a bisimulation defined on unlabeled reaction
rules is in general not a congruence. Hence, Leifer and Milner [4, 5] proposed a
method that uses so-called idem pushouts (IPOs) to derive a labeled transition
system from unlabeled reaction rules such that the resulting bisimilarity is a
congruence. Motivated by this work, two of the authors proposed in [6, 7] an
extension to the double pushout approach (DPO, for short) called DPO with
borrowed contexts (DPO-BC), which provides the means to derive labeled tran-
sitions from rewriting rules in such a way that the bisimilarity is automatically
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a congruence. This has turned out to be equivalent to a technique by Sassone
and Sobociński [8, 9] which derives labels via groupoidal idem pushouts. In all
approaches the basic idea is the one suggested by Leifer and Milner: the labels
should be the minimal contexts that an observer has to provide in order to
trigger a reduction.

The DPO with borrowed contexts works with productions consisting of two
arrows L ← I → R where the arrows are either graph morphisms, or—more
generally—arrows in an adhesive category. Even though the generative power
of the DPO approach is sufficient to generate any recursively enumerable set of
graphs, very often extra application conditions are a required feature of non-
trivial specifications. Negative application conditions (NACs) [10] for a graph
production are conditions such as the non-existence of nodes, edges, or certain
subgraphs in the graph G being rewritten, as well as embedding restrictions con-
cerning the match L→ G. Similar restrictions can also be achieved in Petri nets
with inhibitor arcs, where these arcs impose an extra requirement to transition
firing, i.e., a transition can only be fired if some specific places are currently
unmarked.

Graph transformation systems, which are our main focus, are often used
for specification purposes, where—in contrast to programming—it is quite con-
venient and often necessary to constrain the applicability of rules by negative
application conditions. We believe that this is a general feature of specification
languages, which means that the problem of deriving behavioural equivalences
in the presence of NACs may occur in many different settings.

In this work we extend the borrowed context framework to handle produc-
tions with negative application conditions. The extension, which is carried out
for adhesive categories, requires an enrichment of the labels which now do not
only indicate the context that is provided by the observer, but also constrain
further additional contexts that may satisfy the negative application condition.
That is, we do not only specify what must be borrowed, but also what must
not be borrowed. We prove that the main result of [7] (bisimilarity is a congru-
ence) still holds for our extension. Moreover, we further develop an up-to context
technique in order to cope with NACs and apply it to an example.

The current paper is structured as follows. Section 2 briefly reviews the DPO
approach with borrowed contexts. In Section 3 we discuss the problems which
arise due to productions with NACs and how they can be overcome in order to
guarantee that the derived bisimilarities are congruences. Section 4 presents the
up-to proof method for our extension and finally an example in terms of graph
transformation is shown in Section 5.

An extended example and the full proof with all lemmas can be found in a
technical report [11].

2 Double-Pushout with Borrowed Contexts

In this section we recall the DPO approach with borrowed contexts [6, 7]. In
standard DPO [12], productions rewrite graphs with no interaction with any



other entity than the graph itself and the production. In the DPO with borrowed
contexts [7] graphs have interfaces and may borrow missing parts of left-hand
sides from the environment via the interface. This leads to open systems which
take into account interaction with the outside world.

The DPO-BC framework was originally defined for the category of graph
structures, but, as already stated in [6, 7], its results can be automatically lifted
to adhesive categories since the corresponding proofs only use pushout and pull-
back constructions which are compliant with adhesive categories. In the following
we present the DPO-BC setting for adhesive categories [13] to which we first give
a short introduction.

Definition 1 (Adhesive Category). A category C is called adhesive if

1. C has pushouts along monos;
2. C has pullbacks;
3. Given a cube diagram as shown on the right

with: (i) A → C mono, (ii) the bottom square a
pushout and (iii) the left and back squares pull-
backs, we have that the top square is a pushout
iff the front and right squares are pullbacks.

