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Abstract

This thesis is concerned with verification and analysis techniques for software
systems characterized by dynamically evolving structure, such as dynamic cre-
ation and deletion of objects, mobility and variable topology. Examples for
such systems are pointer structures, object-based systems and communication
protocols in which the number of participants is not constant.

The approach taken here is based on graph transformation systems, an
intuitive and—at the same time—powerful formalism for the modelling of dis-
tributed and mobile systems. So far there exists comparatively little research
concerning the verification of graph rewriting.

We will—in the first part of this thesis—introduce graph transformations
and give an overview of existing analysis and verification methods, with a focus
on the verification of systems with dynamically evolving structure. Then we will
describe three original lines of research: behavioural equivalences, type systems
and approximation by Petri nets, all of them concerned with the analysis of
graph transformation systems.

The second part consists of eight refereed research papers treating the pre-
viously introduced analysis and verification techniques in depth.
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Chapter 1

Introduction

Computers, networks and software are becoming increasingly more complex and
interconnected. There exists even the notion of a global ubiquitous computer
with and in which we will some day be living. In such a situation where com-
puters and software systems determine and shape our lives, it is important not
only to be able to build these systems, but also to understand existing systems,
whether it is by testing, diagnosis, or verification and analysis.

Especially systems that are characterized by their dynamic evolution, mo-
bility, creation and deletion of objects and their infinite-state space are difficult
to handle with today’s methods. Being able to cope with these systems is im-
portant for analyzing communication protocols, mobile systems, object-based
systems, and also—on a somewhat smaller scale—programs handling complex
pointer structures on the heap.

The approach taken in this thesis is to base verification and analysis methods
on a natural and relatively simple modelling language that has been studied
for quite some time: graph transformation systems. Graph transformations
are a formalism which captures the essence of the problematic features, such
as connectedness, mobility, topology and dynamics. States are represented
by graphs, while system evolution is described by graph transformation rules.
Research concerned with the verification and analysis of these systems started
only fairly recently.

Established analysis and verification techniques such as bisimulations, type
systems and abstract interpretation can—to some extent—be carried over to the
field of graph rewriting and hence to systems with dynamically evolving struc-
ture. However, this transfer is not straightforward, since many new problems
have to be addressed in this setting and hence new techniques and methods have
to be developed. Furthermore it is possible to use concepts from concurrency
theory such as unfoldings and partial order reductions.

Naturally, this is just a first step and several important questions will remain
unanswered for the moment. But we hope that many interesting ideas and
methods can be found in this thesis and that it is a step into the right direction
towards being able to analyze complex dynamically evolving structures.

This habilitation thesis consists of two parts:
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• A General Introduction: In this part we will give an overview of the
contents of this thesis. This overview is meant to be informal, it will
be a tutorial-style introduction concentrating on intuition rather than on
formal definitions. The technical content is contained in various papers
in the second part.

We will first introduce graph transformation systems (Chapter 2) and
then survey existing verification and analysis techniques, especially those
which are dealing with dynamically evolving structures (Chapter 3). Af-
terwards we will introduce three different verification techniques for graph
transformation systems: behavioural equivalences (Chapter 4), type sys-
tems (Chapter 5) and abstract interpretation by approximating graph
transformation systems by Petri nets (Chapter 6). Finally we end this
part with a short conclusion (Chapter 7).

• Contributions: The second part consists of eight research papers contain-
ing original contributions to this area. These papers have been accepted
for conferences or journals. Compared to earlier versions, the formatting
has been changed and in some places proofs that were missing in the con-
ference versions have been added for completeness. A list of these eight
papers can be found on page 66.

Hence the contents of this thesis can be summarized in the following table.

Chapter Title Remarks

Part I: A General Introduction

1 Introduction

2 Modelling Dynamically Evolving
Structures using Graph
Rewriting

3 A Short Summary of Methods
and Techniques in Static
Analysis and Verification

3 Behavioural Equivalences for
Graphs

Summarizes Chapters 8
and 9.

5 Assigning Types to Graphs Summarizes Chapters 10
and 11.

6 Approximating Graphs by Petri
Nets—An Unfolding-Based
Approach

Summarizes
Chapters 12, 13, 14,
and 15.

7 Conclusion

Part II: Contributions

8 Deriving Bisimulation
Congruences in the DPO
Approach to Graph Rewriting

Contains [EK04a].
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9 Observational Equivalence for
Synchronized Graph Rewriting
with Mobility

Contains [KM01].

10 A General Framework for Types
in Graph Rewriting

Contains [Kön00a].

11 Analysing
Input/Output-Capabilities of
Mobile Processes with a Generic
Type System

Contains [Kön].

12 A Static Analysis Technique for
Graph Transformation Systems

Contains [BCK01].

13 Approximating the Behaviour of
Graph Transformation Systems

Contains [BK02].

14 A Logic for Analyzing
Abstractions of Graph
Transformation Systems

Contains [BKK03].

15 Verifying Finite-State Graph
Grammars: an Unfolding-Based
Approach

Contains [BCK04b].
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Chapter 2

Modelling Dynamically
Evolving Structures using
Graph Rewriting

2.1 An Introduction to Graph Rewriting

Many structures in computer science can be described by graphs: computer
networks, communicating processes, pointer structures on the heap, UML dia-
grams, and many others. These graphs are mostly static descriptions of system
states. Adding dynamics requires some means to describe state changes, such
as graph transformation rules. The theory of graph transformation systems
has its origins in the 1970’s and a rich theory is now available [Roz97]. It
has found many applications in the modelling of concurrent systems [EKMR99]
and in other areas such as software engineering, database design, VLSI layout,
bioinformatics and visual languages [EEKR99].

Graph rewriting is well-suited for the specification of dynamically evolving
structures, possessing features such as dynamic creation of objects, mobility
and variable topology. Furthermore, graph transformation systems are a very
intuitive, natural and general framework. This makes them suitable for an
underlying specification language, on which fundamental methods for the veri-
fication of dynamically evolving structures can be based.

However, until recently there has been very little work on static analysis and
verification of graph transformation systems. This is probably partly due to the
fact that research in this area so far had a strong focus on semantic issues such as
rewriting formalisms, expressiveness and concurrency. Furthermore research on
verification techniques has only recently reached a point where it seems feasible
to tackle systems of such an inherent complexity, which can model mobility
and dynamically changing topologies. More details concerning related work in
static analysis and verification can be found in Chapter 3.

In our setting we will usually use hypergraph rewriting. Hypergraphs are
an extension of directed graphs where every edge has its own identity and
is connected to an arbitrarily long sequence of nodes. Furthermore they are
convenient for the specification of concurrent systems, for instance a process

11



with m external ports can be modelled by an m-ary hyperedge. Rewriting
rules for graphs are similar to productions in Chomsky grammars, consisting of
a left-hand side (the graph to be rewritten) and a right-hand side (the graph
to be created). Different from string or term rewriting, we additionally provide
an interface graph, describing the parts of the original graph that are to be
preserved. The interface is furthermore important for specifying how the right-
hand side should be attached to the remaining original graph.

In the rest of this chapter we will first define hypergraphs and hypergraph
morphisms, then we will formally introduce graph rewriting in two different
ways (based on sets and based on category theory). In the end we will give
some recipes describing how concurrent and other systems can be modelled in
a convenient way using graph rewriting.

2.2 Hypergraphs and Hypergraph Morphisms

We define hypergraphs as a generalization of directed graphs. In a hypergraph,
hyperedges sharing common nodes are considered as the central components.

We assume that there is a fixed set Λ of labels. Unless said otherwise we will
only consider finite hypergraphs, i.e., hypergraphs with finite node and edges
sets.

Definition 2.2.1 (Hypergraph) Let Λ be a set of labels. A hypergraph G
is a tuple (VG, EG, cG, lG), where VG is a set of nodes, EG is a set of edges,
cG : EG → VG

∗ is a connection function and lG : EG → Λ is the labelling func-
tion for edges satisfying ar(lG(e)) = |cG(e)| for every e ∈ EG. Nodes are
unlabelled.

As usual, morphisms are mappings that preserve the structure of the objects
under consideration.

Definition 2.2.2 (Hypergraph morphisms) Let G,G′ be hypergraphs. A
hypergraph morphism ϕ : G → G′ consists of a pair of functions (ϕV : VG →
VG′ , ϕE : EG → EG′) such that for every e ∈ EG it holds that lG(e) = lG′(ϕE(e))
and1 ϕV

∗(cG(e)) = cG′(ϕE(e)).

A hypergraph morphism ϕ : G → G′ is called isomorphism/ injective mor-
phism whenever ϕV and ϕE are bijective/injective. In this case we say that G
and G′ are isomorphic (in symbols: G ∼= G′).

In the following we will usually drop the indices of the mappings ϕV , ϕE .
Furthermore we will use the terms graph and hypergraph interchangeably. We
are interested in graphs only up to isomorphism, i.e., we will often consider
isomorphism classes of graphs.

Hyperedges will be depicted using rectangles with rounded corners contain-
ing its label, connected to nodes via so-called tentacles (see the left-hand side
edge of Figure 2.1 for a hyperedge with label A ∈ Λ). Since the position of a

1By ϕV
∗(s) we denote the pointwise application of ϕV to every element of the string s.
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node in the string cG(e) of nodes attached to an edge e matters, we will usu-
ally number the tentacles. The string cG(e) may contain duplicates. Whenever
e is binary, i.e., cG(e) = v1v2, we depict the hyperedge by drawing an arrow
from v1 to v2, as in the case of directed graphs (see the right-hand side edge of
Figure 2.1).

A
1

3

2

0

4

B
v1 v2

Figure 2.1: Two ways of drawing hyperedges.

2.3 A Set-Based Notion of Graph Rewriting

As described above, graph rewriting rules consist of a left-hand side, a right-
hand side and an interface graph, which is embedded into the other graphs by
graph morphisms.

Definition 2.3.1 (Rewriting rule) A graph rewriting rule r is a tuple

(L
ϕL← I

ϕR→ R)

where ϕL : I → L and ϕR : I → R are injective graph morphisms.

A graph rewriting rule as defined above is often written L ← I → R. It is
depicted in Figure 2.2 in a schematic way. Concrete examples can be found in
Figure 2.5.

L

I

oo // R

Figure 2.2: Schematic representation of a graph rewriting rule.

Whenever we detect a left-hand side L in a graph G we can apply the
corresponding rule. We preserve its interface, but remove all other components
of L from G. Then we attach the interface of R to the preserved interface in G.
When doing this we have to make sure that we do not remove a node attached
to an edge that is preserved, this is ensured with the so-called dangling edge
condition. Otherwise the application of the rewriting rule is disallowed, since
the resulting graph is not well-defined.

Definition 2.3.2 (Graph rewriting) Let r = (L
ϕL← I

ϕR→ R) be a graph
rewriting rule and let ϕ : L → G be an injective match of the left-hand side
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of r in G. Since ϕ, ϕL and ϕR are injective and we are interested in graphs
only up to isomorphism, we can assume that all morphisms are set-theoretic
inclusions, i.e., ϕ(x) = x, ϕL(x) = x and ϕR(x) = x for all items x of the
respective graphs. Furthermore we assume that the sets of elements of G and
R that are not in the range of ϕ ◦ ϕL respectively ϕR are disjoint.

Furthermore it holds for every e ∈ EG − EL that no node attached to e is
contained in VL − VR (dangling edge condition).

By applying r to the match ϕ we obtain a new graph H, written G
r
⇒ H (or

simply G⇒ H), which is defined as follows:

VH = (VG − VL) ] VR EH = (EG − EL) ] ER

cH =

{
cG(e) if e ∈ EG − EL
cR(e) if e ∈ ER

lH(e) =

{
lG(e) if e ∈ EG − EL
lR(e) if e ∈ ER

We denote by ⇒∗ the transitive closure of the rewriting relation ⇒.

In the schematic representation, the application of a rule L ← I → R to a
graph G produces the rewriting step G⇒ H depicted in Figure 2.3.

L ⇒ R

Figure 2.3: Schematic representation of a rewriting step.

Note that the theory has been extended to non-injective rule spans and
non-injective matches.

We finally define the notion of a graph transformation system which consists
of a set of rules and a start graph.

Definition 2.3.3 (Graph transformation system) A graph transformation
system (or GTS) G = (R, G0) consists of a set of rewriting rules R and a start
graph G0. We say that a graph G is generated by G whenever G0 ⇒

∗ G.

Some of the verification techniques will require some restrictions on rules, for
instance we may forbid to delete nodes or we may require that the interface is
discrete, i.e., it consists of nodes only. In other cases it is convenient to consider
an extension of the graph rewriting mechanism described above, by allowing
non-injective matches of the left-hand side. Note that these modifications are
of a rather technical nature and that all graph rewriting formalisms considered
in this thesis are Turing-complete and thus hard to analyze.

Example 2.3.4 We will now introduce a running example being used in the
rest of this part of the thesis. The example will also reappear in Chapter 14.

Consider a system where processes compete for resources R1 and R2. A
process needs both resources in order to perform some task. The system is
represented as a GTS Sys as follows: graph nodes are standing for ports or

14



connection points used for attaching components. These components are mod-
elled by hyperedges, where a hyperedge has tentacles to all ports it is connected
with. In this specific example it is sufficient to consider binary edges only.

We consider edges labelled by R1, R2, R
f
1 , R

f
2 standing for assigned and free

resources, respectively, and P1, P2 and P3 denoting the states of a process wait-
ing for resource R1, a process waiting for resource R2 and a process holding
both resources, respectively. Furthermore, edges labelled by D1 and D2 repre-
sent the demand of a process and connect the target node of a process and the
source node of a resource when the process is asking for the resource. When
the target node of a resource coincides with the source node of a process, this
means that the resource is assigned to the process. The initial scenario for Sys
is represented in Figure 2.4, with a single process P1 asking for both resources.

P1

R
f
2

R
f
1

D1

D2

Figure 2.4: Start graph of Sys with one process and two resources.

Figure 2.5 shows the three rules of the graph transformation system. In
this case, the interface graphs are always discrete. These nodes and their cor-
responding images in the left-hand and right-hand sides are numbered in order
to indicate the graph morphisms.

Rule [AcquireResourcei,j ] can be instantiated with i = j = 1 and i = j = 2
(we will consider different instantiations later) and shows how a free resource

Rfi is assigned to a process which subsequently changes its state either from
P1 to P2 or from P2 to P3. A process being in possession of both resources
can free them and switch to state P1 (see rule [ReleaseResources]). The system
described by these two rules has only finitely many states (up to isomorphism)
and is thus not very challenging. In order to obtain a truly infinite-state system
we add rule [CreateNewProcess] describing the forking of a process creating a
new process having access to the same resources.

It is essential that we restrict ourselves to instances of rule [AcquireRe-
sourcei,j ], where i = j. If we would also add rule [AcquireResource1,2], where a
process in state P1 can acquire resource R2, the initial graph could be rewritten
to a deadlock situation, i.e., there is a vicious circle where processes are waiting
for each other to release their resources (see Figure 2.6).

Note that this is only a toy example being used to illustrate the main con-
cepts of this thesis. References to more elaborate case studies can be found in
Section 6.8.
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Figure 2.5: Rewriting rules for Sys.
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Figure 2.6: Creation of a vicious cycle representing a deadlock.
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2.4 Category Theory for Graph Rewriting—The
Double-Pushout Approach

The set-based notion of graph rewriting has several drawbacks, especially when
used in proofs. It is very cumbersome to construct new graphs by taking union
and intersection, by factoring through equivalences (in order to merge compo-
nents) and also to make sure that appropriate disjointness criteria are met and
that the dangling edge condition holds. Proofs in this notation can get very
long and hard to decipher. It is usually easier and more elegant to character-
ize graphs via the relations between them, i.e., via morphisms. For instance,
one could define the disjoint union of two graphs using a so-called universal
properties as the “most general graph” (in a sense which will be made precise
below) into which both graphs can be mapped via morphisms. Such universal
properties are studied in category theory [Mac71, Pie91].

Categorical approaches also give us the possibility to speak in general about
“graph-like structures” and obtain results that do not only hold for specific
classes of graphs—such as directed graphs or hypergraphs. This is important
since the notion of “graph” is far from fixed, different variants of graphs arise
in different application areas.

We will, in the following present the double-pushout (DPO) approach
[EPS73]—one of the standard frameworks for graph rewriting—which is based
on categorical notions and gives an elegant definition of graph rewriting. A dif-
ferent approach, which is also frequently used but which will not be considered
in this thesis, is the so-called single-pushout (SPO) approach. For an overview
of these approaches see [Roz97].

The DPO (double-pushout) approach is based on a specific form of colimit
in category theory [Mac71, Pie91], the so-called pushout. In the category of
graphs and graph morphisms pushouts formalize a very intuitive concept: gluing
together two graphs by merging a common subgraph. We will define pushouts
only for graphs and graph morphisms, although the definition below can be
easily generalized to arbitrary categories.

Definition 2.4.1 (Pushout) Let ϕ1 : G0 → G1 and ϕ2 : G0 → G2 be two
graph morphisms. The pushout of ϕ1 and ϕ2 consists of a graph G3 and two
graph morphisms ψ1 : G1 → G3, ψ2 : G2 → G3 such that ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2

and for every other pair of morphisms ψ′1 : G1 → G′3, ψ
′
2 : G2 → G′3 such that

ψ′1 ◦ ϕ1 = ψ′2 ◦ ϕ2 there exists a unique morphism ψ : G3 → G′3 such that
ψ ◦ ψ1 = ψ′1 and ψ ◦ ψ2 = ψ′2.

G0

ϕ1

��

ϕ2
// G2

ψ2

��
ψ′

2

��
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

G1
ψ1

//

ψ′
1

((PPPPPPPPPPPPPPP G3 ψ

  

G′3
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The morphism ψ in the definition above is also called mediating morphism.
Observe that we can obtain this morphism “for free” whenever we have a
pushout and another commuting square, i.e., a square for which the composi-
tions of morphisms coincide. The existence of mediating morphisms is a central
concept that is used in many proofs.

Pushouts always exist (in the category of graphs and graph morphisms)
and are uniquely defined up to isomorphism. Furthermore the pushout of two
injective morphisms consists again of two injective morphisms. Pushouts can
be explicitly constructed using the following gluing operation.

Proposition 2.4.2 (Explicit construction of pushouts) Let ϕ1 : G0 → G1

and ϕ2 : G0 → G2 be two graph morphisms and construct a graph G3 as the dis-
joint union of G1 and G2 factored through the relation ≡ on nodes and edges
of G1 and G2, which is defined as the smallest equivalence satisfying:

• ϕ1(e) ≡ ϕ2(e) for every edge e ∈ EG0
and

• ϕ1(v) ≡ ϕ2(v) for every node v ∈ VG0
.

Furthermore let ψ1 : G1 → G3, ψ2 : G2 → G3 be morphisms mapping every edge
and node to its equivalence class. Then G3, ψ1 and ψ2 are well-defined and
satisfy the definition of a pushout.

Having formally defined the notion of “gluing”, we can now define a rewrit-
ing step in the DPO approach.

Definition 2.4.3 (DPO rewriting step) A rule (L
ϕL← I

ϕR→ R) consisting of
two (not necessarily injective) graph morphisms can be applied to a graph G,
resulting in a graph H, if there is a match morphism ϕ : L→ G and we can find
a graph C and morphisms such that the two squares in the following diagram
are both pushouts.

L

ϕ

��

I
ϕL

oo
ϕR

//

��

R

��

G Coo // H

The intuition behind this definition is the following: We first have to remove
the left-hand side (apart from its interface) from the graph G, which is done by
locating a graph C such that gluing L and C along the interfaces results in G.
Then we glue together C and R resulting in the graph H. This is schematically
depicted in Figure 2.7.

The graph C is usually called pushout complement and it might not always
exist. Specifically if the removal of L would leave some edges without attached
nodes (see also the dangling edge condition in Definition 2.3.2), there is no way
to complete the diagram in order to obtain two pushouts.

Note also that if we start with three injective morphisms ϕL, ϕR, ϕ, the
diagram can be completed using only injective morphisms. In this case we have
exactly the situation described in Definition 2.3.2.
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Figure 2.7: Schematic representation of graph rewriting in the DPO approach.

As mentioned earlier, the DPO approach can be used not only to model
rewriting on graphs, but also on many other graph-like objects. There is a
family of categories—adhesive categories [LS04]—that capture exactly the no-
tion of structures for which it is possible to cut substructures out and to attach
new structure. This general view on graph rewriting is also known as high-level
replacement [EGPP99, EHPP04].

Coming back to the running example, we can depict a rewriting step cor-
responding to the application of rule [AcquireResource1,1] in Figure 2.8. Again
numbered nodes indicate how morphisms map nodes into the graphs.
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Figure 2.8: A DPO rewriting step in system Sys.

2.5 Modelling Dynamically Evolving Structures—
Some Recipes

In the following we give some recipes describing how to model frequently oc-
curring computational structures by graph rewriting. The list is by no means
exhaustive, neither are these suggestions original. Its purpose is to give a gen-
eral impression about how to model dynamic evolution using graphs and graph
transformation. The presented encodings can be easily automated.
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Functions: When modelling functions and functional programming, a func-
tion with n parameters can be depicted by an n+1-ary hyperedge with
one node for its result and the remaining n nodes in order to attach the
parameters. Using these edges one can either construct tree-like terms
or—alternatively—acyclic graphs modelling the sharing of common sub-
terms. The latter technique is used in efficient implementations for func-
tional programming languages.