A′ //

!!C
CC

��

C ′

!!C
CC

��

B′ //

��

D′

��

A //

!!D
DD C

""D
DD

B // D

Pullbacks preserve monos and pushouts preserve epis in any category. Fur-
thermore, for adhesive categories it is known that monos are preserved by push-
outs. For the DPO-BC extension to productions with negative application con-
ditions, defined in Section 3, we need one further requirement, namely that
pullbacks preserve epis. This means that if the square (A′, B′, A,B) above is a
pullback and A→ B is epi, we can conclude that A′ → B′ is epi as well.

Our prototypical instance of an adhesive category, which will be used for
the examples in the paper are the categories of node-labeled and edge-labeled
graphs, where arrows are graph morphisms. In this category pullbacks preserve
epis.

We will now define the notion of objects with interfaces and contexts, followed
by the definition of a rewriting step with borrowed contexts as defined in [7] and
extended in [9].

Definition 2 (Objects with Interfaces and Contexts). An object G with
interface J is an arrow J → G and a context consists of two arrows J → E ← J .
The embedding3 of J → G into a context J → E ← J is an object with interface
J → G which is obtained by constructing G as the pushout of J → G and J → E.

J //

��
PO

E

��

Joo

��

G // G

3 The embedding is defined up to iso since the pushout object is unique up to iso.
Embedding/insertion into a context and contextualization are used as synonyms.



Definition 3 (Rewriting with Borrowed Contexts). Given an object with
interface J → G and a production p : L ← I → R, we say that J → G reduces
to K → H with transition label4 J → F ← K if there are objects D, G+, C

and additional arrows such that the diagram below commutes and the squares are
either pushouts (PO) or pullbacks (PB) with monos. In this case a rewriting step

with borrowed context (BC step) is called feasible: (J → G)
J→F←K
−−−−−−→ (K → H).

D // //

��

��
PO

L
��

�� PO

Ioo //

��

��
PO

R
��

��

G // //

PO

G+

PB

Coo // H

J

OO

// // F

OO

Koo

OO >>

In the diagram above the upper left-hand square merges L and the object G

to be rewritten according to a partial match G← D → L. The resulting object
G+ contains a total match of L and can be rewritten as in the standard DPO
approach, producing the two remaining squares in the upper row. The pushout
in the lower row gives us the borrowed (or minimal) context F , along with an
arrow J → F indicating how F should be pasted to G. Finally, we need an
interface for the resulting object H, which can be obtained by “intersecting” the
borrowed context F and the object C via a pullback. Note that the two pushout
complements that are needed in Definition 3, namely C and F , may not exist.
In this case, the rewriting step is not feasible. The arrows depicted as → in the
diagram above can also be non-mono (see [8]).

Note that with the procedure described above we may derive infinitely many
labels of the form J → F ← K. However, note that there are only finitely many
up to iso and hence they can be represented in a finite way.

A bisimulation is an equivalence relation between states of transition systems,
associating states which can simulate each other.

Definition 4 (Bisimulation and Bisimilarity). Let P be a set of produc-
tions and R a symmetric relation containing pairs of objects with interfaces
(J → G, J → G′). The relation R is called a bisimulation if, whenever we have

(J → G)R (J → G′) and a transition (J → G)
J→F←K
−−−−−−→ (K → H), then there

exists an object with interface K → H ′ and a transition (J → G′)
J→F←K
−−−−−−→

(K → H ′) such that (K → H)R (K → H ′).

We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that
relates the two objects with interface. The relation ∼ is called bisimilarity.

Theorem 1 (Bisimilarity is a Congruence [7]). The bisimilarity relation
∼ is a congruence, i.e., it is preserved by contextualization as described in Defi-
nition 2.

4 Transition labels, derived labels and labels are synonyms in this work.



3 Borrowed Contexts with NACs

Here we will extend the DPO-BC framework of [7] to productions with negative
application conditions. In order to simplify the theory and the presentation we
will from now on require that productions and objects with interfaces consist of
monos, which implies that all arrows in the diagram in Definition 3 are monos.

Prior to the extension we will investigate in Section 3.1 why such an extension
is not trivial. It is worth emphasizing that the extension will be carried out for
adhesive categories with an additional requirement that pullbacks preserve epis,
but the examples will be given in the category of labeled directed graphs. First
we define negative application conditions for productions.

Definition 5 (Negative Application Condition). A negative application
condition NAC (x) on L is a mono x : L→ NAC . A mono m : L→ G satisfies
NAC (x) on L if and only if there is no mono p : NAC → G with p ◦ x = m.

NAC

p ##G
GG

GG
G L

m
��

xoo

=

G

A rule L ← I → R with NACs is equipped with a finite set of negative
application conditions {L→ NAC y}y∈Y and is applicable to a match m : L→ G

only if all NACs are satisfied. If we add NACs to the rules in Definition 3, we
have two ways to check their satisfiability: before (on G) or after the borrowing
(on G+), but the latter is more suitable since the first one does not take into
account any borrowed structure.

3.1 Bisimulation and NACs – Is Bisimilarity still a Congruence?

Let us assume that borrowed context rewriting works as in Definition 3 (with
monos) if the total match L → G+ satisfies all NACs of a production, i.e., G+

does not contain any prohibited structure (specified by a NAC) at the match of
L. With the following example in terms of labeled directed graphs we will show
that such a definition is unsuitable.

Below on the right we depict two servers as graphs with interfaces: J→ G

and J→ G′. An s-node represents a server. Each server has two queues Q1 and
Q2 where it receives tasks to be processed. Tasks are modelled as loops and may
either be standard (T) or urgent (U). In real world applications, standard tasks
may come from regular users while urgent ones come from administrators. On
the left we depict how the servers work. Rule1 says that an urgent task in Q2

must be immediately executed, whereas Rule2 specifies how a standard task T

in Q2 is executed. The negative application condition NAC1 allows rule2 to be
fired only when there is no other T-task waiting in the high priority queue Q1.
We consider that a processed task is consumed by the server (see R1 and R2).



From the servers J→ G and J→ G′ above we derive the labeled transition
system (LTS) on the right w.r.t. rule1 and rule2. No further label can be derived
from K→ H and K→ H′ and the labels leading to these graphs are equal. By
Definition 4 we can conclude that (J→ G) ∼ (J→ G′). Since bisimilarity is a
congruence (at least for rules without NACs), the insertion of J→ G and J→ G′

into a context C, as in Definition 2, produces graphs J→ G and J→ G
′
respec-

tively, which should be bisimilar. Below we show a context C with a standard

task, the resulting graphs J→ G and J→ G
′
which received the T-task in queue

Q1 via the interface J, and their LTS. The server J→ G
′

cannot perform any
transition since NAC1 of rule2 forbids the BC step, i.e., the T-task in Q2 cannot
be executed because there is another standard task in the high priority queue
Q1. However, J→ G is still able to perform a transition and evolve to K→ H.
Thus, bisimilarity is no longer a congruence when productions have NACs.

The LTS for J→ G and J→ G′ shows that label1, which is derived from rule1

(without NAC) is matched by label2, which is generated by rule2 (with NAC).
These matches between labels obtained from rules with and without NACs are
the reason why the congruence property does no longer hold. In fact, the actual
definitions of bisimulation and borrowed context step are too coarse to handle
NACs.

Our idea is to enrich the transition labels J → F ← K with some infor-
mation provided by the NACs in order to define a finer bisimulation based on
these labels. A label must not only know which structures (borrowed context) are
needed to perform it, but also which forbidden structures (defined by the NACs)
cannot be additionally present in order to guarantee its execution. These for-
bidden structures will be called negative borrowed contexts and are represented
by objects Ni attached to the label via monomorphisms from the borrowed con-
text F (see example below). In our server example, label1 would remain without
any negative borrowed context since rule1 has no NAC. However, label2 would
be the label below on the left, where the negative borrowed context F→ N1

specifies that if a T-task was in Q1, then NAC1 would have forbidden the BC
step of J→ G′ via rule2. That is, with the new form of labels the two graphs



are no longer bisimilar and hence we no longer have a counterexample to the
congruence property.