In this case, the right-hand graph stands for the term f(g(p1, p2), p2, p1).

... 1

0

0

f

2

g
1

p1 p2

2 3

0

1 n− 1 n

f
2

Ordered trees: In the same vein as above, one can build ordered trees. It is
equally easy to model trees without any order on the children of a parent
node using binary edges.

0

n1

0

21

n3

l3 l4

21

0

21

n2

l1 l2

n1

n3

l3 l4

n2

l1 l2

Processes: Hyperedges are especially convenient for the modelling of pro-
cesses, where a process has a number of ports (= nodes) in order to
interact with its environment. If we compare to process calculi such as
the π-calculus [Mil99, SW01], nodes roughly correspond to the (channel)
names of a process. There are several encodings of the π-calculus into
graph rewriting based on that idea [MP95, Kön00c]. Although the term
is not standard, one could describe these encodings as hierarchical en-
codings: They reflect the term structure of processes in the boundaries
of hyperedges. Encoding a specific process gives us a graph representing
this process and a set of rules describing its behaviour.

On the other hand there are a number of encodings [GM01, GM02] of a
different type, that flatten the term structure and encode one process into
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a flat graph consisting mainly of the syntax tree of the process together
with connections representing channels or shared ports. The set of reac-
tion rules is finite and fixed. Encodings of λ-terms into acyclic graphs
with sharing (see [Wad71, BvEG+87]) are also of this type. Although
the fixed set of rules is a strong point in favour of such encodings, they
usually have problems modelling replication and recursion. Furthermore
they usually require rules merging nodes, leading to non-injective mor-
phisms in graph rewriting rules, which might complicate the analysis of
such systems.

Petri nets: Graph transformation systems are in some sense a generaliza-
tion of Petri nets. While Petri nets describe rewriting on multi-sets,
graph transformation systems model rewriting on more complex struc-
tures. There is a very simple and straightforward encoding of Petri nets
into graph transformation systems: A token on place s is represented by a
0-ary hyperedge labelled s, while a transition t becomes a rewriting rule.

The following figure shows an example for such an encoding.

s2s1

s3

s4

t1
t2t3

s2s3

s2s1t1:

t2:

t3:

s2s1Initial Graph:

s3

s3 s1 s4

Control states: There are some approaches to add to graph transformation
systems features especially useful for programming [Sch96, HP01]. Some
features such as a control or program state can be easily added. For
instance we might want to add a set of control states {`1, . . . , `n} and
require that rules can be only applied in certain control states. This can
be modelled by adding a 0-ary edge representing the control state to the
initial graph and modifying all rules in such a way that they are only
applicable if a suitable “control edge” is present. Furthermore they must
replace the old control state with the new control state.

There are also more sophisticated approaches to programming with graph
transformation systems, see for instance PROGRES [Sch96].

Operations on pointers: Verifying programs manipulating pointer structures
on the heap is an important application area for our techniques. Pointer
structures can naturally be considered as graphs, while program state-
ments can be interpreted as graph transformation rules. Rather than
giving a general encoding—which is possible—we will show with an ex-
ample how to encode such programs. Similar examples can be found in
[RV04]. Comparable problems arise when object-oriented languages are
encoded into graph transformation systems [CDFR04, WG96].
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We consider the following program deleting the last element of a linked
list. The variable start points to the first element of the list, the remain-
ing elements can be reached using the next selector. The end of the list
is reached if we find the null pointer. For this program we assume that
the list contains at least two elements.

1: x:=start;

2: y:=start->next;

3: while y->next6=null do

4: x:=y;

5: y:=y->next

od;

6: x->next:=null

Figure 2.9 shows such a linked list, modelled as a hypergraph, where
cells are generic elements of the list. The rules in Figure 2.10 specify
the deletion of its last element according the program given above. Note
that here we use 0-ary hyperedges indicating program states, as suggested
above. Conditional branches in the program are modelled using rules that
check whether a specific subgraph is present without deleting or creating
anything. Some parts of the graph might get disconnected, for instance
the last cell which is being deleted from the list. These disconnected parts
can be considered as garbage, to be removed by a garbage collector.

For more convenience it might sometimes also be necessary to use rules
with negative application conditions, i.e., additional conditions that say
that a rule can only be applied whenever certain substructures are not
present. These negative application conditions do not integrate well with
most of the techniques presented in this thesis, their integration is an
interesting and important direction of future research.

start

cell

next

cell

next

cell

next

null

Figure 2.9: A linked list.

Graph transformation rules can easily model local transformations on graphs.
It is possible in principle to work with graph transformation frameworks allow-
ing non-local transformations using complex embedding rules, but these are
not considered here. First, while at the most abstract level of computation,
graph rewriting steps might take a non-local form, system models closer to
an implementation will always be describable by local steps. Second, it seems
highly unlikely to obtain satisfactory analysis techniques using such complex
transformation rules.

There is one issue we have neglected so far and that is the integration of data
values. Although the formalisms under consideration are Turing-powerful, for
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Figure 2.10: Rules describing the deletion of the last element of a linked list.

23



convenient modelling and the encoding of real-world programming languages,
data values, such as integers and strings attached to nodes and edges, are usu-
ally needed. These data values attached to graph components are also called
attributes and they can be useful for modelling counters, message contents, and
other information. There is some work on attributed graph transformation sys-
tems [EPT04, BFK00, LKW93], especially in the framework of high-level graph
rewriting [EHPP04, EGPP99]. Here, however, we will not consider attribution;
the analysis task is sufficiently interesting and complex without them. Fur-
thermore verification can usually take place at a more conceptual level where
concrete attribute values are ignored. Finally, it seems fairly straightforward
to integrate attributes into most of the approaches presented here, although
it will notably complicate the notation. If we want to approximate infinitely
many reachable graphs by some finite means, it will usually be unavoidable to
abstract data values having an infinite domain. Such abstraction techniques are
well-studied in the theory of abstract interpretation [CC77, Cou96, NNH99].
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Chapter 3

A Short Summary of Methods
and Techniques in Static
Analysis and Verification

In this chapter we will summarize established analysis and verification tech-
niques with an emphasis on methods that are relevant in our setting. In sub-
sequent chapters we will then present adaptations of these techniques to the
verification of dynamically evolving graphs.

Let us first clarify how the terms “verification” and “(static) analysis” are
used. The exact meaning of this terms varies, but there seems to be a tendency
to use them in the following way: The term “verification” is used for techniques
that are complete in the sense that they can either provide a positive answer
(“Yes, the property holds!”) or a negative answer (“No, the property does not
hold.”). If we work with Turing-complete models, non-trivial verification prob-
lems are always undecidable, which leads to problems if we want to mechanize
and automate proofs. In this case some form of interaction with the user is
required. The term “(static) analysis” on the other hand refers to techniques
which compute some form of approximation or abstraction of a system, con-
taining all its runs, possibly together with additional, so called spurious, runs
that have no counterpart in reality. In this case the analysis tool may give
answers of the form “I don’t know.” if asked whether a certain property holds
for a given system.

We will in the following first give a general summary of these techniques
and then treat in more detail the analysis and verification of dynamic graph-
like structures.

3.1 Verification Techniques

In the context of this thesis we are mainly interested in the following two ver-
ification problems: the equivalence problem (see Chapter 4) and the model
checking problem (see Chapter 6).

The equivalence problem can be stated as follows: We are working in some
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formalism that allows us to specify systems and that furthermore has some no-
tion of behavioural equivalence, i.e., it is defined when two systems should be
considered equivalent from the point of view of behaviour. This is a widespread
notion in the theory of reactive systems, and especially in process algebra
[BPS01]. In this framework actions of processes, such as for instance com-
munication actions, are visible to the environment and two processes are con-
sidered to be equivalent whenever they can not be distinguished by an external
observer. Depending on the power that is given to the observer, this leads to
different notions of behavioural equivalence: strong and weak bisimilarity, trace
and failures preorders, or testing equivalences.

We are then provided with a system description Sys and a (usually much
simpler) specification Spec of the system. The question to answer is then
whether the system and its specification are behaviourally equivalent (some-
times written Sys ∼ Spec). This technique is applicable in cases where an
internally complex system has a fairly simple observable behaviour. This is
true whenever the implementation is substantially more complex either for rea-
sons of efficiency or of distribution. Especially the latter case applies to reactive
systems: The behaviour of the system observed by the environment may be eas-
ily describable, but its internal structure can be much more complex, due to
the fact that the functionality of the system has to be distributed and hence
performed by several processes simultaneously.

It is usually required that behavioural equivalences are also congruences,
i.e., closed under the operators of the calculus. This makes sure that replacing
a subsystem by an equivalent one does not change the overall system behaviour.

Sometimes it is not feasible to give a full specification of the system; this is
true for instance in the case of mutual exclusion protocols, where the specifica-
tion of the system has more or less the same size than the system itself. In these
cases and in cases where we are only interested in specific systems properties we
consider the model checking problem [CGP00], which is to determine whether
a system Sys satisfies a property ϕ, usually written Sys |= ϕ. In the case of
reactive systems, this property is usually a formula in a temporal logic, specify-
ing the future evolution of a system. Typically such properties are reachability
(“There is a reachable state which satisfies . . . ”), safety properties and liveness
properties [AS85, Pra94].

Temporal logics can be grouped into linear time logics, such as LTL, spec-
ifying properties for all possible paths in the transition graph of a system,
and branching time logics, such as CTL (= computation tree logic), specifying
properties for each system state and the potential branching behaviour of the
system starting from that system state. Even more general temporal logics
uniting the linear time as well as the branching time view are CTL∗ and the
modal µ-calculus [CGP00].

The model checking of finite-state systems is a well-developed research area,
which has produced powerful tools such as SPIN [Hol97] and SMV [McM98].
Model checking has been especially successful in hardware verification. Soft-
ware, however, usually requires the verification of infinite-state transition sys-
tems, making necessary either the integration of approximation techniques (see
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also Section 3.2) or the generalization of model checking techniques to infinite-
state systems [Esp97].

3.2 Static Analysis Techniques

Static analysis has its origins in data flow analysis for compiler optimizations,
but it soon became clear that software verification is another important ap-
plication area, as witnessed by early seminal papers on abstract interpretation
[Cou96, CC79, CC77]. Abstract interpretation (see Chapter 6) is a technique
in which a program is executed on abstract data. For instance, instead of
computing with integers, one performs operations on abstract values such as
odd and even. More generally, abstract interpretation can be seen as a way to
over-approximate a system by a simpler system being more amenable to analy-
sis. Abstract interpretation can be conveniently combined with model checking
[CGL99] where first an over-approximation of the system is computed which is
subsequently verified by a model checker. An important point to notice here is
that in the temporal logics existential quantification over the runs of a system
(“There exist a run such that . . . ”) usually has to be disallowed since runs
satisfying such a formula might be spurious, introduced by the approximation.1

Whenever a formula is found to be true in model checking, the restrictions on
the set of formulas ensure that it is also true for the original system. If, how-
ever, the formula does not hold on the approximation, we can not directly draw
any conclusions. If a counterexample is provided, we could check whether it
is spurious and, if so, refine the abstraction in such a way that the counterex-
ample disappears, a method which is called counterexample-guided abstraction
refinement [CGJ+00].

A quite different analysis technique can be obtained by using type systems
(see Chapter 5). Type systems in our setting will go beyond assigning types
such as integer or boolean to program variables. We adopt a more recent
view of types, where types give an abstract representation of system invariants
or future behaviour.

Apart from well-known type systems for imperative programming languages
and slightly more complex type systems for functional languages such as ML,
quite complex type systems have been developed for process calculi, checking
properties such as input/output-behaviour [PS96, KPT99], absence of deadlocks
and livelocks [Kob98, Kob02], or security properties [Aba99, BDNN98, HVY00,
HR00].

The type systems we are interested in here are Curry-style type systems
where the program is given without type annotations and there are typing rules
describing how to derive valid types. Usually such a type system is also equipped
with a type inference algorithm computing the most general or principal type
of a program. The fact that a program can be typed and its type can give us
valid information about its behaviour. This may include the absence of runtime

1This restriction can be lifted by exploiting both under- and over-approximations or using
so-called mixed abstractions [DGG97, Kel95].
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errors, but could potentially give us much more specific information, such as
for instance its input/output behaviour. Compared to other analysis methods
mentioned earlier in this chapter, type systems are a modular analysis method,
since the type of a system can be derived inductively by considering the types
of its subsystems.

3.3 Verification and Analysis of Dynamically Evolv-
ing Structures

Concerning the analysis of dynamically evolving graph-like structures we can
distinguish two main lines of research: First, methods that are derived from
classical program analysis frameworks such as data flow analysis and that are
concerned with the analysis of pointer structures in imperative programs. Some,
even imprecise, analyses of this form are always required in the analysis of C or
Java programs. Fairly simple analysis methods based on data flow or control
flow analysis are the alias analysis, which identifies variables pointing to the
same location, and the points-to analysis, providing estimates of pointer values.
There are two different ideas on which pointer analysis may be based: either
one assumes a fixed bound k on the length for access paths (so-called k-limiting)
and merges all memory locations that can only be reached in more than k steps,
or one merges all elements of the same type or class (such as lists, trees, arrays,
etc.). Furthermore, in order to obtain good analysis results it is important to
perform a context-sensitive analysis, where the analysis result for a procedure
depends on the calling context. An overview over pointer analyses can be found
in [Wil97].

More general methods, also based on data flow analysis, for finding over-
approximations of pointer structures are known as shape analysis techniques.
One successful idea is to represent these over-approximations as models of a
3-valued logic [SRW02], where the values of the logic state whether a pointer is
present (value 1), not present (value 0) or possibly present (value 1/2). Modi-
fications on pointer structures have the following effect on the approximation:
First the part of the approximation where the modification should take place
is brought into focus by removing the indefinite value 1/2, then the modifica-
tion is applied and finally the resulting structure is coerced, i.e., brought into
normal form. The technique is not fully automatic, in order to obtain good
results, predicates and predicate transformers have to be defined manually. On
the other hand, the method can derive fairly accurate information regarding
reachability and acyclicity in data structures. Shape analysis has also been
applied to other areas such as process calculi [NNS00].

A second, much more recent, line of research is more general and is con-
cerned with the analysis of graph transformation systems. There has been
comparatively little work on verification and analysis methods so far. This is
probably caused by the fact that the analysis of graph transformation systems
is necessarily quite complex and research in the area of graph grammars and
graph transformation systems so far had a strong focus on semantic issues such

28



as rewriting formalisms, expressiveness, concurrency and applications such as
software engineering.

While some research groups [Var02, DFRS03] pursue the idea of translating
graph transformation systems into the input language of a model checker, others
attempt to develop new specialized methods for graph rewriting. Work from our
side goes in this latter direction, as well as [Ren04a, Ren03, Ren04b]. Although
it is tempting to use existing optimized model checking tools, there is good
reason for developing new techniques, even for finite state spaces. Existing
tools usually do not directly support the creation (and deletion) of an arbitrary
number of objects while still maintaining a finite state space, making entirely
non-trivial their use for checking finite-state GTSs. Similar problems arise
for process calculi agents with name creation, which has also led to specialized
techniques in this area such as HD-automata [Pis99]. A nice overview comparing
these two fundamentally different approaches can be found in [RV04].

It is important to mention that apart from our approach and from some re-
sults in [Ren04a, Ren04b], which describe static analysis techniques for infinite-
state systems, all methods mentioned earlier are verification techniques for
finite-state systems.

Early work and ideas on the verification of graph transformation systems
and specific temporal logics can be found in [Koc00, GHK98]. In these pa-
pers temporal logics is enriched by graphical constraints, suitable for specifying
the behaviour of graph transformation systems. In [Hec98] a compositional
method for verifying graph transformation systems is presented. These more
foundational approaches do not lend themselves to easy mechanization.

29



Chapter 4

Behavioural Equivalences for
Graphs

In this chapter we will address the following questions: What is a suitable notion
of behavioural equivalence for graphs and graph transformation systems, i.e.,
when can two graphs be considered equivalent? Is this notion of equivalence
also a congruence, i.e., is it preserved whenever a graph is embedded into a
larger context? And finally, what are suitable proof techniques that help us to
make equivalence proofs easier?

4.1 Basic Definitions

The behavioural equivalence we will focus on in this chapter is bisimilarity,
a very natural notion that lends itself to mechanization and efficient proof
techniques to a greater extent than other equivalences, such as trace or failures
equivalence. Bisimilarity can be defined in a coinductive way in a very general
setting, entirely independent of graph transformation systems.

Definition 4.1.1 (Bisimulation and Bisimilarity) Let →⊆ Q× Λ×Q be
a transition relation with labels from a set Λ over a set of states Q. We write

q1
`
→ q2 whenever (q1, `, q2) is contained in →.
A symmetric relation R ⊆ Q × Q is called bisimulation whenever the fol-

lowing condition holds:

Whenever (q1, q2) ∈ R and q1
`
→ q′1, then there exists a state q′2 such

that q2
`
→ q′2 and (q′1, q

′
2) ∈ R.

Two states q1, q2 are called bisimilar if there exists a bisimulation R with
(q1, q2) ∈ R. This is written q1 ∼ q2 and the relation ∼ is called bisimilar-
ity.

Alternatively one can also define the notion of bisimilarity as a game between
two players A and B. Player A attempts to show that two states q1 and q2 are
not bisimilar, whereas player B wants to show that they are bisimilar. Player A

chooses either q1 or q2 and makes a transition qi
`
→ q′i which B should mimic
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doing q3−i
`
→ q′3−i. This gives us a new pair (q′1, q

′
2) and the previous step is

repeated. Player B wins if he can keep the game going for an infinitely long time
and loses when it can not mimic a move of A. The states q1, q2 are bisimilar if
and only if B has a winning strategy.

Bisimulations have been studied in concurrency theory for some time [Par81].
They have been used for proving the correctness of protocols [LM86, RE99] and
there are several tools available that support and mechanize bisimilarity proofs,
such as the Edinburgh Concurrency Workbench1, HAL2 (a tool which is based
on HD-automata [Pis99]), tools using up-to techniques for bisimulation veri-
fication [Hir99] and of course—more generally—also theorem provers such as
PVS, Isabelle or Coq.

For graph transformation systems, bisimulation theory has only been devel-
oped recently [BMS00, BCM02, KM01, EK04a, SS04].

4.2 Bisimilarity is a Congruence—A History of Re-
search

The states of a system are usually not atomic objects, but terms or—in our
setting—graphs. It is thus desirable to make sure that bisimilarity is a con-
gruence, i.e., it is preserved by the available operators, the most important of
which is usually parallel composition. Congruence is a very desirable property
since it allows to replace a subsystem with an equivalent one without changing
the behaviour of the overall system and furthermore helps to make bisimilarity
proofs modular.

Bisimilarity naively defined on top of a given labelled transition system is
usually not a congruence. A simple example is the CCS reduction rule a.P |
ā.Q

τ
→ P | Q describing two parallel processes a.P and ā.Q synchronizing on an

action a. If we consider only this rule and denote the resulting bisimilarity by
∼, then clearly a.P ∼ b.P , since both are inactive processes, but a.P | ā.Q 6∼
b.P | ā.Q, since one process can reduce, while the other can not.

There are several methods to ensure that bisimilarity is indeed a congruence.

Manual proofs: The most straightforward method is certainly to show man-
ually that bisimilarity is a congruence, as it was done for process calculi
CCS [Mil80] and the π-calculus [Mil99, SW01]. This approach can be very
tedious, specifically it can be very hard to find the appropriate labels.

Rule formats: A different approach uses rule formats such as the de Simone
format [dS85] and the tyft/tyxt-format [GV92]. If the rules describing
a labelled transition system agree with these rule formats, then it follows
automatically that bisimilarity is indeed a congruence. Usually these
rule formats disallow the use of parallel composition on the left-hand
side of a rule and demand that interaction is described locally from the

1http://www.dcs.ed.ac.uk/home/cwb/
2http://fmt.isti.cnr.it/hal/HAL/
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point of view of a single component, while moving all the information on
interaction with the external environment into the labels.

Deriving labels: A more recent idea that originated in [Sew02] and [LM00] is
to start from an unlabelled transition systems describing internal reaction
of the system. From this unlabelled transition system a labelled one is
automatically generated in such a way that bisimilarity is a congruence.
The basic idea is to use as labels the minimal contexts that a process
needs to react.

Interestingly research on this topic, which is still ongoing, shifted its focus
from process calculi to rewriting of graph-like structures such as bigraphs
[Jen, JM03, SS04], since the derivation of labels works more smoothly in
these settings.

This thesis contains contributions to the second approach (see Section 4.2
and Chapter 9) and the third approach (see Section 4.3 and Chapter 8), in both
cases for graph transformation systems. In the following we will mainly give
some intuition about the third approach and describe its relationship to the
second approach.

4.3 Deriving Labels in the DPO Approach to Graph
Rewriting

In order to define a notion of equivalence on graphs that takes into account
(future) interaction with its environment or context, we have to formally define
the following concepts:

• What does it mean to compose a graph with a context? Gluing of graphs
is naturally defined by pushouts (see Definition 2.4.1), but a notion that
is not so common in graph rewriting is to inductively compose graphs
out of smaller subgraphs (see for instance [GH97, Kön02]). This notion
requires that graphs are equipped with interfaces.