The intuition of negative borrowed contexts is the following: given J → G,
whenever it is possible to derive a label J → F ← K with negative borrowed
context F → Ni via a production p with NACs, then if J → G is inserted into
a context5 J → Ni ← J no further label can be derived from J → G via p

since some of its NACs will forbid the rule application (see example above on
the right). Put differently the label says that a transition can be executed if
the environment “lends” F as minimal context. Furthermore the environment
can observe that a production is only executable under certain constraints on
the context. Finally, it is not executable at all if the object G+ with borrowed
context already contains the NAC.

3.2 DPO with Borrowed Contexts – Extension to Rules with NACs

Now we are ready to extend the DPO-BC framework to deal with productions
with NACs. First we define when a BC step is executable.

Definition 6 (Executable Borrowed Context Step). Assume that all ar-
rows are mono. Given J → G, a production L ← I → R; {xy : L → NAC y}y∈Y

and a partial match G ← D → L, we say that the BC step is executable on
J → G if for the pushout G+ in the diagram below there is no py : NAC y → G+

with m = py ◦ xy for every y ∈ Y .

D //

��
PO

L
m

��

xy
//

=
NAC y

pyzzuu
uu

u

J // G // G+

In the following we need the concept of a pair of jointly epi arrows in order to
“cover” an object with two other objects. That is needed to find possible overlaps
between the NACs and the object G+ which includes the borrowed context.

Definition 7 (Jointly Epi Arrows). Two arrows f : A → B and g : C → B

are jointly epi whenever for every pair of arrows a, b : B → D such that a ◦ f =
b ◦ f and a ◦ g = b ◦ g it holds that a = b.

In a pushout square the generated arrows are always jointly epi. This is a
straightforward consequence of the uniqueness of the mediating arrow.

5
J → Ni is the composition of J → F → Ni.



Definition 8 (Borrowed Context Rewriting for Rules with NACs).
Given J → G, a production L ← I → R; {L → NAC y}y∈Y and a partial
match G← D → L, we say that J → G reduces to K → H with transition label
J → F ← K; {F → Nz}z∈Z if the following holds:

(i) the BC step is executable (as in Definition 6);
(ii) there is an object C and additional arrows such that Diagram (1) below

commutes and the squares are either pushouts (PO) or pullbacks (PB) with
monos;

(iii) the set {F → Nz}z∈Z contains exactly the arrows constructed via Dia-
gram (2) (where all arrows are mono). (That is, there exists an object Mz

such that all squares commute and are pushouts or arrows are jointly epi as
indicated.)

NAC y

D //

�� PO

L
m��

xy

OO

PO

Ioo //

�� PO

R

��

G //

PO

G+

PB

Coo // H

J

OO

// F

OO

��

Koo

OO <<

Nz

(1)

NAC y
//

=

Mz

PO

Nz
oo

L

xy

OO

m
//

j.epi

G+

OO

Foo

OO
(2)

In this case a borrowed context step is feasible and we write: (J → G)
J→F←K;{F→Nz}z∈Z
−−−−−−−−−−−−−−−→ (K → H).

Observe that Definition 8 coincides with Definition 3 when no NACs are
present (cf. Condition (ii)). By taking NACs into account, a BC step can only
be executed when G+ contains no forbidden structure of any NAC y at the match
of L (Condition (i)). Additionally, enriched labels are generated (Condition (iii)).

In Condition (iii) the arrows F → Nz are also called negative borrowed
contexts and each Nz represents the structures that should not be in G+ in
order to enable the BC step. This extra information in the label is of funda-
mental importance for the bisimulation game with NACs (Definition 9), where
two objects with interfaces must not only agree on the borrowed context which
enables a transition but also on what should not be present in order to per-
form the transition. The negative borrowed contexts F → Nz are obtained from

NAC y

xy

← L
m
→ G+ ← F of Diagram (1) via Diagram (2), where we create all

possible overlaps Mz of G+ and NAC y in order to check which structures the
environment should not provide in order to guarantee the execution of a BC
step. To consider all possible overlaps is necessary in order to take into account
that parts of the NAC might already be present in the object which is being
rewritten.