• What are the transition labels describing interaction with the environ-
ment? From other work on this topic it is clear that labels should be
contexts which allow a graph to rewrite. Since contexts are basically
graphs, labels in this setting will also be graphs. Furthermore in order
not to get an overwhelmingly large (or even infinite) number of labels, we
require that the contexts should be minimal in the sense that they only
provide the necessary items needed to complete a partial left-hand side.

This minimality requirement for labels can be illustrated for graphs in the
following way (see Figure 4.1). At first we see the schematic representation of a
graph G with interface, i.e., with specific nodes and edges that can be composed
with a context. In this graph G we can find a partial match of a left-hand side
L, overlapping with G. If we only take the new, previously non-existing parts
of L and the interface of G (in order to be able to compose), we obtain a label
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F as the minimal context, also called borrowed context, which G needs in order
to complete its partial match. The resulting labelled transition is depicted in
the lower half of Figure 4.1.

Interface

G G

L

F

GG

R
F

Figure 4.1: Deriving labels for graph transitions (schematic representation).

Formally, a graph with interface is an injective graph morphism J → G,
where J is the interface. Although this is not indicated in Figure 4.1, contexts
have an inner and an outer interface in order to ensure that composing a graph
with interface with a contexts results again in a graph with interface. So, a
graph context is a pair of two injective graph morphisms J → F ← K, where
J is the inner and K is the outer interface. Composing a graph with interface
J → G with a context J → F ← K gives a graph with interface K → G, which
is obtained by the following pushout construction.

J

��

// F

��

Koo

��

G // G

PO

Using again pushouts and also pullbacks, a related categorical concept, we can
describe how to obtain the minimal context F . A more detailed description can
be found in Chapter 8. Here we will illustrate the derivation of a context using
an example. We consider the rules of system Sys introduced in Section 2.3 (see
Figure 2.5) and the following graph with interface J → G.

1

2

//

1

2

P1

D1

D2

This graph contains a total match of rule [CreateNewProcess] and a partial
match of rule [AcquireResource1,1]. Figure 4.2 shows how the partial left-hand
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side of rule [AcquireResource1,1] can be completed to a full left-hand side L by

attaching the shaded edge labelled Rf1 . This figure also indicates the borrowed
context F that consists of the new components and the interface J of G.

L

F

3 1

2
D2

R
f
1

D1

P1

Figure 4.2: Completing a left-hand side.

Note that the graph G does not contain a non-trivial partial match of
rule [AcquireResource2,2] although both G and the left-hand side of this rule
contain an edge labelled D2. But there is no way to attach a context to the
external nodes such that the full left-hand side is present. Naturally, there is
the possibility of adding a disjoint copy of every left-hand side to G, but that
is trivial partial match that need not be considered.

In the following we consider the partial match of rule [AcquireResource1,1]
depicted in Figure 4.2. So the borrowed context should contain this edge,
including its inner interface, which coincides with J , and an outer interface
containing nodes 1 and 2 and the new node 3 which has been freshly created.
The derived graph context J → F ← K is shown in Figure 4.3. Observe that
attaching J → F ← K to J → G gives us the graph depicted in Figure 4.2
with nodes 1, 2, 3 as the interface. By rewriting this graph using rule [Ac-
quireResource1,1] we obtain a graph H. This graph H with its interface K is
also depicted in Figure 4.3. Intuitively this rewriting step says: “Whenever we
attach an available resource Rf1 to a process requiring two resources, then the
process can proceed by acquiring this resource.” It is denoted by

(J → G)
J→F←K
−→ (K → H).

The main result of Chapter 8 says that bisimilarity defined on top of these
labelled transitions is a congruence relation. Put differently, this means that
a subsystem can always be replaced by a bisimilar one, without changing the
behaviour of the entire system. In Chapter 8 a simple example of this kind
is presented, where we show that a simplex connection in two directions can
always be replaced by a duplex connection.

Independently of our work, another way of deriving labels for graph transi-
tion systems has been presented in [SS04]. This approach describes minimality
using a universal property, formally defined by so-called relative pushouts. It
has turned out that both approaches generate the exact same labels. While
the approach in [SS04] has the advantage that the universal property can be
used in order to show the congruence result also for other equivalences such as
trace and failures equivalences, our approach is much simpler and describes a
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J → F ← K:
1

2

//
1

2

3
R
f
1 1

2

3

oo

K → H:
1

2

3

//

13

2
D2

P2

R1

Figure 4.3: Graphs belonging to a labelled transition step.

concrete and straightforward way for the derivation of labels that is well-suited
for mechanization.

We can now come back to our example and give a specification of system Sys
(see Figure 4.4). The specification is more abstract than the system description
itself since instead of representing processes and their resources structurally,
it just stores their number. So, an edge labelled Spec(p, r1, r2) stands for a
subsystem consisting of p processes, r1 of which are in possession of resource
R1, and r2 of which are in possession of the resources R1 and R2.

Using the proof techniques presented in Chapter 8 we can show that the two
graphs in Figure 4.5 are bisimilar. Both are equipped with a discrete interface
consisting of two nodes, numbered 1 and 2.

This gives us additional certainty that the system indeed behaves as ex-
pected. Furthermore we also gain knowledge about how such a subgraph be-
haves when put into a context where unlimited resources are available, which
is different from the situation of the start graph depicted in Figure 2.4. Since
a process can multiply it can consume more than two resources, whenever they
are available.

Furthermore, if we attach two edges labelled Rf1 , R
f
2 to an edge labelled

Spec(1, 0, 0) and assume an empty interface (see Figure 4.6), we can easily show
that the resulting graph transition system is bisimilar to a transition system
consisting of one state and a loop only, i.e., it has arbitrarily long runs and
never terminates. Because of the congruence property this means that also the
start graph depicted in Figure 2.4 is equivalent to such a transition system and
this shows that we will never reach a deadlock situation in which the entire
system is blocked.

See Chapter 8 for more details and a different example.
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Spec(p, r1+1, r2)
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Spec(p+1, r1, r2)

Figure 4.4: A specification of system Sys.

∼
1

2

1

2

P1

D1

D2

Spec(1, 0, 0)

Figure 4.5: Two bisimilar graphs.

R
f
2

R
f
1

Spec(1, 0, 0)

Figure 4.6: Attaching two resources to the specification.
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4.4 Bisimilarity for Synchronized Graph Rewriting
with Mobility

Different from research presented in the previous section, the work presented
in this section is not concerned with the derivation of labels from unlabelled
reduction rules, but is related to work on specific rule formats ensuring that
bisimilarity is a congruence.

We start with a labelled transition system for graphs, where labels are not
graphs, but actions, similar to the setting of process calculi. Furthermore, the
left-hand side of a rule consists of one hyperedge only, a restriction necessary
in this setting in order to obtain the congruence property. Hyperedges agree
on actions on their shared nodes.

For giving the graph transformation system sufficient power in order to
model meaningful systems, the following two features are introduced:

• Synchronization: Parts of a graph can be rewritten in parallel, provided
that the hyperedges synchronize in a consistent fashion on their shared
nodes. In principle, the entire graph can participate in such a rewriting
step.

The form of synchronization used where processes agree on one and the
same action a is called Hoare synchronization. This is different from
Milner synchronization, where an action a is matched with a coaction ā.

• Mobility: In a rewriting step not only single edges are replaced by right-
hand sides, but new shared nodes can be created as well.

This framework is called synchronized hyperedge replacement [HM01] and
its origins go back to [DM87]. It provides us with a powerful formalism that can
be specified using the so-called tile logic [GM02]. Results from the theory of
tile logic then imply that bisimilarity is in fact a congruence relation, whenever
left-hand sides consist of single hyperedges only. Congruence in this setting is
meant with respect to a set of operators on graphs having a power comparable
to graph contexts.

More details are presented in Section 9.

4.5 Evaluation

The work described in Section 4.4 is strongly inspired by notions from the theory
of process calculi, including the use of actions as labels. It uses a graph trans-
formation model that is closer to process algebra than, for instance the DPO
approach. This was one of the first papers to address the issue of bisimulation
congruences in the setting of graph transformation systems.

The (more recent) research presented in Section 4.3 seems to be very natural
in the context of graph rewriting. Furthermore it fits exactly into a line of
research [LM00, SS03] which originated from the area of process calculi and
which is concerned with the derivation of labelled transitions and bisimulation
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congruences. Hence it is a further step in recent efforts towards a closer link
between process algebra and graph transformation.

The work described in Section 4.3 can be recast in the framework of adhesive
categories [LS04], which—intuitively—describe structures that can be rewritten
by cutting substructures away and gluing structures together. Working on
this high level of generality has the advantage that we can not only present
the theory for specific graph rewriting frameworks, such as directed graphs or
hypergraphs, but in general for all graph-like structures. This also shows that
the theory is stable and does not have to be altered when different graph models
are used.

While the main focus of the work presented in this chapter is on the se-
mantic side, other work [LM86, RE99] has shown that bisimilarity and other
behavioural equivalences can be used successfully for verification. The notion
of bisimilarity is very general and proof techniques are available which help to
simplify and mechanize bisimulation proofs [MS92a, Hir99, Hir98]. One area
where behavioural equivalences are very useful for verification is the analysis of
cryptographic protocols. Properties such as secrecy and authentication that are
hard to grasp otherwise can be defined and verified using behavioural equiva-
lences [FGM00, AG97, BBN04].

Sometimes this approach can not be used since full specifications are hard to
obtain for some kinds of systems. Also, the automatic derivation of bisimulation
proofs is no easy task, which means that the use of behavioural equivalences for
verification and analysis has to be complemented by other techniques, which
are more straightforwardly mechanizable and implementable. In the next two
chapters we will introduce two such techniques: type systems and abstraction.
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Chapter 5

Assigning Types to Graphs

In the following we will address the following questions: What is the type of
a graph? How should a type systems for graph rewriting look like? Which
properties can be checked using such a type system? How can we do type
inference in a modular way?

Type systems for programming languages have been used for a long time in
order to ensure well-typed programs and to avoid runtime errors. For impera-
tive programming languages, usually fairly simple types such as int, real or
bool are used. Type systems become more complex for functional languages
such as the λ-calculus [Bar90, DM82] and ML [MCP93] and for object-oriented
programming with inheritance and subtyping.

Even more complex type systems have been introduced for process calculi,
checking properties such as input/output behaviour [PS96, KPT99], absence of
deadlocks and livelocks [Kob98, Kob02], security properties [Aba99, BDNN98,
HVY00, HR00], allocation of permissions to names [RH97] and many oth-
ers. There are also interesting type systems for higher-order variants of the
π-calculus [YH02]. In this way type systems have evolved from a technique
used to avoid runtime errors to a more general method which can be used for
verification and analysis.

Seen more abstractly, a type system is an inference system, allowing to
derive judgements of the form p . t, where p is a program and t is a type,
inductively over the structure of the program. The notation p . t is read as “p
has type t” or “type t can be assigned to p”.

Type systems have the advantage of being a modular analysis method, i.e.,
the type of a system can be derived from the types of its subsystems. Further-
more, type inference algorithms are usually quite efficient, compared to other
verification methods. Naturally this also means that type systems approximate,
sometimes quite strongly. This means that there will be many graphs satisfying
a certain property that can not be typed. But there are still many interesting
properties for the checking of which type systems are quite appropriate. They
can especially be used for fast debugging and in order to complement other
more involved techniques. There are also type-based tools such as TyPiCal1 for
analyzing processes.

1http://www.kb.cs.titech.ac.jp/~kobayasi/typical/
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We will present a general framework for such type systems, also called
generic type system, which attempts to play a similar role than the monotone
frameworks in data flow analysis that can be instantiated in order to perform
various analyses [NNH99]. Note that the main difficulty here lies in determin-
ing an elegant and not overly complex way of integrating various different type
systems for different languages. Among others, type systems for the π-calculus
(see Chapter 10) and the λ-calculus can be integrated into this framework.

5.1 What is the Type of a Graph?

The first question that we have to answer is the following: What is the type of a
graph? In order to answer this question it is important to review an important
concept from graph rewriting: so-called type graphs [CMR96]. A type graph
TG represents a set of graphs, namely all graphs which can be mapped to TG
via morphisms.

A concrete practical example of a type graph is a UML class diagram with
added relations (inheritance, associations, dependencies, etc.). Then a state of
the system consisting of objects and their relations should be mappable into the
class diagram via a graph morphism, mapping each object to its corresponding
class. In this sense the class diagram represents all these system states.

In typed graph rewriting a type graph TG is given a priori and all rules
have to be typed over this graph, i.e., left-hand side, interface and right-hand
side have to be mapped into TG such that the resulting diagram commutes.
Then, if rules are applied according to their typing, we can show that every
reachable graph can again be typed.

Let us emphasize that this notion of type is quite different from what will
be presented in this chapter. In the existing work on type graphs a type graph
is fixed a priori and all transformations have to adhere to it. This is similar to
a Church-style type system, where programs with type annotations are given
and it remains to check whether these annotations are valid. If one wants to use
type system for analysis purposes however, one is rather interested in having
a Curry-style type system where a system without type annotations is given,
and the most general type of a given graph is derived using some type inference
algorithm.

Still, what can be learned from earlier work on type graphs is the fact
that the natural type of a graph is another graph and there exists a morphism
between them. Morphisms can be seen as a subtype preorder on graphs with
the following meaning: whenever there exists a morphism ϕ : G1 → G2, then
G2 can be seen as an approximation of G1 and G1 is more “exact” than G2.
The graph G2 can intuitively be seen as more abstract since ϕ fuses graph
elements and furthermore adds components. Since the nodes and edges of a
type graph stand for structure that might be there, but must not be there,
G2 is an approximation of G1. Or put, differently, if G1 represents all graphs
that can be mapped to G1 with a morphism, then all these graphs are also
represented by G2. Similar ideas will be pursued in Chapter 6.

For type systems we will generalize this idea of having a morphism between
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the graph G and its type in the following way:

• We will, in a preprocessing step, make local modifications to G, using
a so-called linear mapping. These modifications will mainly consist in
removing irrelevant parts of the graph and to single out exactly the com-
ponents that contain relevant information for the property to be checked.

In the same step we will also annotate the graph by lattice elements that
give us additional information about the future behaviour of a graph. Pos-
sible annotations are for instance input and output that indicate whether
a node representing a port or channel is used for input or output (or both).
One could also annotate ports by information describing what kinds of
messages can be sent over these ports.

• After the preprocessing of G we obtain an annotated graph T for which
we require that there exists a morphism into the type graph, which is
annotated as well. We do not allow arbitrary annotated graphs as types,
but restrict ourselves to a subset satisfying certain consistency criteria.
The graph T generated by the local preprocessing step does not necessarily
satisfy these criteria. The most general such graph into which T can be
mapped by a morphism can be considered as the principal type of G.

This global step can be viewed as the application of a closure operator.
Different closure operators are admissible, as long as they satisfy certain
properties (see below).

These steps are necessary to obtain meaningful analysis results and in order
to be able to integrate well-known existing type systems, for instance for the
λ-calculus or for the π-calculus.

We will illustrate the steps above using the running example Sys introduced
in Section 2.3. Our aim is to show the following simple property of the graph
transformation system:

No free resource is ever assigned to a process. Or put into slightly
different words: From the target node of an edge labelled Rfi there
is no outgoing path.

This property is neither very deep nor hard to check, but it is suitable to
illustrate the main ideas of a type system using the running example.

Step 1 (Determine the type of a single edge): We consider the edge

labels (Pi, R
f
i , Ri, Di) of the running example. To each edge we assign a

corresponding type graph having the same interface, i.e., the same number of
external (numbered) nodes (see Figure 5.1).

The components of a type graph have the following meaning:

• An unlabelled edge from a node v1 to a node v2 means that there might
be a path from v1 to v2, either now or in the future when the system
evolves.
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Figure 5.1: Typing edges.

• Nodes have annotations taken from a two-element lattice. In Figure 5.1
we omit the annotation whenever a node is annotated by the bottom
element of the lattice and write T whenever the node is annotated by the
top element. This annotation is used to mark nodes that might be the
target node of an edge labelled Rfi .

Note that there might be over-approximation in both cases. What we have
to make sure is that if there is—in reality—a path between two nodes, then
there exists an edge in the type graph. And if a node is the target of an edge
representing a free resource, then it is marked with T . The implications in the
other direction must not be satisfied. This is also the reason why T is the top
element of the lattice, since the information it represents is less restricting than
the information given by a missing annotation.

Into the type graphs corresponding to a single edge we have invested prior
knowledge about future system behaviour. For instance, we have to know that
whenever there is an edge P1, then at some point in time the processes repre-
sented by this edge may acquire a resource which gives us a path leading from
the target to the source node of the edge. In the same vein, whenever there is
an edge Ri, then this resource might be released at some point in the future,
which means that a node annotated with T will be created.

It is unavoidable that the local typing of a single edge depends on the
rules of the type system. Also for classical type systems, such as λ-calculus
type systems, a type system is given for a fixed set of rewriting rules. Then
we can type every expression of the calculus respectively every possible start
graph and obtain a meaningful result containing abstract information about
the future behaviour of a system. It would also be an interesting direction of
future work to automatically derive local types from the rewriting rules. This
will have to be done in such a way that we can show type invariance, also called
the subject reduction property (see also Section 5.2).

We can now replace every hyperedge of the start graph depicted in Figure 2.4
by its type and obtain the annotated graph in Figure 5.2.

Step 2 (Deriving the final type graph): If drawing an edge in the type
graph means that there might be a path between these nodes, then the graph
shown in Figure 5.2 is not yet a valid type graph. It is still necessary to take
the transitive closure of the path-relation, leading us to the type graph depicted
in Figure 5.3.

As mentioned above, this step is related to closure operators. Specifically,
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Figure 5.2: Replacing every edge by its type.
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Figure 5.3: The final type graph.
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it should be the case that whenever we apply this closure operator to graphs,
glue these graphs together and apply the closure operator again, then this
corresponds to gluing the original graphs together and applying the closure
operator. Intuitively this means that gluing graphs together and taking the
closure can be mixed in any possible way, provided that taking the closure is
the last step. This is needed in order to ensure compositionality.

5.2 Requirements for Type Systems

Now, if we look at the type graph in Figure 5.3, there is indeed no edge going
out of a T -node. From the way we have constructed the type graph we can
now infer that there is indeed no outgoing path from the target of an edge
representing a free resource in the start graph. This can be expressed as the
first requirement we demand for a useful type system.

Correctness: Let X be a property on graphs (in our case: no free
resource is ever assigned to a process) and let Y be a property on
type graphs (in our case: there is no outgoing path from a node
labelled T ). Then it holds that whenever a graph G can be typed and
the type satisfies Y , then G must satisfy X.

Of course, this first requirement is not sufficient. In order to determine that
the start graph satisfies X, we could have just inspected it. In order to show
that not only the start graph but all graphs reachable from the start graph
satisfy X, we need the following type invariance property.

Subject reduction property: If a graph is rewritten, it does not
change its type.

In order to actually obtain this property we have to take into account that
the type of a graph might become stronger (with respect to the morphism
preorder) during rewriting. So we have to define that a graph G having a type
T also has all types weaker than T , i.e., all type graphs T ′ for which there exists
a morphism T → T ′. Then there may be several types of a graph, but one of
them is the strongest, also called minimal or principal type.

Another requirement that should hold for type systems is the following.

Compositionality: The type of a graph can be obtained by com-
posing the types of its subgraphs, followed by an additional closure
operation.

This property is satisfied by the type system presented above, since we
can always type subgraphs, glue the types together and finally compute the
transitive closure as we have done before. Performing the transitive closure
operation several times will not change the final result. This can be derived from
the fact that the transitive closure of a relation R can be described by a universal
property (“the smallest relation that contains R and for which (x, y), (y, z) ∈ R
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implies (x, z) ∈ R”). In Chapter 10 we describe in more detail how defining
closure operators using universal properties can lead to very general proofs of
compositionality.

In general, the closure operators used in this framework are related to closure
operators on lattices as they are also used in abstract interpretation [CC77].
Closure operators in our setting can be quite powerful, but in order to be
admissible they have to satisfy certain properties detailed in Chapter 10. The
operators derived using universal properties as explained above automatically
satisfy these properties. In Chapter 10 closure operators are also called global
or folding operators and are denoted by the letter f .

We have now fixed some properties that should be satisfied by every type
system. This is especially important in this setting, since there is hardly any
theory for type systems for graph rewriting and it is thus important to state the
criteria that should be satisfied by every type system. In Chapter 10 we present
a general framework for such type systems that satisfies the above properties.

A question that has not been addressed in great detail up to now, but
that will be treated in Chapter 10 is the inductive construction of graphs. For
“text-based” calculi types are usually defined inductively on the structure of a
term. Graphs are usually not defined inductively, but are seen as collections of
nodes and edges; inductive views on graphs and graph transformation are rare.
Hence Chapter 10 will also introduce an appropriate notion of composing and
decomposing graphs.

5.3 Proving the Subject Reduction Property

Such a general framework only makes sense if we can obtain useful theorems
on this high level of abstraction. One such theorem is the definition of very
general closure operators that ensure compositionality.