Whenever the pushout complement in Diagram (2) exists, the object G+

with borrowed context can be extended to Mz by attaching the negative bor-
rowed context Nz via F . When the pushout complement does not exist, some



parts of G+ which are needed to perform the extension are not visible from the
environment and no negative borrowed context is generated.

Due to the non-uniqueness of the jointly-epi square one single negative appli-
cation condition NAC y may produce more than one negative borrowed context.
Furthermore, the set {F → Nz}z∈Z is in general infinite, but if we consider
finite objects L, NAC y and G+ (i.e., objects which have only finitely many sub-
objects) there exist only finitely many overlaps Mz up to iso. Hence the set
{F → Nz}z∈Z can be finitely represented by forming appropriate isomorphism
classes of arrows.

A concrete instance of Diagram (2) is discussed in Section 5 in relation with
our running example.

Definition 9 (Bisimulation and Bisimilarity with NACs). Let P be a set
of productions with NACs and R a symmetric relation containing pairs of objects
with interfaces (J → G, J → G′). The relation R is called a bisimulation if, for

every (J → G)R (J → G′) and a transition (J → G)
J→F←K;{F→Nz}z∈Z
−−−−−−−−−−−−−−−→

(K → H), there exists an object with interface K → H ′ and a transition (J →

G′)
J→F←K;{F→Nz}z∈Z
−−−−−−−−−−−−−−−→ (K → H ′) such that (K → H)R (K → H ′).
We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that

relates the two objects with interface. The relation ∼ is called bisimilarity.

The difference between the bisimilarity of Definition 4 and the one above is
the transition label, which in the latter case is enriched with negative borrowed
contexts. Thus, Definition 9 yields in general a finer bisimulation.

We are now ready to show the congruence result. Recall that we are working
in the framework of adhesive categories. Our main result below needs one extra
requirement, namely that pullbacks preserve epis. The full proof of the following
theorem with all lemmas is contained in the technical report [11].

Theorem 2 (Bisimilarity based on Productions with NACs is a Con-
gruence). The bisimilarity ∼ of Definition 9 is a congruence, i.e., it is preserved
by contextualization as in Definition 2.

Proof (Sketch). In [7] it was shown for the category of graph structures that
bisimilarity derived from graph productions of the form L← I → R with monos
is a congruence. The pushout and pullback properties employed in [7] also hold
for any adhesive category. Here we will extend the proof of [7] to handle produc-
tions with NACs in adhesive categories. All constructions used in this current
proof are compliant with adhesive categories, except for some steps which require
that pullbacks preserve epis.

We will show that whenever R is a bisimulation, then R̂, which is the con-
textualization of R as in Definition 2, is also a bisimulation.

Let R be a bisimulation and let (J → G) R̂ (J → G
′
). That is, there is a

pair (J → G) R (J → G′) and a context J → E ← J such that J → G and

J → G
′
are obtained by inserting J → G and J → G′ into this context.



Let us also assume that (J → G)
J→F←K;{F→Nx}x∈X
−−−−−−−−−−−−−−−→ (K → H). Our goal

is to show that there exists a transition label (J → G
′
)

J→F←K;{F→Nx}x∈X
−−−−−−−−−−−−−−−→

(K → H ′) with (K → H) R̂ (K → H ′), which implies that R̂ is a bisimulation.

In Step A we construct a transition (J → G)
J→F←K;{F→Ny}y∈Y ∪Z

−−−−−−−−−−−−−−−−−→ (K → H)

which implies a transition (J → G′)
J→F←K;{F→Ny}y∈Y ∪Z

−−−−−−−−−−−−−−−−−→ (K → H ′) with
(K → H) R (K → H ′), since R is a bisimulation. In Step B we extend the
second transition to obtain the transition stated in our goal above. This argument
is basically the same as in [7], except for the fact that here we are dealing
with a bisimulation definition involving transition labels with negative borrowed
contexts.

Step A: From transition (J → G)
J→F←K;{F→Nx}x∈X
−−−−−−−−−−−−−−−→ (K → H) we can derive

Diagram (3), where the decomposition of J → G is shown explicitly, all arrows
are mono and all squares are pushouts, except for the indicated pullback.

NACw

D //

��

L
��

OO

Ioo //

��

R
��

G // G //
G

+
Coo // H

J

OO

// E

OO

J

OO

// F

PB

OO

��

Koo

OO GG

Nx

(3)

NACw

D //

��

D //

��

����
L

��

xxrrr
r

OO

I //

~~}}

��

oo R

��

����

G̃
//

��
>>

G+

%%K
KK

Coo //

��
??

H
��

==

G //

@@��

G //
G

+
Coo // H

F1
//

  
AA

OO

F
&&M

MM
M

OO

��

Koo

  BB

OO ??

J

OO

>>}}
// E

OO

// E2

OO

E1

OO

oo

??

Ny

J

OO

// F

OO

��
Koo

OO

GG

Nx

(4)

From Diagram (3) we construct Diagram (4) according to [7], i.e., we project
the borrowed context diagram of J → G to a borrowed context diagram of
J → G, first without taking into account NACs. The square (K,H,E1,H) is a
pushout.

Observe that all negative borrowed contexts Nx of the transition are obtained
via Diagram (7). It can be shown that such a diagram can be “decomposed”6

into two Diagrams (5) and (6), where the former shows the derivation of negative
borrowed contexts for G+. That is, every negative borrowed context of the larger

object G
+

is associated with at least one negative borrowed context of the smaller
object G+. Note that the transformation of one negative borrowed context into
the other via Diagram (6) is only dependent on the context J → E ← J , into
which J → G is inserted, but not on G itself, since E2 is the pushout of J → E,

6 We will use this “decomposition” result throughout the proof. Note that from Dia-
gram (7) we can construct Diagrams (5) and (6) and vice versa. The proof of this
result requires that pullbacks preserve epis.



J → F . This independence of G will allow us to use this construction for J → G′

in Step B.

In addition there might be further negative borrowed contexts F → Ny with
indices y ∈ Z, where Y and Z are disjoint index sets. These are exactly the
negative borrowed contexts for which Diagram (6) can not be completed since
the pushout complement does not exist. If we could complete Diagram (6) we
would be able to reconstruct Diagram (7).

Hence we obtain a transition from J → G which satisfies Conditions (ii) and
(iii) of Definition 8. We still have to show that the BC step for G+ is executable
(Condition (i)). By assumption, the BC step from J → G of Diagram (4) is
executable. One can show that a transition is executable if and only if none of
the derived negative borrowed contexts is an iso. This means that there does
not exist any iso F → Nx, which in turn implies that no F → Ny, y ∈ Y is an
iso. Furthermore no F → Ny with y ∈ Z can be an iso, since otherwise we could
complete Diagram (6). Finally we conclude with the observation above that the
BC step from J → G is executable.

Since all conditions of Definition 8 are satisfied, we can derive the transition

(J → G)
J→F←K;{F→Ny}y∈Y ∪Z

−−−−−−−−−−−−−−−−−→ (K → H) from Diagram (4) using Definition 9.

Since R is a bisimulation, this implies (J → G′)
J→F←K;{F→Ny}y∈Y ∪Z

−−−−−−−−−−−−−−−−−→ (K →
H ′) with (K → H) R (K → H ′). Additionally, we can infer from Diagram (4)
that K → H is the insertion of K → H into the context K → E1 ← K.

Step B: In Step A we have shown that J → G′ can mimic J → G due to

the bisimulation R. Here we will show that (J → G
′
) can also mimic (J → G)

since R is a bisimulation and both objects with interface are derived from the
insertion of J → G and J → G′ into the context J → E ← J .