Another, and even more important, theorem concerns the subject reduction
property. We can show that it is sufficient to show type invariance locally for
every rewriting rule and that this implies the subject reduction property.

So, coming back to our example we show that the subject reduction property
holds by inspecting every rule separately. For instance, we consider rule [Ac-
quireResourcei,i] (see Figure 5.4). We type both the left-hand and the right-
hand side and can see that the type of the right-hand side is stronger than
that of the left-hand side, i.e., there exists a graph morphism ϕ from right to
left. This graph morphism also has to preserve external nodes and annotations,
where the annotation of a node ϕ(v) (the image of a node v) must be greater
than or equal to the annotation of v. All these properties are satisfied in this
case.

By checking the remaining two rules as well we can conclude that this type
system does satisfy the subject reduction property. Now, the type graph of the
start graph depicted in Figure 5.3 does indeed satisfy property Y (no outgo-
ing paths from a T -node), and we can hence infer that every reachable graph
satisfies the property we wanted to check.
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Figure 5.4: Typing rule [AcquireResourcei,i].

5.4 Applications of Type Systems

There are two quality tests such a general framework can be subjected to. First,
we should show that existing type systems can be obtained as special cases
by instantiating the framework. Second, we could generate new type systems
checking useful properties.

We have done the former by showing how the standard π-calculus type
system and a type system for concurrent object-oriented programming can be
derived from our type system (see Chapter 10). It is not a part of this thesis
but we have also shown how a simple type system for the λ-calculus can be
obtained as a special case.

Furthermore the framework has been instantiated in order to derive informa-
tion on input/output behaviour (see also Section 5.5), for checking acyclicity
and for enforcing a security policy for untrustworthy applets (see [Kön00b]).
Furthermore Chapter 10 contains a section on a type system for concurrent
object-oriented programming.

5.5 Counting Input/Output-Capabilities—A Trans-
fer of Ideas to the World of Mobile Processes

So far we have annotated type graphs using lattice elements, which means taking
the supremum or join of the lattice whenever two nodes or edges are merged
(see for instance Figure 5.4 where the two nodes on the left of the right-hand
side are merged). This leads to a smooth theory, but does not allow counting,
i.e., we are not able to check properties such as “there is always at least one
edge labelled A” and “there are at any time at most three processes listening
at a certain port”. For this it is necessary to annotate type graphs with natural
numbers or, more generally, monoid elements.

Unfortunately the very general theory of lattice annotations developed in
Chapter 10 does not easily generalize to monoid annotations. This is still a
challenging task for future work. But it turned out that such type systems
can be given for the π-calculus using more specific annotations (assigning sin-
gle monoid elements to channel names). This has been done by transferring
the concepts already developed for graph rewriting into the world of mobile
processes. Although this type system looks quite different from type systems
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for graph rewriting on the surface, there are strong connections, which is also
witnessed by the fact that the standard type system for the π-calculus can be
obtained as a special case of the graph type system (see Chapter 10).

The π-calculus type system obtained in this way nicely complements sim-
ilar type systems for the π-calculus [KPT99]. More details can be found in
Chapter 11.

5.6 Evaluation

Type systems are a simple, modular and efficient method for automatic analysis.
As we have seen they can also be adapted to dynamic systems and used to derive
invariants of structural properties of a graph or network. Type systems of this
kind are new, but they integrate nicely with existing type systems, for instance
for the π-calculus and for the λ-calculus.

The central idea is that one can assign types to graphs according to their
structure, taking into account all possible behaviours, so that we obtain a com-
pact abstract representation of everything that might happen in the future.
Another—quite different—compact representation of the possible evolutions of
a system is the unfolding of a system, which contains much more detailed infor-
mation. We will show in the next chapter how unfoldings can be used in order
to obtain a more expensive, and also more precise analysis technique.

The efficiency of type systems is an advantage and a disadvantage at the
same time. A disadvantage, since having a technique which is runtime-efficient
also means that a fair amount of approximation is involved. Furthermore type
systems are meant for checking system invariants and not for model-checking
formulas of a temporal logic. So it seems that type systems are mainly useful
for fast debugging and not for checking overly complex properties. Certainly
one analysis method such as type systems can not stand on its own, but has to
be complemented with other methods, in order to be useful and applicable in
practice. This will also require the closer integration of various techniques in
the future.

47



Chapter 6

Approximating Graphs by
Petri Nets—An
Unfolding-Based Approach

Since graph transformation systems can model Turing-complete systems, all
interesting questions about the behaviour of a graph grammar, such as termi-
nation, the occurrence of certain events or temporal properties are undecid-
able. Abstract interpretation is a partial solution to this problem: instead of
executing the system itself we execute an abstract version of it which over-
approximates the original system behaviour.

Now, there are two important questions to answer:

• Which abstract system model should be used? We chose to approximate
graph transformation systems by Petri nets for the following reasons:
graph transformation systems can be seen as a straightforward gener-
alization of Petri nets (see also Section 2.5) and Petri nets are a simpler
computational model which is not Turing-complete and which is easier
to verify. Many problems that are undecidable for graph transformation
systems become decidable for Petri nets [EN94, Jan90, HRY91].

Furthermore Petri nets are inherently concurrent, meaning that no arti-
ficial ordering has to be imposed on events happening concurrently, and
they also have a notion of locality, that is state changes are described
by local transformations only. This has the advantage that these fea-
tures, which also graph transformation systems possess, are not lost in
the approximation.

Many analysis techniques such as invariants and linear algebraic tech-
niques are known for Petri nets. Another well-known concept are cover-
ability graphs (also called Karp-Miller graphs) [Fin91], which can be seen
as a safe approximation of the reachable markings of a Petri net. The
analysis method presented in this chapter will both rely on and generalize
this construction. Additionally, a lot of work has been done in the area
of model-checking Petri nets, where part of this work is based on unfold-
ing techniques [McM93, Esp94]. Unfolding techniques are a partial order
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reduction method allowing us to represent the events concurrently taking
place in a system in a non-interleaving way, thus making the representa-
tion much more compact.1

• Which properties are reflected by the abstraction? If a property, for in-
stance the existence of a run where the event e happens at some point, is
satisfied for the abstraction, it is not necessarily the case that the property
is also satisfied for the original system (see also Section 3.2). If, however,
this is the case for a property, we say that the property is reflected by the
abstraction.

Hence it is our task to define appropriate logics, for expressing structural
properties of a single graph as well as for expressing temporal properties,
and to identify subsets of formulas that are reflected and can be used for
verification.

Note however, that approximation by Petri nets is not the only choice. In
the work of Rensink [Ren04a], for instance, graph rewriting is approximated
by abstract graph transformation, where abstract graphs have additional con-
nectivity and multiplicity information. The situation is somewhat related to
the theory of type graphs with annotations (see Chapter 5), especially to the
annotation with monoid elements.

Furthermore, in shape analysis [SRW02] sets of graphs are represented by
structures in a 3-valued logic.

6.1 Over-approximation

Let us first review the main ideas behind over-approximations and abstract
interpretation. Abstract interpretation was first introduced for imperative pro-
grams [CC77], which are interpreted on abstract instead of concrete data. For
instance, instead of computing with integers, one uses abstract values such as
“odd” and “even”. The relation between abstract and concrete data values is
described by a so-called Galois connection with a mapping α (the abstraction)
mapping sets of concrete values to sets of abstract values, and a mapping γ
(the concretion) mapping sets of abstract values to sets of concrete values. It
must, for instance, hold that applying an abstraction followed by a concretion
over-approximates the original value. The concept of Galois connections is in
general defined for lattices.

Instead of abstracting data values, one can also abstract on another level
and represent concrete system states by abstract system states. It is required
that there exists a simulation relation between the two systems, i.e., whenever
the concrete system can make a step, this can be mimicked by the abstract
system, but not necessarily the other way round. In [LGS+95] it has been

1If, for instance, in a system three events a, b, c are happening concurrently, an interleaving
representation would result in six sequences abc, acb, bac, bca, cab, cba. A non-interleaving par-
tial order representation of system behaviour, however, would simply consist of an unordered
set {a, b, c}.
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shown that the simulation property can also be expressed in terms of Galois
connections and that these two notions can be considered equivalent.

One can approximate complex systems by finite transition systems [CGL99],
but also by infinite-state systems that are easier to verify than the original
system. For instance one can simulate an imperative program with stack and
procedure calls by a pushdown system [Sch02, EHRS00] or one can abstract
π-calculus processes by processes of a simpler process calculus [IK01]. Other
work in this direction includes abstractions for mobile ambients using shape
analysis [NN01] and for multithreaded Java programs [DJFB02].

Abstraction can be conveniently combined with model checking. However
in order to obtain the necessary reflection results, it is necessary to suitably
restrict the temporal logics in which system properties can be formulated. For
instance in [CGL99] ACTL, a subset of CTL (computation tree logic) which
has only universal quantification, is used. Similarly [LGS+95] defines a subset
of formulas of the µ-calculus suitable for checking properties on the abstraction.
Using both under- and over-approximations or mixed abstractions larger subsets
or even the full logics can be checked [DGG97, Kel95].

6.2 Approximating Graph Transformation Systems
by Petri Nets

Before explaining the approximation technique itself, we will first describe its
outcome, which is a Petri net with additional graph structure, a so-called Petri
graph. This Petri graph can be seen as an abstraction of the graph transforma-
tion system in the sense that the transition system on graphs can be simulated
by the transition system on markings of the Petri net. This will be described
in the following in more detail.

A possible Petri graph abstracting the running example of Chapter 2 is
the structure depicted in Figure 6.1. It consists of a hypergraph component
consisting of nodes and edges (see Figure 6.2), and a Petri net component
(see Figure 6.3) with places and transitions. Places and edges coincide and
arcs between edges and transitions are drawn using dashed lines. The initial
marking is indicated using black tokens. Also note that in this case it is just a
coincidence that every edge label occurs exactly once and that there are exactly
as many transitions as rules. In general, there will be more edges than edge
labels and more transitions than rules in the Petri graph, especially when we
compute more precise approximations (see Section 6.6).

In this situation, if we assume that the name of every edge is equal to its
label, we could also describe the transitions in the following way:

transition rule pre-set → post-set

t1 [AcquireResource1,1] P1, D1, R
f
1 → P2, R1

t2 [AcquireResource2,2] P2, D2, R
f
2 → P3, R2

t3 [ReleaseResources] P3, R1, R2 → P1, D1, D2, R
f
1 , R

f
2

t4 [CreateNewProcess] P1, D1, D2 → 2 · P1, 2 ·D1, 2 ·D2
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Figure 6.1: The approximated unfolding of system Sys.
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Figure 6.2: The hypergraph component of the approximated unfolding of system
Sys.
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Figure 6.3: The Petri net component of the approximated unfolding of system
Sys.

The Petri graph is a valid abstraction of the system, in the following sense:

There exists a relation S—a so-called simulation—between the reach-
able graphs in the graph transformation system and the reachable
markings in the Petri net such that:

• It holds that (G0,m0) ∈ S, where G0 is the start graph and
m0 is the initial marking.

• Whenever (G′,m′) ∈ S and G′ can be rewritten to G′′ using
rule r, then there exists a marking m′′ such that m′′ can be
obtained from m′ by firing a transition corresponding to rule r.
(In other words: the relation S is a simulation).

• For every (G′,m′) ∈ S there is a morphism from G′ into the
hypergraph underlying the Petri graph, such that the image of
the edges of G′ corresponds to m′.

While the first two properties are standard for simulations, the third prop-
erty requires closer scrutiny. In Figure 6.4 we can see an example of a pair
(G′,m′) where G′ is a reachable graph—obtained by applying rule [CreateNew-
Process] to the initial graph—and m′ is a reachable marking—obtained by firing
the transition corresponding to rule [CreateNewProcess]. The graph G′ can be
mapped into the graph component of the hypergraph such that the tokens rep-
resent the cardinality of the preimage of each edge. For instance there are two
edges labelled P1 which are mapped to the edge P1 on the right-hand side.

So, the information that is reflected is the number of occurrences of edges
as well as inequality of nodes (if two nodes are distinct in the Petri graph,
they are also distinct in the graph represented by a marking). What might get
lost however is information concerning the equality of nodes. For instance the
two source nodes as well as the two target nodes of the edges labelled P1 are
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fused by the morphism. This loss of information has to be taken into account
whenever we check the validity of logical formulas on the approximation (see
Section 6.5).
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Figure 6.4: A graph approximated by a marking.

Figure 6.5 shows one step of the graph transformation system—transforming
the start graph using rule [CreateNewProcess]—and the corresponding firing of
a transition in the Petri graph. The left-hand side and the right-hand side of
the rule are marked with bold lines. The image of the left-hand side is marked
by three black token in the left-hand Petri graph. The two remaining tokens
are shaded grey. This application of rule [CreateNewProcess] corresponds to
the firing of the depicted transition t4, all other transitions have been removed
for clarity. The transition removes these three tokens and creates six, two for
each edge (note the arcs labelled 2). This gives us the situation depicted in
Figure 6.4.
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Figure 6.5: The Petri graph simulating the graph transformation system.

Every graph transformation step can be simulated in such a way, but not
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necessarily every firing of transitions in the Petri graph can be simulated by
graph rewriting. This is a phenomenon caused by over-approximation and the
introduction of spurious runs.

6.3 Unfolding Techniques

In order to obtain such Petri graphs we use unfoldings, which are structures that
represent all possible runs of the system. The unfolding of a graph grammar
can be seen as an infinite Petri net. (Alternatively it can also be seen as another
graph grammar [Bal00, Rib96].) So, in order to obtain a finite structure, we
approximate these unfoldings, a novel approach that has not been used before.

Unfoldings represent all possible runs of a system in a compact way in a
single structure. This compactness is ensured in the following way:

• Whenever two runs have the same prefix, this prefix is only represented
once.

• Whenever several events may happen concurrently, we do not represent
all possible interleavings of these events, but remember only the set of
events and the causal ordering between them. For this reason, unfoldings
are a special case of partial order reduction techniques.

• If, as in the case of graph grammars or Petri nets, the state of a system is
a non-atomic object such as a graph or a set of tokens, we represent state
changes only in a local way. That is if a state s1 is rewritten to a state s2,
we do not represent s2, but only the update that is needed to transform
s1 into s2.

System models that can be unfolded are for instance Petri nets [Win87,
McM93], graph grammars [BCM99, Rib96] and products of transition systems
[ER99]. We will in the following give a general description of the unfolding
procedure, independent of the system model. We only assume that the sys-
tem is given by a set of rewriting rules. We construct a series of Petri nets
U0, U1, U2, . . . with initial markings that will converge to the full unfolding.
These Petri nets may possibly contain additional structure such as the hyper-
graph structure in the Petri graphs introduced above.

i = 0: U0 is the initial system state. All items of the initial state are initially
marked. By items we mean the atomic subcomponents of a system state,
such as places in the case of Petri nets and nodes and edges in the case
of graphs.

i→ i+ 1: We take Ui and search for a match of a left-hand side L of a rewriting
rule. The items of the left-hand side have to be coverable in Ui, i.e., there
must be a marking reachable from the initial marking that contains at
least all these items.

Then we attach the right-hand side R to Ui according to the embedding
rules (if there are any) and add a transition t that records that L can be
removed and R can be created.
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Naturally the construction is quite informal and many details still have to
be filled out. Using this construction we obtain a potentially infinite Petri net.
Such Petri nets are called occurrence nets, since each creation of an item has
a unique cause and furthermore the net is acyclic. We have chosen here to
represent unfoldings by occurrence nets, but note that it is sometimes more
convenient to use a different representation, for instance occurrence grammars.

As an example, we start unfolding the graph transformation system Sys
from Section 2.3. We begin with the start graph, where the initial marking is
indicated by black tokens (see Figure 6.6).

We first find a match of rule [CreateNewProcess] and unfold it which results
in transition t1. There is a match of rule [AcquireResource1,1] as well, but the
order in which these matches are unfolded is irrelevant. We unfold this rule by
attaching the right-hand side according to the interface and add a transition
recording this transformation step. In order to distinguish connections between
edges and nodes from connections between edges and transitions, we draw the
latter with dashed lines. Remember that edges basically play the role of places
in a Petri net.

Now we have three matches of rule [CreateNewProcess] (one of them already
unfolded) and two matches of rule [AcquireResource1,1], all of which are cover-
able. We choose to unfold one of the matches of rule [AcquireResource1,1] and
obtain transition t2. (Ignore the grey edges for the moment.) For the moment
we stop unfolding at this point.

The structures that we obtain during unfolding are again Petri graphs as
introduced earlier.
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Figure 6.6: Unfolding a graph transformation system.
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There are some further points to be discussed:

Concurrency, causality, conflict: Above, we said that in order to check
whether a left-hand side should be unfolded, we should check whether
a marking is coverable. Coverability is verified by using coverability
graphs [KM69, Rei85], a technique which—despite its straightforward
algorithm—is known not to be primitive recursive. But in the case of
occurrence nets, checking coverability is greatly simplified, by computing
the following relations:

• Causality: Causality is the smallest transitive relation for which it
holds that all items in the post-set of a transition are causally de-
pendent on all items in the pre-set of a transition. It can be easily
computed while the net is constructed.

• Conflict: Two items are in conflict whenever the two transitions that
create them consume the same item in their pre-set. Furthermore,
whenever two items are in conflict, all their causal successors are
in conflict as well. That means that no two such items can occur
together in the same branch of a computation, not even at differ-
ent times. Again, the conflict relation can be computed during the
unfolding.

• Concurrency: Two items are concurrent whenever they can occur
in the same computation at the same time. In other words, a set
of items is concurrent when it can be covered. The concurrency
relation can be obtained as the complement of the union of causality
and conflict.

So checking whether a set of items is coverable amounts to checking
that neither pair in the set is contained either in the causality or in
the conflict relation.

Figure 6.6 exhibits examples for these relations. For instance, the grey
edges labelled P2 and Rf2 are concurrent. There is a reachable marking
obtained by firing transition t2 once that covers both of them. The two
grey edges labelled Rf1 and P2, on the other hand, are causally related.

The edge P2 can only be covered when the token contained in Rf1 is
consumed. An example for a pair of edges being in conflict are the grey
edges labelled P1 and P2. The edge P1 is in the post-set of t1, while the
edge P2 is in the post-set of t2, and both transition consume a token from
the edge labelled P1 which is initially marked.

Contextual arcs and inhibitor arcs: Especially when we are working with
graph grammars not all edges of the left-hand side will be consumed. The
interface graph I of a rule L← I → R is not removed, but its presence is
required in order to apply the rule. In this case the concept of “contextual
arcs” or “read arcs” [Bus98] is helpful. These arcs connect transitions with
places in a Petri net and a transition may only fire if the places with which
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it is connected via contextual arcs are covered. The unfolding technique
can be extended in order to deal with this feature [VSY98].

If the interface consists of nodes only, i.e. if it is discrete, and nodes
are never deleted (but become disconnected instead), then there is no
need to use contextual arcs. It is enough to track causal dependencies
on edges, causal dependencies on nodes can then be derived from this
information. This approach is taken in Chapter 12 and we have also used
it in the example unfolding above, whereas in Chapter 15 we also allow
non-discrete contexts.

If the graph transformation system is extended with negative applica-
tion conditions, i.e., rules may not be applicable if specific subgraphs are
present, then we need the concept of “inhibitor arcs” [Bus98] in order
to model this situation. This case is quite problematic, since the con-
currency relation is not computable in the efficient way described above.
Furthermore there are problems if we consider approximated unfoldings
as in Section 6.4. These problems are not too surprising since Petri nets
with inhibitor arcs are already Turing-complete. For this reason we will
not consider negative application conditions in the rest of this thesis.

The unfolding is usually infinite, also for finite-state systems having infinite
runs. However, if a system is finite-state there is a solution to this problem:
We know that already a finite prefix of the unfolding represents all reachable
system states. This prefix can be efficiently constructed by looking for so-called
cut-off transitions. A transition t is a cut-off whenever the system state it
represents, i.e., the state obtained after firing t and all its causes, can also be
obtained by another transition t′ having a smaller causal history. Hence, in
this case, one does not continue unfolding after cut-off transitions, as suggested
by the name cut-off. The prefix obtained in this way is called finite complete
prefix, it has been first presented in [McM93], substantial optimizations have
been introduced in [ERV02]. Our contribution to this area is to show that finite
complete prefixes can also be constructed for graph grammars (see Chapter 15).
We also show how to check a logic on graphs on this finite unfolding.

6.4 Approximated Unfolding

If a system is infinite-state, it is not possible to stop at a certain point in the
unfolding and claim to have seen all reachable states. Just stopping at a certain
point will only give us a subset of all reachable graphs. Thus, we will extend the
unfolding procedure and perform—in addition to unfolding steps—also folding
steps that merge parts of the unfolding. Now the step that transforms Ui into
Ui+1 reads as follows:

i→ i+ 1: We take Ui and search for the match of a left-hand side L that has
not already been unfolded. Then we

• search for another match of the same-left hand side L′ such that
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all items of the first match are causally dependent on items of the
second match and merge both left-hand sides (folding step)

• or—if no folding is possible—we unfold the match (unfolding step).

When this procedure terminates we call the result the approximated unfold-
ing or covering of the graph transformation system.

The folding condition is there to ensure that the unfolding terminates. In-
tuitively, finding an occurrence of a left-hand side L that causally depends
on an earlier occurrence means that we have located a potential cycle that is
short-circuited by merging both left-hand sides. Showing that this condition
implies termination in all possible cases is non-trivial. The proof can be found
in Chapter 12 (see Proposition 12.4.7).

Figure 6.7 shows three steps of the algorithm described above. First, a
match for rule [CreateNewProcess] is found and unfolded as in Figure 6.6. Then
we can find three matches of the left-hand side of rule [CreateNewProcess], of
which two are causally dependent on the third one, i.e., the match which is
initially marked. So we can merge all three left-hand sides in two folding steps
and obtain the structure shown below.
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Figure 6.7: An unfolding step and two folding steps.

If we continue doing unfolding and folding steps as described in the algo-
rithm, we finally end up with the Petri graph described earlier and depicted in
Figure 6.1. Although the algorithm for computing the approximated unfolding
is non-deterministic, it can be shown that it is confluent and that hence the
resulting Petri graph is uniquely determined. That is, even if we had applied
the unfolding and folding steps in a different order, we would have obtained the
same approximation. This shows that the over-approximation is not arbitrary
and does not change if a different sequence of steps is chosen.
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6.5 Logics for Analyzing Graph Transformation Sys-
tems

The Petri graph is an over-approximation of the original graph transformation
system, but we have yet to show how we can extract the information contained
in it and use it for model-checking.

As discussed above, it is necessary to restrict the logics accordingly so that
its formulas are reflected by the abstraction. For the temporal operators of the
logics, the situation is equivalent to the one for other abstractions of transition
system, so that we can use suitable subsets of CTL, such as ACTL [CGL99],
or a subset of the modal µ-calculus [LGS+95], where existential quantification
(“There exists a successor state such that . . . ”) is disallowed. More details
about the temporal part of the logics are given in Chapter 13.

We will therefore concentrate on the logics describing properties of system
states which, in this case, are graphs. In Chapter 14 we describe a second-order
monadic logic on graphs that allows quantification over edges as well as over sets
of edges. This logic is quite expressive, unlike a first-order logic it allows us to
state properties such as “There exists no circle of edges labelled A.” Note that
this property is reflected by the abstraction, i.e., whenever it holds for the graph
obtained from a marking by duplicating all edges according to the number of
tokens contained in the edge, then it also holds for all graphs represented by
this marking in the sense explained in the definition of the simulation relation
above. This is true since this property requires us to check the inequality of
nodes, but not their equality. A property such as “There exists a circle of edges
labelled A.” is not reflected by the abstraction.

Summarizing we can say that in the logic all forms of quantification (ex-
istential/universal as well as first-order/second-order), disjunctions as well as
conjunctions can be allowed. Furthermore we can inspect edge labels, equality
and inequality of edges. For nodes equality checking is disallowed, i.e., we can
not use formulas such as

∃x∃y(lab(x) = A ∧ lab(y) = B ∧ source(x) = source(y))

(“There exist two edges labelled A and B having the same source node.”).
This is a restriction that is caused quite naturally by the form of approxi-

mation we are using. However, we are currently also exploring possibilities to
weaken this restriction.

In Chapter 14 a type system is presented that identifies formulas which
are reflected. In order to actually check these formulas on the Petri net, they
have to be transformed into formulas on Petri net markings. We are using
a simple propositional logics on Petri net markings, where the only atomic
predicate is of the form #p ≥ c, meaning that there are at least c tokens in
place p. Surprisingly, even monadic second-order logic formulas can be encoded
into such a simple logic—losing no information at this stage—provided that we
have already computed the approximating Petri net. This is shown in more
detail in Chapter 14.

For many practical examples checking whether all reachable graphs satisfy a
formula amounts to showing that certain markings are not coverable, which can

59



be done using coverability graphs [Rei85] or a backward reachability algorithm
for Petri nets [AJKP98]. These possibilities were also explored in [Tur04]. Also,
more complicated properties, even in combination with temporal operators are
decidable for Petri nets in many cases [HRY91, HR89, Jan90]. However, one
has to be careful, since state-based temporal logics for unbounded Petri nets
are not decidable in general, whereas action-based temporal logics usually are
decidable [Esp97]. Still, in practice it has turned out that many interesting
properties can be proved using our prototype tool Augur (see Section 6.7).

Apart from using a monadic second-order logic it is possible to use more
user-friendly specification languages such as regular expressions that specify
forbidden paths that are disallowed in all reachable graphs [Rel04]. A different
possibility would be to allow the user to specify forbidden subgraphs using a
graph editor.

Regardless of the specification language, if we want to show for system Sys
that no vicious cycle corresponding to a deadlock as shown in Figure 14.3 occurs,
we can do this by requiring that no two edges labelled P2 will ever be present
in a graph. If no such edges are present, there can be no processes waiting
for each other to release their resources. This can be shown by checking that
the formula #p2 ≤ 1 holds for all reachable markings, where p2 is the place
corresponding to the edge labelled P2. We have now derived this formula in an
ad-hoc manner, but we could also have obtained it by describing vicious circles
either in the second-order monadic logic or as regular expressions.

6.6 Obtaining Better Approximations

Overly coarse approximations are an inherent problem in abstract interpreta-
tion. Whenever a formula does not hold for the approximation, it might either
be the case that it is also invalid for the original system, or that we have ap-
proximated too strongly, thereby losing information. In Chapter 13 we describe
a partial solution to this problem. It is possible to compute better and better
over-approximations using approximated unfoldings if we unfold without fold-
ing steps up to a certain causal depth and allow folding only for items of a larger
depth. It can be shown that the sequence of these increasingly more exact over-
approximations (or coverings) converges to the full unfolding in the limit. Using
the words of category theory, the limit of the chain of over-approximations is
the exact unfolding.

In the same vein, we can also under-approximate a graph transformation
system by truncating the unfolding at a certain point. It can be shown that
the colimit of the chain of under-approximations is the full unfolding as well.

With these results we can justify our method of approximation: We might
approximate too strongly, but by computing better and better approximations
we can converge to the original system behaviour in the limit. Naturally these
better approximations increase in size. In order to minimize this blowup, we
are currently adapting the technique of counterexample-guided abstraction re-
finement. In this technique, the refinement of an over-approximation which is
too coarse is guided by spurious counterexamples. One attempts to refine only
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the parts of the approximation that are necessary in order to make the spurious
counterexample disappear.

6.7 Tool Support

There exists a prototype tool called Augur2 implementing a large part of the
functionality described above. This tool was implemented and is currently
being implemented in cooperation with Vitali Kozioura, Tobias Heindel, Ingo
Walther, Nicolas Relange, Sinan Turan and Lars Heinemann at the University
of Stuttgart.

The overall design principle is to produce an open and modular system
which can be easily extended and combined with other tools. Hence the focus
is not on the graphical user interface but on producing components that can be
combined with each other and with external tools.

With Augur one can:

• Compute approximated unfoldings of graph grammars specified in GTXL
(Graph Transformation Exchange Language), a XML standard for graph
transformation systems.3 The resulting Petri graph is then written to a
file in the GXL (Graph Exchange Language) format. The first prototype
version which has since been extended is described in [Wal03].

• It is also possible to compute subsequently better approximations as de-
scribed in Section 6.6 by disallowing folding steps until after depth k.

• The input graph transformation and the output can be visualized using
the GraphViz package4 with its tools dot and neato.

• For analysis of the resulting Petri graph, the Petri net component can
be converted to the input format of the Petri net tool LoLA (Low Level
Analyzer) [Sch00]. One can also use the tools for coverability checking
described in [Tur04]. Furthermore the encoding of regular expressions into
formulas on markings as described above has already been implemented
(see [Rel04]).

For instance, the approximated unfolding of the running example system
Sys can be computed using Augur. The hypergraph component and Petri
net component are shown in Figure 6.8 respectively Figure 6.9 (compare with
Figures 6.2 and 6.3). The numbers associated with edges and transitions are
internal identities used by the tool.

6.8 Evaluation

Our approximation technique is—at the time of writing—the only fully devel-
oped method for analyzing general infinite-state graph transformation systems.

2http://www.fmi.uni-stuttgart.de/szs/tools/augur/
3See http://www.gupro.de/GXL/, http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
4See http://www.research.att.com/sw/tools/graphviz/
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Figure 6.8: The hypergraph component of the running example (output of the
tool Augur)

Although at the moment only a prototype version of the analysis tool Augur
exists, whose efficiency could still be greatly improved, we were able to analyze
non-trivial examples such as a mutual exclusion protocol (8 rules), a network
of public and private servers (12 rules) and insertion of elements into red-black
trees including rebalancing (26 rules).

It seems that this is a powerful technique that can be easily mechanized, as
has been shown with our implementation. It can also be easily integrated with
existing tools for graphs and Petri nets. The accuracy of the approximation is
parameterized, i.e., we can obtain better abstractions if necessary.

However, in order to avoid blowups in the size of the approximation it will
be necessary in the future to develop methods for refining the approximation
in a more specific and goal-oriented manner. Furthermore we will work on the
extension of specification languages and their integration.
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Figure 6.9: The Petri net component of the running example (output of the
tool Augur)

63



Chapter 7

Conclusion

We have shown—in a largely informal way—how to transfer various verification
and analysis techniques into the world of graph rewriting. The theory behind
these techniques can be found in more detail in the contributions forming the
second part of this thesis.

While at the moment these different methods are mostly unconnected, it
will be an interesting topic of future research to integrate these techniques in
order to combine their strengths and alleviate their weaknesses. It is important
that this integration is done thoroughly and not in an ad-hoc way.

In the context of this work a good starting point for such an integration is
the combination of type systems and approximated unfoldings. Some properties
which are very hard to check on the approximating Petri nets, such as for
instance the acyclicity of all reachable graphs, are easy to analyze using a type
system. So it seems that the information that can be obtained from typing a
graph grammar should be incorporated into the analysis of the Petri net. In
order to combine these two types of analysis, it will be necessary to modify the
encoding of logical formulas on graphs into formulas on Petri net markings in
such a way that typing information is taken into account.

A different possibility of integration is to do approximation and static analy-
sis for graph rewriting with external environment, connected to the bisimulation
congruences presented in Chapter 4.

Furthermore it has turned out that the techniques described in this thesis
and especially unfoldings of graph transformation systems have applications in
areas different from verification. As we have already mentioned in the intro-
duction diagnosis and testing can also be extremely useful for understanding
existing software and hardware systems. We are currently exploring how un-
foldings of graph transformation systems can be put to good use in the areas of
distributed diagnosis and of test case generation for code generators [BKS04].
In the former line of research graph grammars are used in order to model mo-
bility, whereas in the latter case graph rewriting is needed since the input to
the code generator is a graphical Simulink model which is transformed using
graph rewriting rules.

These examples suggest that there might be further interesting application
areas for the techniques presented here.
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Part II

Contributions
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The following list contains all contributions to this thesis. The papers can
be grouped and assigned to the chapters of the first part of this thesis as follows:

Behavioural Equivalences for Graphs (Chapter 4):

[1] Hartmut Ehrig and Barbara König. Deriving bisimulation congruences in
the DPO approach to graph rewriting. In Proc. of FOSSACS ’04, pages
151–166. Springer, 2004. LNCS 2987.

[2] Barbara König and Ugo Montanari. Observational equivalence for synchro-
nized graph rewriting with mobility. In Proc. of TACS ’01, pages 145–164.
Springer-Verlag, 2001. LNCS 2215.

Assigning Types to Graphs (Chapter 5):

[1] Barbara König. A general framework for types in graph rewriting. In Proc.
of FST TCS ’00, pages 373–384. Springer-Verlag, 2000. LNCS 1974.

[2] Barbara König. Analysing input/output-capabilities of mobile processes
with a generic type system. Journal of Logic and Algebraic Programming.
to appear.

Approximating Graphs by Petri Nets—An Unfolding-
Based Approach (Chapter 6):

[1] Paolo Baldan, Andrea Corradini, and Barbara König. A static analysis
technique for graph transformation systems. In Proc. of CONCUR ’01,
pages 381–395. Springer-Verlag, 2001. LNCS 2154.

[2] Paolo Baldan and Barbara König. Approximating the behaviour of graph
transformation systems. In Proc. of ICGT ’02 (International Conference on
Graph Transformation), pages 14–29. Springer-Verlag, 2002. LNCS 2505.

[3] Paolo Baldan, Barbara König, and Bernhard König. A logic for analyzing
abstractions of graph transformation systems. In Proc. of SAS ’03 (Inter-
national Static Analysis Symposium), pages 255–272. Springer-Verlag, 2003.
LNCS 2694.

[4] Paolo Baldan, Andrea Corradini, and Barbara König. Verifying finite-state
graph grammars: an unfolding-based approach. In Proc. of CONCUR ’04,
pages 83–98. Springer-Verlag, 2004. LNCS 3170.
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Chapter 8

Deriving Bisimulation
Congruences in the DPO
Approach to Graph Rewriting
(Joint work with Hartmut Ehrig)

Abstract

Motivated by recent work on the derivation of labelled tran-
sitions and bisimulation congruences from unlabelled reaction
rules, we show how to solve this problem in the DPO (double-
pushout) approach to graph rewriting. Unlike in previous ap-
proaches, we consider graphs as objects, instead of arrows, of
the category under consideration. This allows us to present a
very simple way of deriving labelled transitions (called rewriting
steps with borrowed context) which smoothly integrates with
the DPO approach, has a very constructive nature and requires
only a minimum of category theory. The core part of this paper
is the proof sketch that the bisimilarity based on rewriting with
borrowed contexts is a congruence relation.

8.1 Introduction

In the last few years the problem of deriving labelled transitions and bisimula-
tion congruences from unlabelled reaction or rewriting rules has received great
attention. This line of research was motivated by the theory of bisimulation
congruences for process calculi, such as the π-calculus [SW01]. A bisimilarity
defined on unlabelled reduction rules is usually not a congruence, that is, it is
not closed under the operators of the process calculus. Congruence is a very
desirable property since it allows us to replace a subsystem with an equivalent
one without changing the behaviour of the overall system and futhermore helps
to make bisimilarity proofs modular.

Previous solutions have been to either require that two processes are re-
lated if and only if they are bisimilar under all possible contexts (see [MS92b])
or to derive a labelled transition system manually. Since the first solution needs
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quantification over all possible contexts, proofs of bisimilarity can be very com-
plicated. In the second solution, proofs tend to be much easier, but it is neces-
sary to show that the labelled variant of the transition system is equivalent to
the unlabelled variant.

So the idea which was formulated in the papers of Leifer/Milner [Lei01,
LM00], Sewell [Sew02] and Sassone/Sobocinski [SS03] is to automatically derive
a labelled transition system such that the resulting bisimilarity is a congruence.
A central concept of this approach is to formalize the notion of minimal context
which enables a process to reduce. Consider, for example, the CCS process
a.P . It reduces when put into the contexts | ā.Q and | ā.Q | b.R, but one
is interested only in the first context, since it is in some sense smaller than the
second one. This yields the labelled transition

a.P
|ā.Q
→ P | Q,

saying that a.P put into this contexts reacts and reduces to P | Q. Using all
possible contexts as labels would also result in a bisimulation congruence, but
we do not gain anything compared to quantification over all contexts.

In [Lei01, LM00] the notion of “minimal context” is formalized as the cat-
egorical concept of relative pushout respectively idem pushout. This notion
has also been applied to bigraphs [JM03]. However, the theory is complicated
by the fact that one can not work with isomorphism classes of graphs, since
in this case the category under consideration would not possess all necessary
relative pushouts. Thus one is forced to give unique names to all edges and
nodes in a graph and to either work in a precategory or to construct a suitable
category starting from such a precategory. Another approach, given by Sassone
and Sobocinski [SS03], is to work with cells inside a 2-category.

It is our aim to achieve similar results in the context of graph rewriting
[Roz97], a framework which allows to model dynamic and concurrent systems
consisting of interconnected components in a natural and intuitive way. Many
process calculi such as the π-calculus [GM02, MP95, Kön00c] and the ambient
calculus [GM01] can be translated into graph rewriting. We are specifically
interested in the double-pushout (DPO) approach [CMR+97], one of the stan-
dard approaches to graph rewriting. So far, there is not yet a uniform theory of
bisimulation for graph transformation systems. Using the concepts explained
earlier would be possible in theory, but contradicts the philosophy behind graph
rewriting where graphs are considered only up to isomorphism. Furthermore,
deriving labels via relative pushouts is entirely non-trivial and can be rather
complicated.

The approach which is presented in this paper is motivated by the work
of Leifer/Milner and other contributions to this area, but does not directly
rely on their theory. Instead we present a very simple way of deriving minimal
contexts—we call them borrowed contexts—which smoothly integrates with the
DPO approach and which has a very constructive nature. The only categorical
concepts that are needed are standard pushouts and pullbacks. The main dif-
ference to previous approaches is that in our case graphs are objects and not
arrows of the category under consideration. Our arrows instead are graph mor-
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phisms which provide the necessary tracking information for nodes and edges
which, in the case of graphs as arrows, can only be provided by adding support
to a category. This work is based on ideas presented in [Ehr02], a paper which
points out similarities and differences between Milner’s bigraphs [JM03, Mil01]
and the DPO approach to graph rewriting.

Our main result states that bisimilarity defined on graph rewriting with
borrowed contexts is indeed a congruence relation (see Theorem 8.4.3).

The paper is structured as follows: In Section 8.2 we will give a short
introduction to the DPO approach, followed by the definition of rewriting with
borrowed contexts (Section 8.3). Section 8.4 provides the proof ideas that the
resulting bisimilarity is a congruence. After having introduced a proof technique
we continue with an example showing borrowed contexts at work in Section 8.5.

This paper requires only basic knowledge of category theory [Mac71]. In
fact, we only need pushouts and pullbacks, including some general as well as
specific preservation, composition and decomposition properties. The general
properties hold in any category and the specific ones at least in the category
of sets and, as needed in the paper, in the category of graphs. The specific
properties are presented in our technical report [EK04b], which also contains
the full proof of our main result.

8.2 The DPO Approach to Graph Rewriting

We will first define a family of categories of graphs and graph morphisms, being
as general as possible by defining graph structures [EHK+97], which include
different forms of graphs such as directed graphs and hypergraphs.

Definition 8.2.1 (Graph Structures) A graph structure signature GS =
(S,OP ,
Σ) consists of a set of sorts S, a family (OP s,s′)s,s′∈S of unary operator symbols
and a family (Σs)s∈S of labelling alphabets.

A graph structure A over GS is a sort-indexed family (As)s∈S of carrier
sets together with a sort-indexed family of labelling functions (lAs )s∈S such that
lAs : As → Σs and an OP-indexed family of mappings (opA)op∈OP such that
opA : As → As′ if op ∈ OPs,s′ .

A graph structure morphism ϕ : A→ B is a sort-indexed family of mappings
ϕ = (ϕs : As → Bs)s∈S such that lAs (x) = lBs (ϕ(x)) and opB(ϕ(x)) = ϕ(opA(x))
for all x ∈ As. A graph structure morphism ϕ is called injective if all its
mappings are injective. It is an isomorphism if all mappings are bijective. An
isomorphism of the form ϕ : A→ A is called automorphism.

The simplest graph structure signature has two sorts: node and edge and
two operator symbols s, t ∈ OP edge,node standing for “source” and “target”.
Graph structures over this signature are ordinary labelled directed graphs and
graph structure morphisms are standard graph morphisms. The sets Σnode and
Σedge contain node respectively edge labels. In the following we will say “graph”
instead of “graph structure” and “graph morphism” or just “morphism” instead
of “graph structure morphism”.
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A category of graphs and graph morphisms has all pushouts and pullbacks,
which can be constructed componentwise in the category Set. Furthermore,
constructing the pushout or pullback of two injective morphisms always gives
us two injective morphisms. Working exclusively in the category of injective
morphisms is not possible since this category does not have all pushouts and
pullbacks, which is due to missing non-injective mediating morphisms. So far
we can obtain our main result (Theorem 8.4.3) only if we work with injective
morphisms, which is, however, a natural requirement.

Definition 8.2.2 (Graph Transformation System) A rule or production
is a pair (ϕL : I → L,ϕR : I → R) of injective graph morphisms. It can be
applied to a graph G, resulting in a graph H, if there is an injective match
morphism ϕ : L → G and we can find a graph C and morphisms such that the
two squares in the following diagram are both pushouts.

L

ϕ

��

I
ϕL

oo
ϕR

//

��

R

��

G Coo // H

A graph transformation system is a set P of productions.

The diagram above consisting of two pushouts has led to the name double-
pushout or DPO approach. The intuition behind this approach is to find a
left-hand side L in a graph G, remove L apart from the interface I and to
attach R to the interface in the remaining graph C, resulting in H.

Note: Instead of writing (ϕL : I → L,ϕR : I → R) we will in the following

abbreviate a rule by (L
ϕL←− I

ϕR−→ R), or even (L ← I → R) if there is no
danger of misunderstanding. This short form will be used for other morphisms
as well.