We take the transition from J → G′ to K → H ′ with (K → H) R (K → H ′)

from Step A and construct a transition from (J → G
′
) to (K → H

′
) with (K →

H) R̂ (K → H
′
). Recall that J → G

′
is J → G′ in the context J → E ← J .
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According to [7] we obtain Diagram (8), first without considering the NACs.

The square (K,H ′, E1,H
′
) is a pushout. Then we construct {F → Nx}x∈X as

shown in Diagram (6). The arrows F → E2 ← F and {F → Ny}y∈Y are already
present in Diagram (8) and so we build M ′

x and Nx by considering all jointly epi
squares. Each F → Nx constructed in this way can be also derived as a negative

borrowed context with Diagram (7) (where G
+

is replaced by G
′+

) due to the fact
that we can construct Diagram (7) based on (5) and (6). Furthermore we will not
derive additional negative borrowed contexts because the arrows F → Ny with

y ∈ Z can not be extended to negative borrowed contexts of the full object G
′+

since an appropriate Diagram (6) does not exist. Hence we obtain a transition

label from J → G
′

which satisfies Conditions (ii) and (iii) of Definition 8. We

still have to show that the BC step for G
′+

is executable (Condition (i)).

Observe that F → E2 ← F of Diagram (6) are equal in Step A and Step B
and do not contain any information about G or G′. Hence we can conclude that
Diagram (6) generates the same negative borrowed contexts in both steps. Since
in Diagram (4) there is no negative borrowed context which is an iso, the same
holds for Diagram (8). By the observation concerning isos we conclude that the

BC step from J → G
′
is also executable.

Finally, by Definition 9 we infer that (J → G
′
)

J→F←K;{F→Nx}x∈X
−−−−−−−−−−−−−−−→ (K →

H
′
), and since the square (K,H ′, E1,H

′
) is a pushout, K → H

′
is K → H ′

inserted into the context K → E1 ← K. From earlier considerations we know
that K → H is obtained by inserting K → H into K → E1 ← K. Hence, we

can conclude that (K → H) R̂ (K → H
′
) and we have achieved our goal stated

at the beginning of the proof, which implies that R̂ is a bisimulation and ∼ is a
congruence.

4 Up-to Techniques for DPO-BC with NACs

Bisimulation proofs often need infinite relations. Up-to techniques [14] relieve the
onerous task of bisimulation proofs by reducing the size of the relation needed
to define a bisimulation. It is also possible to check bisimilarity with finite up-to
relations in some cases where any bisimulation is infinite. We first need to define
progression (see also [14]).

Definition 10 (Progression with NACs). Let R, S be relations containing
pairs of objects with interfaces of the form (J → G, J → G′), where R is sym-
metric. We say that R progresses to S, abbreviated by R  S, if whenever

(J → G)R (J → G′) and (J → G)
J→F←K;{F→Nz}z∈Z
−−−−−−−−−−−−−−−→ (K → H), there ex-

ists an object with interface K → H ′ such that (J → G′)
J→F←K;{F→Nz}z∈Z
−−−−−−−−−−−−−−−→

(K → H ′) with (K → H)S (K → H ′).

According to Definition 9, a relationR is a bisimulation if and only ifR R.



Definition 11 (Bisimulation up to Context with NACs). Let R be a sym-
metric relation containing pairs of objects with interfaces of the form
(J → G, J → G′). If R  R̂, where R̂ is the closure of R under contextu-
alization, then R is called bisimulation up to context.

Proposition 1 (Bisimulation up to Context with NACs implies Bisim-
ilarity). Let R be a bisimulation up to context. Then it holds that R ⊆ ∼.

Proof. Follows quite easily from the proof of Theorem 2 (see also [7]).