We use a running example throughout the paper which is deliberately kept
very simple. Figure 8.1 shows three spans L← I → R which form the rule set
P of our example graph transformation system. The graphs are directed graphs
with edge labels where nodes are unlabelled (or are labelled with a dummy la-
bel). We give rules for a simplex connection S and a duplex connection D over
both of which messages M—represented by a loop—are sent. A duplex connec-
tion can be used both ways, whereas a simplex connection has a fixed direction.
The connections themselves are preserved and are therefore in the interfaces of
the rules. An alternative choice, which is also covered by the concept of graph
structures, would have been to model this situation by hypergraphs with unary
edges (for messages) and binary edges (for connections).

In order to state congruence results, we first need a notion of contexts and
contexualization.

Definition 8.2.3 (Graphs with interfaces and graph contexts) A graph
G with interface J is an injective morphism J → G. Furthermore a context or
cospan consists of two injective morphisms J → E ← J .
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Figure 8.1: Rules of a graph transformation system.

The composition of a graph with interface J → G and a context J → E ← J
is a graph with interface J → G which is obtained by constructing G as the
pushout of J → G and J → E.

J

��

// E

��

Joo

��

G // G

Note that composition is defined only up to isomorphism, since the pushout
object is unique only up to isomorphism.

This notion of interfaces, contexts and composition is within the spirit of
the DPO approach where the pushouts for G and H in Definition 8.2.2 can be
interpreted as composition of L with C respectively R with C along interface I.
In the context of this paper however it is important to consider also the graph
G with interface J leading to G with interface J , which requires a context E
with two interfaces J and J . Discrete interfaces, which are a special case, have
already been used, see for instance [GH97].

8.3 Rewriting with Borrowed Contexts

We are now ready for the central definition of this paper: graph rewriting with
borrowed contexts on graphs with interfaces. The underlying idea is to allow
not only total, but also partial matches of a left-hand side. The missing part
of the left-hand side is then displayed as the label of the resulting transition.

Definition 8.3.1 (Rewriting with borrowed contexts) Let P be a set of
graph productions of the form (L ← I → R) and let J → G be a graph with
interface. We say that J → G reduces to K → H with transition label (J →
F ← K) whenever there is a production (L ← I → R) ∈ P and there are
graphs D, G+, C and additional morphisms such that the following diagram
commutes and the squares are either pushouts (PO) or pullbacks (PB) with
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injective morphisms.

D

��

// L

��

Ioo //

��

R

��

PO PO PO

G // G+ Coo // H

PO PB

J

OO

// F

OO

K

OO

oo

==

Symbolically this is denoted by the transition (J → G)
J→F←K
−→ (K → H), which

is also called rewriting step with borrowed context.

The squares in the diagram above have the following meaning: the upper
left-hand square merges the left-hand side L and the graph G to be rewritten
according to a partial match G ← D → L of the left-hand side in G. The
resulting graph G+ contains a total match of L and can be rewritten as in
the standard DPO approach, which produces the two remaining squares in the
upper row. The pushout in the lower row gives us the borrowed (or minimal)
context F which is missing in order to obtain a total match of L, along with a
morphism J → F indicating how F should be attached to G. Finally, we need
an interface for the resulting graph H, which can be obtained by “intersecting”
the borrowed context F and the graph C via a pullback.

The two pushout complements that are constructed in Definition 8.3.1 may
not exist. The middle square in the upper row can only be completed if the
dangling edge condition is satisfied, i.e., if the left-hand side L is connected to
the rest of the graph G+ exclusively via its interface I and no edges would be
left “dangling” by removing it. The left square in the lower row can only be
completed if there is a way to extend the partial match to a left-hand side L
by attaching some context J → F to J → G. In other words, the dangling
edge condition is required also for the morphism G → G+ with respect to the
interface morphism J → G.

In this case the borrowed context F is minimal in the following sense: Given
the partial match G← D → L, the pushout G+ is the minimal graph containing
both G and L attached according to the partial match. The borrowed context
F is a pushout complement of the injective morphisms J → G → G+, leading
to the injective morphisms J → F → G+. This implies that F is the unique
graph (up to isomorphism) that is needed to extend G to the minimal graph
G+.

From the properties of the category of graph structures we can infer that
all morphisms in the diagram above are injective. It is thus possible to draw
a schematic representation of the four left-hand side squares of Definition 8.3.1
(see Figure 8.2). This figure also illustrates that the new interface K is the
“union” of the interfaces I and J , minus the graph components that are internal
in either G or L.
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Figure 8.2: Graphical represenation of rewriting with borrowed contexts.

In order to illustrate Definition 8.3.1, we regard rule [simplex] of Figure 8.1
and an example graph G consisting of two S-edges for which we find a partial
match of the left-hand side. This results in the derivation shown in Figure 8.3.
Note that the image of a node under a morphism is implicitly given by its posi-
tion, i.e., the left-hand node is always mapped to a left-hand node, analogously
for the right-hand node.
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J

OO

//

M F
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Figure 8.3: Rewriting with borrowed contexts in the example graph transfor-
mation system.
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8.4 Bisimilarity is a Congruence

We now arrive at the main theorem of this paper: We will show that the
bisimilarity defined on labelled graph transition systems is a congruence. Before
that we need two more definitions.

Definition 8.4.1 (Bisimulation and Bisimilarity) Let P be a set of pro-
ductions. Let R be a symmetric relation containing pairs of graphs with inter-
faces of the form (J → G, J → G′), also written (J → G)R (J → G′).

The relation R is a bisimulation if whenever we have (J → G)R (J → G′)

and a transition (J → G)
J→F←K
−→ (K → H) (in words: J → G reduces to

K → H with transition label J → F ← K) can be derived from P, then there

exists a morphism K → H ′ and a transition (J → G′)
J→F←K
−→ (K → H ′) with

the same transition label J → F ← K such that (K → H)R (K → H ′).
We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that

relates the two morphisms. The relation ∼ is called bisimilarity.

In order to state Theorem 8.4.3, we have to be able to close a bisimulation
or simply a relation under all possible contexts.

Definition 8.4.2 (Closure under Contextualization) Let R be a relation
on graphs with interfaces as in Definition 8.4.1. By R̂ we denote the closure
of R under contextualization, i.e., R̂ is the smallest relation that contains, for
every pair (J → G, J → G′) ∈ R and for every context of the form J → E ← J ,

the pair of morphisms (J → G, J → G
′
) which results from the composition of

J → G and J → E ← J respectively J → G′ and J → E ← J .

A relation R is a congruence, i.e., closed under contexts whenever R̂ = R.
Since obviously R is contained in R̂, it suffices to show R̂ ⊆ R. We only give
a proof sketch, the full proof can be found in [EK04b].

Theorem 8.4.3 (Bisimilarity is a Congruence) Whenever R is a bisim-
ulation, then R̂ is a bisimulation as well. This implies that the bisimilarity
relation ∼ is a congruence.

Proof (Sketch):
Remark: In this proof we are using properties of the category of graph

structures, such as pushout complement splitting and special decomposition
properties, that do not necessarily hold in other categories (cf. the remarks at
the end of the introduction).

We will show that whenever R is a bisimulation, then R̂ is a bisimulation
as well. With the following argument we can then infer that ∼̂ ⊆∼ and that
∼ is a congruence: Whenever (J → G) ∼̂ (J → G

′
), there exists a bisimulation

R such that (J → G) R̂ (J → G
′
). Since, as we will show, R̂ is a bisimulation,

it follows that (J → G) ∼ (J → G
′
).

So let R be a bisimulation and let (J → G) R̂ (J → G
′
). We assume that

(J → G)
J→F←K
−→ (K → H).
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Our goal is to show that there exists a transition

(J → G
′
)
J→F←K
−→ (K → H

′
)

with (K → H) R̂ (K → H
′
), which implies that R̂ is a bisimulation. In Step 1

we will construct a transition (J → G)
J→F←K
−→ (K → H) which implies a

transition (J → G′)
J→F←K
−→ (K → H ′) with (K → H)R (K → H ′), since R

is a bisimulation. In Step 2 we will extend the second transition to obtain the
transition stated in our goal above.

Step 1: Our first assumption (J → G) R̂ (J → G
′
) means that there is some

pair (J → G)R (J → G′) and a context J → E ← J such that J → G and

J → G
′

can be obtained by composing J → G and J → G′ with this context.

The second assumption is the transition (J → G)
J→F←K
−→ (K → H) which leads

to the situation depicted in Diagram (8.1), where the decomposition of J → G
is shown explicitly and all morphisms are injective and all (basic) squares are

pushouts, apart from the square K, C, F , G
+

, which is a pullback.

D

��

// L

��

Ioo //

��

R

��

G // G //
G

+
Coo // H

J

OO

// E

OO

J

OO

// F

OO

K

OO

oo

GG

(8.1) D

��

// L

��

Ioo //

��

R

��

G // G //
G

+
Coo // H

J

OO

// E

OO

// E2

OO

E1

OO

oo

??

J

OO

// F

OO

K

OO

oo

GG

(8.2)

We can now split the lower pushout and the lower pullback along E (see
Diagram (8.2)).

As a next step we construct D as the pullback of G → G and D → G,
followed by the construction of G̃ as the pushout of the resulting morphisms.
In Diagram (8.2) we can now split the upper row of pushouts and the pushout
to the very left, obtaining the graphs F1, G+, C and H. We then construct F as
the pullback of G+ → G

+
and E2 → G

+
and K as pullback of the morphisms

C → C and E1 → C. This results in Diagram (8.3), with two commuting cubes
in the middle of the diagram.

All morphisms are injective, all squares commute and we can infer that the
squares D,G,L,G+ and I, L,C,G+ and J,G, F,G+ and I,R,C,H are pushouts
and the square K,C, F,G+ is a pullback, as in Definition 8.3.1. Hence, from
Diagram (8.3) we can derive the following transition:

(J → G)
J→F←K
−→ (K → H),

using the notation of Definition 8.3.1. Since R is a bisimulation, this implies

(J → G′)
J→F←K
−→ (K → H ′)

with (K → H)R (K → H ′). Furthermore we can infer from Diagram (8.3) that
K → H can be obtained by composing K → H with the context K → E1 ← K,
since the square K,H,E1, H is a pushout.
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!!D
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>>~~~~~~~~

E
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// E2

OO

E1

OO

oo

??

J

OO

// F

OO

K

OO

oo

FF

(8.3)

Step 2: We will now extend the transition from J → G′ to K → H ′ with
(K → H)R (K → H ′) obtained above to construct a transition from (J → G

′
)

to (K → H
′
) with (K → H) R̂ (K → H

′
). We will construct K → H

′
in such

a way that it is the composition of K → H ′ with the context K → E1 ← K.
Recall also that J → G

′
is the composition of J → G′ and the context J →

E ← J .

We now cut away the upper layer of Diagram (8.3) and we obtain Dia-
gram (8.4) where all squares are pushouts, apart from the square K,F ,E1, E2,
which is a pullback.

F1

��
@@

@@
@@

@@
// F

  
@@

@@
@@

@@
Koo

  
AA

AA
AA

AA

J //

??��������

E // E2 E1
oo

J

OO

// F

OO

K

OO

oo

(8.4)

From the derivation step of J → G′ given earlier one can derive Dia-
gram (8.5) for some rule L′ ← I ′ → R′ where the lower right-hand square
is a pullback and all other squares are pushouts. The morphism J → F is split
by F1 and therefore we can split the two left-hand side pushouts as shown in
Diagram (8.6).

D′

��

// L′

��

I ′oo //

��

R′

��

G′ // G′+ C ′oo // H ′
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OO
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K

OO

oo

>>

(8.6)
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We compose Diagrams (8.4) and (8.6) and construct the graph G
′

as the

pushout of F1 → G̃′ and F1 → E, the graph G
′+

as the pushout of F → G′+

and F → E2 and the graph C
′

as pushout of K → C ′ and K → E1. This
results in Diagram (8.7), which is identical to Diagram (8.3) in structure.
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OO
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OO

oo
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(8.7)

In Diagram (8.7), the three right-hand squares in the upper row are all

pushouts, the square J, F ,G
′
, G
′+

is a pushout and the square K,F ,C
′
, G
′+

is
a pullback.

Hence, by Definition 8.3.1 we infer that

(J → G
′
)
J→F←K
−→ (K → H

′
),

and since the square K,H ′, E1, H
′

is also a pushout we can infer that K → H
′

can be obtained by composing K → H ′ and the context K → E1 ← K. From
earlier considerations we know that K → H is the composition of K → H with
K → E1 ← K and hence (K → H) R̂ (K → H

′
). This means that we have

achieved our goal stated at the beginning of the proof sketch, which implies
that R̂ is a bisimulation and ∼ is a congruence.

2

8.5 Borrowed Contexts at Work: An Example

In order to further pursue the example we will first introduce a proof technique
simplifying bisimilarity proofs. This technique is a straightforward instance
of an up-to technique [San95]. The underlying idea behind the technique is
the observation that the relation R should be as small as possible, in order
to obtain a compact proof. This goal can be reached by slightly extending
the notion of bisimulation: We now demand that if a transition is matched by
another, the pair of resulting graphs can be found inR after removal of identical
contexts. Hence, this extended notion of bisimulation is called “bisimulation
up to context”. We first need an auxiliary definition.
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Definition 8.5.1 (Progression) Let R,S be relations containing pairs of
graphs with interfaces of the form (J → G, J → G′), where R is symmet-
ric. We say that R progresses to S, abbreviated by R � S, if whenever

(J → G)R (J → G′) and (J → G)
J→F←K
−→ (K → H), there exists a morphism

K → H ′ such that (J → G′)
J→F←K
−→ (K → H ′) and (K → H)S (K → H ′).

For example, R is a bisimulation if and only if R� R.

Definition 8.5.2 (Bisimulation up to Context) Let R be a symmetric re-
lation containing pairs of graphs with interfaces of the form (J → G, J → G′).

If R� R̂, then R is called bisimulation up to context.

We will show in Proposition 8.5.3 that every bisimulation up to context
is contained in the bisimilarity ∼. The attractiveness of bisimulations up to
context stems from the fact that such a relation can be much smaller than
the least bisimulation that contains it and thus proofs can be compressed. This
technique might even allow us to work with a finite relation instead of an infinite
one.

Proposition 8.5.3 (Bisimulation up to Context implies Bisimilarity)
Let R be a bisimulation up to context. Then it holds that R ⊆∼.

Proof (Sketch): By carefully examining the proof of Theorem 8.4.3 again we
can see that some simple modifications give us the following (stronger) theorem:

If R� S, then also R̂� Ŝ.

Since R is a bisimulation up to context we have R� R̂. The stronger version

of Theorem 8.4.3 now implies R̂ � (̂R̂). Since the composition of contexts is

associative we have (̂R̂) = R̂, which implies R̂ � R̂ and hence that R̂ is a
bisimulation, i.e., R̂ ⊆∼. This implies R ⊆ R̂ ⊆∼. 2

Since contextualization is defined only up to isomorphism, we can assume
that R̂ is closed under isomorphism in the following sense: For every span
G← J → G′, all isomorphic spans G̃← J̃ → G̃′ are also contained in R̂.

Similarly, we can restrict ourselves to abstract transitions when checking for
bisimilarity: Assume that (J → G)R (J → G′) and there are two transitions

(J → G)
J→F←K
−→ (K → H) and (J → G)

J→F̃←K̃
−→ (K̃ → H̃)

with isomorphisms from F̃ , K̃, H̃ to F,K,H respectively such that the entire
diagram commutes (see Diagram (8.8)). It is sufficient to show the existence of a

transition (J → G′)
J→F←K
−→ (K → H ′) such that (K → H) R̂ (K → H ′). From

this transition and Diagram (8.8) we can derive Diagram (8.9), where the arrows
pointing upwards are isomorphisms and the diagram commutes. In such a

situation we can infer the existence of a transition (J → G′)
J→F̃←K̃
−→ (K̃ → H̃ ′)

such that H ← K → H ′ and H̃ ← K̃ → H̃ ′ are isomorphic spans, from which
it follows that (K̃ → H̃) R̂ (K̃ → H̃ ′).
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We now show how to exploit this proof technique and prove that two graphs
are bisimilar. We assume that the set P of rules depicted in Figure 8.1 is given
and we consider the two graphs with interfaces of Figure 8.4.

J
S

S

D

J G′G

Figure 8.4: Two graphs with interfaces which are bisimilar.

We consider the symmetric relation

R = {(J → G, J → G′), (J → G′, J → G)}

and we will show that it is a bisimulation up to context. For each of the three
rules there are several partial matches for both G and G′. Most of these matches
are not very interesting, since the graph to be rewritten and the left-hand side
overlap only in their interfaces, but the corresponding transitions have to be
checked nevertheless. (We discuss possible simplifications in the conclusion.)

In order to give a general idea, we consider only two transitions of J → G
in detail, where both are instances of rule [simplex]. These two transitions will
be written

(J → G)
J→Fi←Ki−→ (Ki → Hi),

where i = 1, 2. The graphs Fi,Ki, Hi and the corresponding morphisms are
depicted in Figure 8.5. Note that we have already shown how to derive the first
transition of J → G in Figure 8.3 (where F1 = F , K1 = K, H1 = H).

In order to show that R is a bisimulation up to context, we have to find
matching transitions

(J → G′)
J→Fi←Ki−→ (Ki → H ′i)

for i = 1, 2, such that (Ki → Hi) R̂ (Ki → H ′i). Such transitions can be derived
and the graphs H ′i with their corresponding morphisms are also depicted in
Figure 8.5. Note that the first transition is an instance of rule [duplex-1], while
the second transition is an instance of rule [duplex-2].

Furthermore, it holds that (Ki → Hi) R̂ (Ki → H ′i) for i = 1, 2, since these
graphs can be obtained by composing J → G respectively J → G′ with a context
consisting of two nodes and a loopingM -edge. After checking also the remaining
transitions we can conclude (J → G) ∼ (J → G′) from Proposition 8.5.3.

This means that in every context we can replace a duplex connection by
two simplex connections and vice versa. Even this small example shows us that
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Figure 8.5: Matching transitions of bisimilar graphs.

in order to obtain a bisimilarity result, proof techniques are needed in order
to keep R finite. Otherwise we would have to deal with a relation containing
infinitely many elements.

8.6 Conclusion

We have presented a way to derive labelled transitions and bisimulation con-
gruences for graph transformation systems. It is our hope that this work will
be helpful for the transfer of concepts from the world of process algebras to
the world of graph rewriting and vice versa. We believe that having graphs as
objects (and graph morphisms as arrows) instead of having graphs as arrows is
useful for tracking graph components and thus enables us to easily state which
components are associated with each other in different graphs. Hence we need
not consider explicit names for graph components.

We have made some investigations concerning the adaptation of the concept
of relative pushouts for cospans of graphs. However, there are fundamental
problems, mainly caused by graphs having non-trivial automorphisms (see, e.g.,
the counterexample in [Lei01] on pages 80/81, which can be directly transferred
into our framework). We believe, however, that our construction is very close
in spirit to the notion of relative pushouts introduced by Leifer and Milner and
that it should be possible to show the equivalence of these two notions in a
suitable graph category with support.

Our results do not only hold in graph structure categories, but also in other
categories which satisfy certain properties typical for the categories of sets and
high-level replacement systems [EGPP99]. In this context it is also interesting
to point out that most of the categorical properties we need hold already in
adhesive categories [LS04].

In the future we also plan to address the following two questions: How
should weak bisimilarity be defined and is it a congruence? Do our results
still hold if we allow for non-injective morphisms? Furthermore we plan to
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introduce more proof techniques in order to simplify bisimulation proofs. One
such technique is clearly suggested by the example in Section 8.5. Whenever a
graph and a left-hand side overlap only in their interfaces, another graph with
the same interface will certainly be able to match the corresponding rewriting
step with borrowed context, since this step only changes the interface itself.
Hence it should be possible to remove some superfluous transitions without
changing the underlying bisimilarity.

Another interesting question would be to find out which bisimulation con-
gruences are produced by the various encodings of π-calculus into graph rewrit-
ing and to see in what way they are related to existing congruences for this
calculus. It also remains to determine in what way our bisimilarity is related
to dynamic bisimulation as presented in [BMS00, MS92c].

Acknowledgements: We would like to thank the anonymous referees for
their helpful comments. We are especially grateful to Robin Milner for suggest-
ing this research topic and for sharing his ideas with us.
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Chapter 9

Observational Equivalence for
Synchronized Graph
Rewriting with Mobility
(Joint work with Ugo Montanari)

Abstract

We introduce a notion of bisimulation for graph rewriting sys-
tems, allowing us to prove observational equivalence for dynam-
ically evolving graphs and networks.
We use the framework of synchronized graph rewriting with
mobility which we describe in two different, but operationally
equivalent ways: on graphs defined as syntactic judgements and
by using tile logic. One of the main results of the paper says
that bisimilarity for synchronized graph rewriting is a congru-
ence whenever the rewriting rules satisfy the basic source prop-
erty. Furthermore we introduce an up-to technique simplifying
bisimilarity proofs and use it in an example to show the equiv-
alence of a communication network and its specification.

9.1 Introduction

Graph rewriting can be seen as a general framework in which to specify and
reason about concurrent and distributed systems [EKMR99]. The topology
and connection structure of these systems can often be naturally represented in
terms of nodes and connecting edges, and their dynamic evolution can be ex-
pressed by graph rewriting rules. We are specifically interested in hypergraphs
where an arbitrarily long sequence of nodes—instead of a pair of nodes—is
assigned to every edge.