5 Example: Servers as Graphs with Interfaces

Here we apply the DPO-BC extension to NACs in order to check the bisimilarity
of two graphs with interfaces J1 → G1 and J1 → G2 (shown below on the right)
with respect to rule1 and rule2 of Section 3.1. Here G1 contains only one server,
whereas G2 contains two severs which may work in parallel.

Above on the left we show a transition derivation for J1 → G1 (which contains
only one server) via rule2 according to Definition 8. There is no mono NAC1 → G

+
1

forbidding the BC rewriting (Condition (i)) and the step is executable. The graph
C1 and additional monos lead to the BC step (Condition (ii)). The construction of
the negative borrowed context F1 → N1 from NAC1 ← L2 → G

+
1
← F1, as spec-

ified in Condition (iii), is shown on the right. Here the graph M1 is the only
possible overlap of NAC1 and G

+
1

such that the square with indicated jointly epi
monos commutes. Since the pushout complement F1 → N1 → M1 exists, G

+
1

can
be indeed extended to M1 by gluing N1 via F1. All three conditions of Definition 8
are satisfied and so the BC step above with label = J1 → F1 ← J1; {F1 → N1} is
feasible. This transition can be interpreted as follows: the environment provides
G1 with a T-task in Q2 (see borrowed context F1) in order to enable the BC step,
but the rewriting is only possible if no T-task is waiting in queue Q1 (see N1).

Analogously we can derive other transitions from J1 → G1 and J1 → G2,
where the labels generated via rule1 (without NAC) do not have any negative
borrowed context. So J1 → G1, J1 → G2 and all their successors can be matched
via a bisimulation and we conclude that (J1 → G1) ∼ (J1 → G2).



Note that in order to obtain an extended example, we could add a rule
modeling the processing of tasks waiting in queue Q1.

6 Conclusions and Future Work

We have shown how rules with NACs should be handled in the DPO with bor-
rowed contexts and proved that the derived bisimilarity relation is a congruence.
This extension to NACs is relevant for the specification of several kinds of non-
trivial systems, where complex conditions play a very important role. They are
also frequently used when specifying model transformation, such as transforma-
tions of UML models. Behaviour preservation is an important issue for model
transformation.

Here we have obtained a finer congruence than the usual one. Instead, if
one would reduce the number of possible contexts (for instance by forbidding
contexts that contain certain patterns or subobjects), we would obtain coarser
congruences, i.e., more objects would be equivalent. Studying such congruences
will be a direction of future work.

Furthermore, a natural question to ask is whether there are other extensions
to the DPO approach that, when carried over to the DPO-BC framework, would
require the modification of transition labels. One such candidate are generalized
application conditions, so-called graph conditions [15], which are equivalent to
first-order logic and of which NACs are a special case. Such conditions would
lead to fairly complex labels.

Due to the fact that the bisimulation checking procedure is time consuming
and error-prone when done by hand, we plan to extend the on-the-fly bisim-
ulation checking algorithm, defined in [16, 17], for productions with NACs. In
order to do this efficiently we need further speed-up techniques such as addi-
tional up-to techniques and methods for downsizing the transition system, such
as the elimination of independent labels. Preliminary investigations have already
determined that the proof technique eliminating independent labels as in [6, 7]
(or non-engaged labels as they are called in [18]) does not carry over straight-
forwardly from the case without NACs.

Some open questions remain for the moment. First, in the categorical setting
it would be good to know whether pullbacks always preserve epis in adhesive
categories. This question is currently open, as far as we know. Second, it is
unclear where the congruence is located in the lattice of congruences that respect
rewriting steps with NACs. As for IPO bisimilarity it is probably not the coarsest
such congruence, since saturated bisimilarity is in general coarser [19]. So it
would be desirable to characterize such a congruence in terms of barbs [20].

Also, it is not clear to us at the moment how NACs could be integrated
directly into reactive systems and how the corresponding notion of IPO would
look like. In our opinion this would lead to fairly complex notions, for instance
one would have to establish a concept similar to that of jointly epi arrows.

Acknowledgements: We would like to thank Tobias Heindel for helpful
discussions on this topic.
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