However, the theory of graph rewriting [Roz97] lacks a concept of obser-
vational equivalence, relating graphs which behave the same in all possible
context, which is quite surprising, since observational equivalences, such as
bisimilarity or trace equivalence, are a standard tool in the theory of process
calculi.
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We are therefore looking for a semantics for (hyper-)graph rewriting systems
that abstracts from the topology of a graph, and regards graphs as processes
which are determined by their interaction with the environment, rather than
by their internal structure. It is important for the observational equivalence
to be a congruence, since this will enable compositional proofs of equivalence
and assure substitutivity, i.e. that equivalent subcomponents of a system are
exchangeable.

The applications we have in mind are the verification of evolving networks,
consisting, e.g., of processes, messages and other components. A possible sce-
nario would be a user who has limited access to a dynamically changing network.
We want to show that the network is transparent with respect to the location
of resources, failure of components, etc. by showing that it is equivalent to a
simpler specification. Such an equivalence of networks is treated in the example
in Section 9.7.

One possible (and well-studied) candidate for an observational equivalence
is bisimilarity. So the central aim of this paper is to introduce bisimilarity
for graph rewriting—we will explain below why it is convenient to base this
equivalence on the model of synchronized graph rewriting, as opposed to other
models—and to introduce an up-to proof technique, simplifying actual proofs
of bisimilarity.

When defining bisimulation and bisimilarity for graph rewriting systems,
two possibilities come to mind: the first would be to use unlabelled context-
sensitive rewrite rules as, for example, in the double-pushout approach [Ehr79].
The definition of an observational congruence in this context, however, ordinar-
ily requires universal quantification over all possible contexts of an expression,
which is difficult to handle in practice. This makes us choose the second possi-
bility, which is closer to process algebras: we use synchronized graph rewriting,
which allows only context-free rewrite rules whose expressive power is increased
considerably by adding synchronization and mobility (i.e. communication of
nodes), thus including a large class of rewriting systems. In this case we can
define a simple syntactic condition (the basic source property) on the rewrite
rules ensuring that bisimilarity is a congruence (compare with the de Simone
format [dS85] and the tyft/tyxt-format [GV92]).

As synchronization mechanism we choose Hoare synchronization which
means that all edges that synchronize via a specific node produce the same
synchronization action. This is different from Milner synchronization (as in
CCS [Mil80]) where two synchronizing processes produce two different signals:
an action a and a coaction ā.

We prefer Hoare synchronization since it makes it easier to handle the kind
of multiple synchronization we have in mind: several edges connected to each
other on a node must agree on an action a, which means that there is no clear
distinction between action and coaction. This, in turn, causes other nodes
connected to the same edges to perform a different action, and in this way
synchronization is propagated by edges and spreads throughout an entire con-
nected component. It is conceivable to implement different synchronization
mechanisms as processes working as “connectors”, thus modeling in this way a
variety of coordination mechanisms.
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Edges synchronizing with respect to an action a may, at the same time,
agree to create new nodes which are then shared among the right-hand sides
of the respective rewrite rules. (This form of mobility was first presented in
[HIM00] and is also extensively treated in [HM01].) From the outside it is not
possible to determine whether newly created nodes are different or equal, it is
only possible to observe the actions performed.

Apart from the obvious representation of graphs in terms of nodes and edges,
there are several other approaches representing graphs by terms, which allow
for a more compositional presentation of graphs and enable us, for example, to
do induction on the graph structure. We will introduce two of these term rep-
resentations: first graphs as syntactic judgements, where nodes are represented
by names and we have operators such as parallel composition and name hiding
at our disposal. This representation allows for a straightforward definition of
graph rewriting with synchronization and mobility.

The second representation defines graphs in terms of arrows of a P-monoidal
category [BGM98]. This allows for an easy presentation of graph rewriting in
tile logic, a rewriting framework which deals with the rewriting of open terms
that can still be contextualized and instantiated and allows for different ways of
composing partial rewrites. To show the compositionality of our semantics, we
use a property of tile logic, i.e. the fact that if a tile system satisfies a so-called
decomposition property, then bisimilarity defined on top of this tile system is a
congruence (see also [BFEMOM00a]).

Apart from the fact that we use tile logic as a tool to obtain the congruence
result, we also show how mobility, and specifically the form of mobility used in
synchronized graph rewriting, can be handled in the context of tile logic.

9.2 Synchronized Graph Rewriting with Mobility

We start by introducing a representation of (hyper-)graphs as syntactic judge-
ments, where nodes in general correspond to names, external nodes to free
names and (hyper-)edges to terms of the form s(x1, . . . , xn) where the xi are
arbitrary names.

Definition 9.2.1 (Graphs as Syntactic Judgements) Let N be a fixed in-
finite set of names. A syntactic judgement is of the form Γ ` G where Γ ⊆ N is
a set of names (the interface of the graph) and G is generated by the grammar

G ::= nil (empty graph) | G|G (parallel composition) |

(νx)G (node hiding) | s(x1, . . . , xn) (edge)

where x ∈ N and s(x1, . . . , xn) with arbitrary xi ∈ N is called an edge of arity
n labelled s. (Every label is associated with a fixed arity.)

Let fn(G) denote the set of all free names of G, i.e. all names not bound by
a ν-operator. We demand that fn(G) ⊆ Γ.

We assume that whenever we write Γ, x, then x is not an element of Γ.
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We need to define a structural congruence on syntactic judgements in order
to identify those terms that represent isomorphic graphs (up to isolated nodes)
(see [Kön99a, Kön00c]).

Definition 9.2.2 (Structural Congruence) Structural congruence ≡ on syn-
tactic judgements obeys the rules below and is closed under parallel composition |
and the hiding operator ν. (We abbreviate equations of the form Γ ` G ≡ Γ ` G′

by G ≡ G′.)

Γ ` G ≡ ρ(Γ) ` ρ(G) where ρ is an injective substitution

(G1|G2)|G3 ≡ G1|(G2|G3) G1|G2 ≡ G2|G1 G|nil ≡ G

(νx)(νy)G ≡ (νy)(νx)G (νx)nil ≡ nil (νx)G ≡ (νy)G{y/x} if y 6∈ fn(G)

(νx)(G|G′) ≡ (νx)G|G′ if x 6∈ fn(G′)

We sometimes abbreviate (νx1) . . . (νxn)G by (ν{x1, . . . , xn})G.

Example 9.2.3 We regard the syntactic judgement y ` (νx)(νz)(P (x) |
S(x, y, z) | P (z)) which consists of two processes P which are connected to
each other and the only external node y via a switch S. A graphical representa-
tion of this syntactic judgement can be found in Figure 9.2 (graph in the lower
left corner).

In order to define rewriting on syntactic judgements we introduce the notion
of rewriting rule. We use a set Act of arbitrary actions, which can be thought
of as the set of signals which are allowed in a network.

Definition 9.2.4 (Rewriting Rules) Let Act be a set of actions, containing
also the idle action ε. Each action a ∈ Act is associated with an arity ar(a) ∈ lN,
the arity of ε is 0. (The arity indicates the number of nodes created by an
action.)

A rewriting rule is of the form

x1, . . . , xn ` s(x1, . . . , xn)
Λ
−→ x1, . . . , xn,ΓΛ ` G

where all xi are distinct, Λ ⊆ {x1, . . . , xn}×Act\{ε}×N ∗ such that Λ is a total
function in its first argument, i.e. if (xi, ai, ỹi) ∈ Λ we write Λ(xi) = (ai, ỹi),
respectively actΛ(xi) = ai and nΛ(xi) = ỹi, and we demand that ar(ai) = |ỹi|.

Furthermore1 ΓΛ =
⋃
xi∈Λ

Set(nΛ(xi)) and we demand that {x1, . . . , xn} ∩
ΓΛ = ∅.

A rewriting rule of the form given above indicates that an edge s(x1, . . . , xn)
is rewritten, synchronizing on each node xi with an action ai, and during this
synchronization a string ỹi of new nodes is created. The set ΓΛ contains all new
nodes in the interface which are created by the rewriting step.

The following example will be used as a running example throughout the
paper.

1For any string s̃, we denote the set of its elements by Set(s̃).
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Figure 9.1: Graphical representation of example rules

Example 9.2.5 We describe a network of processes P of arity 1 and processes
Q of arity 2 connected to each other via switches S of arity 3.

We use three kinds of actions, apart from the idle action ε: τ and a (both of
arity 0) and s (of arity 1) which is the action used for establishing a shared name.
A process of our example network can perform the following rewriting steps:2

P can either send a signal a, or it can extend the network by transforming
itself into a switch with two processes connected to it, or it can perform an s
action and fork a process Q whose second node is connected to a newly created,
privately shared channel. The action τ is different from the idle action and is
used in this example to represent internal activity.

x ` P (x)
{(x,a,〈〉)}
−→ x ` P (x)

y ` P (y)
{(y,τ,〈〉)}
−→ y ` (νx)(νz)(P (x) | S(x, y, z) | P (z))

x ` P (x)
{(x,s,w)}
−→ x,w ` (νy)(νz)(S(x, y, z) | P (y) | Q(z, w)).

The process Q, on the other hand, can perform any combination of a and τ
actions.

x, y ` Q(x, y)
{(x,a1,〈〉),(y,a2,〈〉)}

−→ x, y ` Q(x, y) where a1, a2 ∈ {a, τ}.

Switches have the task to route the signals and actions originating at the pro-
cesses and in the case of an s action a new node v is created. In both rules we
require that {x, y, z} = {x1, x2, x3}:

x, y, z ` S(x, y, z)
{(x1,a,〈〉),(x2,a,〈〉),(x3,τ,〈〉)}

−→ x, y, z ` S(x, y, z)

x, y, z ` S(x, y, z)
{(x1,s,v),(x2,s,v),(x3,τ,〈〉)}

−→ x, y, z, v ` S(x, y, z)

A graphical representation of the third rule for P and the second rule for S
(with x1 = x, x2 = z, x3 = y) is depicted in Figure 9.1, where the bound names
are indicated by their enclosure in round brackets.

In order to be able to define inference rules which describe how to derive
more complex transitions from the basic rules, we first introduce the following
notion of a most general unifier which transforms a relation Λ, which does not
necessarily satisfy the conditions of definition 9.2.4, into a function.

2The empty sequence is denoted by 〈〉.
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Definition 9.2.6 (Most General Unifier) Let σ : N → N be a name sub-
stitution. If Λ = {(xi, ai, ỹi) | i ∈ {1, . . . , n}}, then σ(Λ) = {(σ(xi), ai, σ

∗(ỹi)) |
i ∈ {1, . . . , n}} where σ∗ is the extension of σ to strings.

For any Λ = {(xi, ai, ỹi) | i ∈ {1, . . . , n}} ⊆ N × Act × N ∗ we call a
substitution ρ : N → N a unifier of Λ whenever ρ(xi) = xi for i ∈ {1, . . . , n}
and xi = xj implies ai = aj and ρ∗(ỹi) = ρ∗(ỹj).

The mapping ρ is called a most general unifier whenever it is a unifier with
a minimal degree of non-injectivity. Unifiers do not necessarily exist.

Example 9.2.7 The substitution ρ = {u/v, u/r, u/s, u/w, u/t} is a unifier for
Λ = {(x, a, uuvw), (x, a, rsst)} since ρ(Λ) = {(x, a, uuuu)}. A most general
unifier is, for example, ρ′ = {u/v, u/r, u/s, w/t} where ρ′(Λ) = {(x, a, uuuw)}.

The set Λ = {(x, a, u), (x, b, v)}, where a 6= b, does not have a unifier.

Most general unifiers are needed in order to make sure that whenever two
nodes are merged, the strings of nodes created by synchronizing on them, are
also merged. Regard, for example, the rewriting rules

x ` s(x)
Λ1={(x,a,y)}
−→ x, y ` s′(x, y) and x ` t(x)

Λ2={(x,a,z)}
−→ x, z ` t′(x, z).

Then—since the edges s and t should agree on a common new name—we expect
that

x ` s(x) | t(x)
Λ={(x,a,y)}
−→ x, y ` s′(x, y) | t′(x, y)

where Λ can be obtained by applying the most general unifier to Λ1 ∪ Λ2.

We introduce the following inference rules for transitions, which are similar
to the rules given in [HIM00, HM01].

Definition 9.2.8 (Inference Rules for Transitions) All possible transitions

Γ ` G
Λ
−→ Γ′ ` G′ between graphs are generated by a set R of rewriting rules

and the inference rules given below and are closed under injective renaming of
all names occurring in a transition.

(ren)
Γ ` G

Λ
−→ Γ,ΓΛ ` G

′

ρ(Γ) ` ρ(G)
ρ′(ρ(Λ))
−→ ρ(Γ),Γρ′(ρ(Λ)) ` ρ

′(ρ(G′))

where ρ : Γ→ Γ and ρ′ is the most general unifier for ρ(Λ).

(par)
Γ ` G1

Λ1−→ Γ,ΓΛ1
` G′1 Γ ` G2

Λ2−→ Γ,ΓΛ2
` G′2

Γ ` G1|G2
ρ(Λ1∪Λ2)
−→ Γ,Γρ(Λ1∪Λ2) ` ρ(G′1|G

′
2)

if ΓΛ1
∩ ΓΛ2

= ∅ and ρ is the most general unifier for Λ1 ∪ Λ2.

(hide)
Γ, x ` G

Λ]{(x,a,ỹ)}
−→ Γ, x,ΓΛ, Y ` G

′

Γ ` (νx)G
Λ
−→ Γ,ΓΛ ` (νx)(νY )G′

where Y = Set(ỹ)\ΓΛ.

(idle) Γ ` G
Λ
−→ Γ ` G where3 Λ(x) = (ε, 〈〉) for x ∈ Γ.

3The empty sequence is denoted by 〈〉.
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Figure 9.2: Processes establishing a privately shared channel

(new)
Γ ` G

Λ
−→ Γ,ΓΛ ` G

′

Γ, x ` G
Λ]{(x,a,ỹ)}
−→ Γ, x,ΓΛ, ỹ ` G

′

We also write R  (Γ ` G
Λ
−→ Γ′ ` G′) whenever this transition can be derived

from a set R of rewriting rules.

In every transition Λ assigns to each free name the action it performs and
the string of new nodes it creates. Rule (ren) deals with non-injective renaming
of the nodes of a graph, which is necessary in order to handle edges of the form
s(. . . , x, . . . , x, . . .), i.e. edges which are connected several times to the same
node. Parallel composition of syntactic judgements is treated in rule (par)
which makes sure that whenever a synchronization on a node creates a string
ỹ1 in the rewriting of Γ ` G1 and the synchronization on the same node creates a
string ỹ2 in the rewriting of Γ ` G2, then both strings are identified by ρ. In rule
(hide), which deals with hiding of names, we do not only have to hide the name
itself, but all the names which have been created exclusively by interaction on
this name, i.e. all names in the set Y . Furthermore every syntactic judgement
can always make an explicit idle step by performing action ε on all its external
nodes (rule (idle)) and we can add an additional name to the interface which
performs arbitrary actions (rule (new)). This is due to Hoare synchronization
which requires that any number of edges, and therefore also zero edges, can
synchronize on a given node.

Example 9.2.9 One of the most interesting rewriting steps which can be de-
rived from the rules of example 9.2.5 is the forking of two processes Q at the
same time and the establishment of a privately shared channel between them.
We intend to reduce the syntactic judgement y ` (νx)(νz)(P (x) | S(x, y, z) |
P (z)) from example 9.2.3. The task of the switch S is to route the signal s
on which both processes synchronize, and also to propagate the newly created
name.

We first derive a transition for x, y, z ` P (x) | S(x, y, z) | P (z) which is
depicted in the upper half of Figure 9.2 and which can be obtained by composing
the rewriting rules given in Figure 9.1 where the concept of the most general
unifier forces v = w. Then in the next step we hide both names x and z which
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causes all names produced by interaction on x or z to be hidden as well, which
means that v is removed from the interface (see the lower half of Figure 9.2).

We can also observe that when a process P creates a new node which is
communicated to the environment, a form of name extrusion as in the π-calculus
[Mil99] is performed. In the extrusion rule of the labelled transition semantics
of the π-calculus, a private, but extruded, name may also appear free in the
right-hand side of the rule.

9.3 Representation of Graphs in a P-monoidal Cat-
egory

In order to be able to describe graph rewriting in tile logic, we will now describe
a second possibility of graph representation, which abstracts from names, i.e.
nodes are not addressed via their name, but via their position in the interface.
In this way we identify all graphs which can be seen as isomorphic, i.e. which
are equal up to the laws of structural congruence given in Definition 9.2.2.

We will introduce new operators, such as the duplicator ∇ and the codu-
plicator ∆ (splitting respectively merging nodes), the permutation ρ, the dis-
charger ! and the codischarger ? (hiding respectively creating nodes), which will
be defined below (see also Figure 9.3). For the representation of rewriting steps
as tiles, it is convenient to be able to describe these unary operators as graphs
as well. In order to achieve this, we introduce an interface consisting of two
sequences of nodes: root and variable nodes. Additionally we have two binary
operators: composition ; and a monoidal operation ⊗.

We will now describe graphs as arrows of a P-monoidal (or Part-monoidal)
category [BGM98], which can be obtained from dgs-monoidal categories [GH97]
by adding an axiom.

P-monoidal categories are an extension of gs-monoidal categories. These
describe term graphs, i.e. terms minus copying and garbage collection. Intu-
itively P-monoidal categories do not only contain term graphs, but also term
graphs turned “upside down” and all possible combinations of these graphs.

We first give a formal definition in terms of category theory and then infor-
mally describe the meaning of the constants and operations in our setting.

Definition 9.3.1 (P-monoidal category) A gs-monoidal category G is a
six-tuple (C,⊗, e, ρ,∇, !) where (C,⊗, e, ρ) is a symmetric strict monoidal cate-
gory and ! : Id ⇒ e : C→ C, ∇ : Id ⇒ ⊗◦D : C→ C are two transformations
(D is the diagonal functor), such that !e = ∇e = ide and the following coherence
axioms

∇a; ida ⊗∇a = ∇a;∇a ⊗ ida ∇a; ida⊗!a = ida ∇a; ρa,a = ∇a

and the monoidality axioms

∇a⊗b; ida ⊗ ρb,a ⊗ id b = ∇a ⊗∇b !a⊗!b =!a⊗b

are satisfied.
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Figure 9.3: P-monoidal operators

A P-monoidal category D is an eight-tuple (C,⊗, e, ρ,∇, !,∆, ?) such that
both the six-tuples (C,⊗, e, ρ,∇, !) and (Cop ,⊗, e, ρ,∆, ?) are gs-monoidal cat-
egories (where Cop is the dual category of C) and satisfy

∆a;∇a = ida ⊗∇a; ∆a ⊗ ida ∇a; ∆a = ida ?a; !a = ide

In order to model graphs we use a P-monoidal category where the objects
are of the form n, n ∈ lN, e = 0 and n⊗m is defined as n+m. If Σ is a set of
symbols each associated with a sort n → 0, then PMon(Σ) is the P-monoidal
category freely generated from the symbols in Σ which are interpreted as arrows.

In order to save brackets we adopt the convention that the monoidal opera-
tion ⊗ takes precedence over ; (the composition operator of the category). Note
that by omitting the last axiom ?a; !a = ide we obtain exactly the definition of
a dgs-monoidal category.

We depict an arrow t : n → m of PMon(Σ) by drawing a hypergraph
with two sequences of external nodes: n root nodes and m variable nodes (see
Figure 9.3). Root nodes are indicated by labels 1, 2, . . ., variable nodes by
labels [1], [2], . . . The composition operator ; merges the variable nodes of its
first argument with the root nodes of its second argument. The tensor product
⊗ takes the disjoint union of two graphs and concatenates the sequences of
root respectively variable nodes of its two arguments. Note that the axiom
?a; !a = ide has the intuitive meaning that isolated nodes are garbage-collected.

Similar to the case of syntactic judgements it can be shown that two terms
of PMon(Σ) are equal if and only if the underlying hypergraphs are isomorphic
(up to isolated nodes) [BGM98].

There is a one-to-one correspondence between P-monoidal terms w : m →
n ∈ PMon(∅) (corresponding to the set of all discrete graphs) and equivalence
relations on the union of {r} × {1, . . . ,m} and {v} × {1, . . . , n}. We say that
(r, i) ≡w (r, j) whenever the i-th and the j-th root node of w are equal, addi-
tionally (r, i) ≡w (v, j) whenever the i-th root node and the j-th variable node
are equal and (v, i) ≡w (v, j) whenever the i-th and the j-th variable node are
equal. An equivalence relation on a set can also be seen as a partition of this
set, which is the origin of the name P(art)-monoidal category.

Syntactic judgements can be encoded into P-monoidal terms. We introduce
a mapping α assigning to each name its position in the sequence of external
nodes. One name may appear in several positions.

Definition 9.3.2 (Encoding of Syntactic Judgements) Let Γ ` G be a
syntactic judgement and let α : {1, . . . , n} → Γ be a surjective (but not nec-
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essarily injective) function, indicating which positions a name should occupy in
the interface. We will also call α an n-ary interface mapping.

Then [[Γ ` G]]α : n→ 0 is an arrow of PMon(Σ) where Σ contains s : m→
0 for every edge of the form s(x1, . . . , xm). The encoding is defined as follows:

[[Γ ` G1|G2]]α = ∇n; [[Γ ` G1]]α ⊗ [[Γ ` G2]]α

[[Γ ` (νx)G]]α = idn⊗?1; [[Γ, x ` G]]α∪{n+1 7→x} if x 6∈ Γ

[[Γ ` nil ]]α = !n

[[Γ ` s(x1, . . . , xm)]]α = w; s

where w : n → m ∈ PMon(∅) (the “wiring”) such that ≡w is the smallest
equivalence containing {((r, i), (v, j)) | α(i) = xj}.

Note that if α is injective, all P-monoidal terms of the form [[Γ ` G]]α lie
in a subcategory of PMon(Σ) which is generated by all symbols and constants
apart from ∆n, which means in practice that all root nodes in the interface of
a graph are distinct.

Example 9.3.3 By encoding the syntactic judgement

Γ ` G = y ` (νx)(νz)(P (x) | S(x, y, z) | P (z))

of Example 9.2.3 with the mapping α : {1} → {y}, α(1) = y we obtain the
following P-monoidal term

id1⊗?1; id2⊗?1;∇3; (!1 ⊗ id1⊗!1;P )⊗ (∇3; (ρ1,1 ⊗ id1;S)⊗ (!2 ⊗ id1;P )).

Proposition 9.3.4 It holds that Γ ` G ≡ Γ′ ` G′ if and only if there exist
injective α, α′ such that [[Γ ` G]]α = [[Γ′ ` G′]]α′.

9.4 A Tile Logic Representation for Synchronized
Graph Rewriting with Mobility

We now describe graph rewriting in the framework of tile logic, in which we

consider rewrites of the form s
a

b
// t where s and t are configurations (i.e.

hypergraphs) of a system and both may have root and variable nodes, their
interface to the environment. The observation a describes the actions of s with
respect to its root nodes, while b describes the interaction with respect to its
variable nodes. The rules of tile logic describe how to derive partial rewrites and
how to extend them whenever configurations are contextualized or instantiated,
or—in this case—whenever two graphs are combined.

We first define the notion of a tile.

Definition 9.4.1 Let H and V be two categories which coincide in their set
of objects, which is {n | n ∈ lN}. We call H the horizontal category and V
the vertical category. The arrows of H are also called configurations and the
arrows of V are called observations.
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Figure 9.4: Composing tiles

A tile (compare [GM99]) is of the form s
a

b
// t where s : n→ m, t : n′ →

m′ are elements of H, and a : n→ n′, b : m→ m′ are elements of V.

Tiles can be depicted as squares (see the leftmost square in Figure 9.4).

We can now define the more specific tiles of tile graph rewriting and the
way in which they can be composed.

Definition 9.4.2 (Tile graph rewriting) Let Σ = {s : n → 0 | s is an edge
of arity n} and let PMon(Σ) be the horizontal category H whereas the vertical
category V is the free monoidal category 4 generated by the arrows a : 1→ 1 + n
for every a ∈ Act\{ε} with ar(a) = n. The idle action ε corresponds to the
identity arrow id1.

Tiles can be constructed in the following way: a tile is either taken from a
fixed set R of generator tiles, or it is a reflexive tile (h-refl) or (v-refl), or it
is one of the auxiliary tiles (dupl), (codupl), (disch), (codisch) or (perm), or it
is obtained by parallel composition (p-comp), horizontal composition (h-comp)
or vertical composition (v-comp) (see also Figure 9.4).

We write R  s
a

b
// t whenever this tile can be derived from the generator

tiles in R.

(h-refl)

s : n→ m ∈ H

s
idn

idm

// s
(v-refl)

a : n→ m ∈ V

idn
a
a

// idm

(dupl)
a : n→ m ∈ V

∇n
a

a⊗a
// ∇m

(codupl)
a : n→ m ∈ V

∆n
a⊗a

a
// ∆m

(disch)
a : n→ m ∈ V

!n
a

id0

// !m
(codisch)

a : n→ m ∈ V

?n
id0

a
// ?m

4Given a set A of arrows, the free monoidal category generated by A consists of all arrows
which can be obtained from composing the arrows of A with the composition operator ; and
the monoidal operator ⊗, observing the category axioms (; is associative and ε = id 1 is its
unit), the monoidality axioms (⊗ is associative and id0 is its unit) and a1; a

′
1 ⊗ a2; a

′
2 =

(a1 ⊗ a2); (a
′
1 ⊗ a′

2).
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(perm)
a : n→ m, b : n′ → m′ ∈ V

ρn,n′

a⊗b

b⊗a
// ρm,m′

(p-comp)
s

a

b
// t, s′

a′

b′
// t′

s⊗ s′
a⊗a′

b⊗b′
// t⊗ t′

(h-comp)
s

a
c

// t, s′
c

b
// t′

s; s′
a

b
// t; t′

(v-comp)

s
a

b
// u, u

a′

b′
// t

s
a;a′

b;b′
// t

We first show that if the generator tiles exhibit a certain well-formedness
property, then we can construct every tile in the following way: first, we can use
all rules apart from (v-comp) in order to construct several tiles which, finally,
can be combined with rule (v-comp). This says, basically, that it is sufficient
to examine tiles which describe one single rewriting step.

Proposition 9.4.3 We assume that the set R of generator tiles satisfies the

following properties: let s
a

b
// t be a generator tile, then it holds that s ∈ Σ

and furthermore there are actions a1, . . . , an ∈ Act\{ε}, such that a = a1⊗ . . .⊗
an and b = id0.

Now let R  s
a

b
// t. Then it holds that there are configurations s =

s0, s1, . . . , sm = t and observations a′1, . . . , a
′
m, b

′
1, . . . , b

′
m such that

R  si−1
a′i

b′i

// si for i ∈ {1, . . . , n} and the respective tiles can be derived

without rule (v-comp). Furthermore a = a′1; . . . ; a′m and b = b′1; . . . ; b′m.

We can now formulate one of the two main results of this paper: the op-
erational correspondence between rewriting of syntactic judgements and of P-
monoidal terms.

We first introduce the following notation: let x1 . . . xn be a string of names.
By α = 〈x1 . . . xn〉 we denote the interface mapping α : {1, . . . , n} → {x1, . . . , xn}
where α(i) = xi.

Proposition 9.4.4 (Operational Correspondence) Let R be a set of rewrit-
ing rules on syntactic judgements. We define a set R of generator tiles as
follows:

R = {s
a1⊗...⊗am

id0

// [[Γ′ ` G′]]〈x1ỹ1...xmỹm〉 |

(x1, . . . , xm ` s(x1, . . . , xm)
Λ
−→ Γ′ ` G′) ∈ R, ai = actΛ(xi),

ỹi = nΛ(xi)}.

• It holds that R  (Γ ` G
Λ
−→ Γ′ ` G′) implies

R  ([[Γ ` G]]α
a1⊗...⊗am

id0

// [[Γ′ ` G′]]〈α(1)ỹ1...α(m)ỹm〉) where ai = actΛ(α(i)),

ỹi = nΛ(α(i)).
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• And it holds that if R  ([[Γ ` G]]α
a1⊗...⊗am

id0

// t) for some P-monoidal term

t, then R  (Γ ` G
Λ
−→ Γ′ ` G′) where ai = actΛ(α(i)), ỹi = nΛ(α(i))

and [[Γ′ ` G′]]〈α(1)ỹ1...α(m)ỹm〉 = t.

Proof (Sketch): The first half of the proposition can be shown by induction
on the inference rules applied. The second half of the proposition is shown
by induction on the syntactic structure of Γ ` G and with the decomposition
property (Proposition 9.5.3 which will be proved in Section 9.5 without referring
back to this proposition). 2

Example 9.4.5 Encoding the rewrite rules on syntactic judgements from Ex-
ample 9.2.5 into generator tiles gives us the tiles depicted in Figure 9.5.
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Figure 9.5: Generator tiles

Here we represent a tile of the form s
a1⊗...⊗an

id0

// t by drawing s and t as graphs

and by labelling the free nodes of t by the actions a1, . . . , an. Specifically if
Ni =

∑i
j=1(ar(aj) + 1), then the Ni−1 + 1-st free node of t is labelled ai, while

the next ar(ai)− 1 nodes stay unlabelled (and are shaded grey in the graphical
representation), indicating that these nodes are generated by the action ai. Two
nodes that are connected by a line represent one and the same node.

9.5 Bisimilarity is a Congruence

Based on tiles we can now define the notions of bisimulation and bisimilarity
and thus define a notion of an observable, compositional equivalence on graphs.

Definition 9.5.1 (Bisimulation on tiles) Given a labelled transition system,
a bisimulation is a symmetric, reflexive relation ∼ on the states of the transi-
tion system, such that if s ∼ t and s

a
→ s′, then there exists a transition t

a
→ t′

such that s′ ∼ t′. We say that two states s and t are bisimilar (s ' t) whenever
there is a bisimulation ∼ such that s ∼ t.

In tile graph rewriting the tile s
a

b
// t is considered to be a transition

with label (a, b). We say that two configuration s, t are bisimilar wrt. a set R
of generator tiles (in symbols s 'R t) whenever s and t are bisimilar in the
transition system generated by R.
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It is already known that bisimilarity is a congruence whenever the underly-
ing tile system satisfies the following decomposition property.

Definition 9.5.2 (Decomposition Property) A tile system satisfies the de-

composition property if for all tiles s
a

b
// t entailed by the tile system, it holds

that (1) if s = s1; s2 then there exist c ∈ V, t1, t2 ∈ H such that s1
a
c

// t1,

t1
c

b
// t2 and t = t1; t2 (2) if s = s1 ⊗ s2 then there exist a1, a2, b1, b2 ∈

V, t1, t2 ∈ H such that s1
a1

b1
// t1, s2

a2

b2
// t2, a = a1 ⊗ a2, b = b1 ⊗ b2 and

t = t1 ⊗ t2.

Proposition 9.5.3 (cf. [GM99]) If a tile system satisfies the decomposition
property, then bisimilarity defined on its transition system is a congruence.

Similar to the case of de Simone [dS85] or tyft/tyxt-formats [GV92], there
is a sufficient syntactical property ensuring that bisimilarity is indeed a congru-
ence, which is stated in the second main result of this paper.

Proposition 9.5.4 If, in tile graph rewriting, all generator tiles satisfy the

basic source property, i.e. if for every generator tile s
a

b
// t it holds that

s ∈ Σ, then the decomposition property holds. Thus bisimilarity is a congruence.

Proof (Sketch): By induction on the derivation of a tile, following the lines of
a similar proof in [BFEMOM00b]. 2

Corollary 9.5.5 All the tile graph rewriting systems derived from rewriting
rules on syntactic judgements satisfy the basic source property. Thus the de-
composition property holds and bisimilarity is a congruence.

Having established that bisimilarity is indeed a congruence in the case of
tile graph rewriting we now transfer this result back to rewriting on syntactic
judgements with the help of the operational correspondence (Proposition 9.4.4).
First we have to define bisimulation on syntactic judgements. We use the
following intuition: an observer from the outside has access to the external
nodes of a graph, however he or she is not able to determine their names and
he or she should also not be able to find out whether or not two nodes are
equal. So, given two syntactic judgements, we add an interface mapping α
which assigns numbers to names and in this way hides the internal details from
an external observer.

For the next definition remember that the mapping i 7→ xi is denoted by
〈x1 . . . xn〉.

Definition 9.5.6 (Bisimulation on syntactic judgements) Let Γ ` G be
a syntactic judgements. An n-ary interface for a syntactic judgement is a sur-
jective mapping α : {1, . . . , n} → Γ, as defined in Definition 9.3.2.

A symmetric, reflexive relation ∼ on pairs consisting of syntactic judge-
ments and their corresponding interfaces is called a bisimulation (wrt. a set R
of rewriting rules) if whenever (Γ1 ` G1, α1) ∼ (Γ2 ` G2, α2), then
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• there is an n ∈ lN such that α1 and α2 are both n-ary interfaces

• whenever Γ1 ` G1
Λ1−→ Γ′1 ` G

′
1 with Λ1(α1(i)) = (ai, ỹi), then it holds

that Γ2 ` G2
Λ2−→ Γ′2 ` G

′
2 with Λ2(α2(i)) = (ai, z̃i) and

(Γ′1 ` G
′
1, 〈α1(1)ỹ1 . . . α1(n)ỹn〉) ∼ (Γ′2 ` G

′
2, 〈α2(1)z̃1 . . . α2(n)z̃n〉).

We say that two pairs (Γ1 ` G1, α1) and (Γ2 ` G2, α2) are bisimilar (wrt. a
set R of rewriting rules) whenever there is a bisimulation ∼ (wrt. a set R of
rewriting rules) such that (Γ1 ` G1, α1) ∼ (Γ2 ` G2, α2). Bisimilarity on
syntactic judgements is denoted by the symbol 'R.

In order to show that bisimilarity on syntactic judgements is a congruence
with respect to parallel composition and hiding, we need the following result
on full abstraction.

Proposition 9.5.7 (Full abstraction) The encoding [[ ]]α is fully abstract in
the following sense: for any set R of rewriting rules it holds that

(Γ1 ` G1, α1) 'R (Γ2 ` G2, α2) ⇐⇒ [[Γ1 ` G1]]α1
'R [[Γ2 ` G2]]α2

where R is defined as in Proposition 9.4.4.

Proof (Sketch): Straightforward by regarding the respective definitions of
bisimilarity, from Proposition 9.4.3 and the operational correspondence result
in Proposition 9.4.4. 2

Now it is straightforward to show that bisimilarity on syntactic judgements
is a congruence as well.

Proposition 9.5.8 Let R be a set of rewriting rules and let R be the corre-
sponding set of generator tiles defined as in Proposition 9.4.4.

We assume that (Γ1, X1 ` G1, α1) 'R (Γ2, X2 ` G2, α2) such that αi :
{1, . . . , n + m} → Γi ∪ Xi and α−1

i (Xi) = {n + 1, . . . , n + m} for i ∈ {1, 2}.
Then it holds that (Γ1 ` (νX1)G1, α1|{1,...,n}) 'R (Γ2 ` (νX2)G2, α2|{1,...,n}).

And if (Γ1 ` G1, α1) 'R (Γ2 ` G2, α2) and (Γ1 ` G
′
1, α1) 'R (Γ2 ` G

′
2, α2),

then it follows that (Γ1 ` G1 | G′1, α1) 'R (Γ2 ` G2 | G′2, α2).

Proof (Sketch): Straightforward by using the full abstraction result from
Proposition 9.5.7, by using that fact that bisimilarity on P-monoidal terms
is a congruence (see Proposition 9.5.4) and by regarding the definition of the
encoding [[ ]]α in Definition 9.3.2. 2

9.6 Bisimulation up-to Congruence

In order to show that two graphs are bisimilar in practice, we need a proof
technique for bisimulation, a so-called bisimulation up-to congruence (for up-to
techniques see also [MS92a]).
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(1)

(2)

1 i
...

Ni
a1 ⊗ . . .⊗ ai

s⊗ a2 ⊗ . . .⊗ ai

1 i+1
...

Ni+1 aj ∈ {a, τ}

Figure 9.6: Specification of the communication network

Definition 9.6.1 For a given relation B on P-monoidal terms, we denote by
≡B the smallest congruence (with respect to the operators ; and ⊗) that contains
B.

A symmetric relation B is called a bisimulation up-to congruence whenever

(s, t) ∈ B and s
a

b
// s′ imply t

a

b
// t′ and s′ ≡B t′.

Proposition 9.6.2 If the decomposition property holds for the respective tile
logic and B is a bisimulation up-to congruence, then ≡B is a bisimulation.

It is typically easier to show that B is a bisimulation up-to congruence than
to show that ≡B is a bisimulation, mainly because B can be much smaller than
≡B and so there are fewer cases to consider. It may even be the case that B is
finite and ≡B is infinite in size.

9.7 Example: Communication Network

We return to our running example and intend to investigate which steps a single
process can perform, or rather which are the actions that are observable from
the outside. To this aim we give a specification N1 which models in a single
edge the entire communication topology P may generate. Note that a process P
may start with a single free node, but can create new free nodes by performing
s actions. The specification has to take this into account and N1 may therefore
reduce to N2, N3 etc., where Ni : i→ 0.

The generator tiles for the specification are depicted in Figure 9.6, where
this time we put the observations on the arrows rather than on the free nodes
of the right-hand side.

The edge Ni can either perform an arbitrary combination of a and τ actions
and stay Ni or it can perform an s action on its first node and a’s and τ ’s on
the remaining nodes and become Ni+1.

In order to show that P and N1 are indeed bisimilar we proceed as follows:
We consider the tile system generated by both the tiles belonging to processes
and switches and the tiles of the specification, and denote the combined set of
generator tiles by R. Since the set of edges involved in the first set of generator
tiles is disjoint from that in the second set, the rules can not interfere with
each other and P respectively N1 can not perform more reductions with the
additional tiles.

Proposition 9.7.1 The symmetric closure of the relation B depicted in Fig-
ure 9.7 is a bisimulation up-to congruence. Since the basic source property and
therefore the decomposition property hold, it follows that ≡B is a bisimulation.
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... ...

ik+1 l l+1

NiNi+2

......

... ...

B B

B B

Figure 9.7: Example of a bisimulation up-to congruence

And since (P,N1) ∈ B, we conclude that P 'R N1.

Proof (Sketch): From Proposition 9.4.3 it follows that it is sufficient to regard
only tiles which can be composed without using rule (v-comp).

We exemplarily treat the following case: let (P,N1) ∈ B and we assume
that P performs a τ action and replaces itself with a switch and two processes,

i.e. the second rewrite rule for P is applied. In this case N1
τ

id0

// N1 and we

have to show that the two resulting graphs are in the ≡B-relation:

P

1

SPP

1 1

S

11

N1 N1 N1N1

τ τ
≡B ≡B

2

The scenario we have presented resembles the view of a user which starts
with one single port of access to a network which may be huge. The user can
request further connections into the network (with an s action) and he or she
can send signals a which are received in the network. However, in whatever way
the user interacts with the entire network, its topology will always be hidden,
its expansion unobservable and it thus constitutes a black box. Internal com-
munications, of which several may take place in parallel, are indistinguishable
from τ -steps and thus completely hidden from the environment.

If, however, we start with a disconnected graph with i external nodes and
compare it to an edge Ni, the two expressions are not bisimilar. Consider
for example the two graphs P ⊗ P and N2, both of arity 2. We observe that

P ⊗ P
a⊗id1

id0

// P ⊗ P , whereas N2 can not match this transition. If we assume

that the first node of N2 produces an action a, we either get a or τ as the
action of the second node, but we never get id 1. In general we can state
that whenever we have a graph t consisting of processes and switches, we can
determine its connected external nodes in the following way: a set of external
nodes is connected if and only if there is a transition such that exactly the nodes
of the set perform an action different from id 1 = ε, and that furthermore there
is no proper subset with the same property.

Another scenario would be to start with a graph with several external nodes
of which two or more are connected via switches. In this case an s action
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originating on one of the external nodes may be routed to a different external
node, giving us two new nodes in the interface, which, however, must be equal.

9.8 Conclusion

We have presented synchronized graph rewriting with mobility for two forms
of graph representation (syntactic judgements and arrows in a P-monoidal cat-
egory) and we have shown that bisimilarity for synchronized graph rewriting is
a congruence with respect to graph composition. A tile logic semantics for syn-
chronized graph rewriting without mobility has already been defined in [MR99],
whereas synchronized graph rewriting with mobility has so far only been con-
sidered for syntactic judgements [HIM00, HM01], but not in the context of
tile logics. Moreover no equivalence of graphs based on observations has been
introduced there.

In [HM01] not only Hoare synchronization, but also Milner synchronization
is treated and an encoding of the π-calculus into synchronized graph rewriting
is given, using Milner synchronization.

An earlier form of synchronized graph rewriting has been treated in [DM87].
Furthermore, the mobility treated in this paper is reminiscent of the rendezvous
mechanism presented in [DDK93].

In general we know of little work concerning the definition of observational
equivalences for graph rewriting. As already mentioned in the introduction
there are basically two ways to go when one wants to introduce bisimilarity
on graphs. The first alternative would be to base the theory on unlabelled
production as in the double-pushout approach [Ehr79]. Without labels on the
transitions it is necessary to define canonical forms of graphs, in order to be
able to observe something. Work by Fernández and Mackie on interaction nets
[FM98] and by Yoshida on process graphs [Yos94] goes in that direction.

In π-calculus, for example, the canonical forms mentioned above are called
“barbs” and a process has a barb for channel c whenever it is able to perform
an input or output on c. The resulting bisimulation is therefore called barbed
bisimulation [MS92b], which ordinarily does not induce a congruence, and the
definition of the smallest congruence containing barbed bisimilarity requires
universal quantification over all possible contexts. This, however, makes actual
proofs of bisimilarity complicated.

In this paper, however, we chose to use synchronized graph rewriting as
a framework. We model transitions whose transition labels (observations) de-
scribe exactly the interaction of a single edge with its environment. This enables
us to define a simple syntactic property on the rewriting rules which ensures
that bisimilarity is a congruence. Existing work is mainly related to action
calculi [Mil96, LM00] which also have a graphical representation.

As we have seen in the example in Section 9.7, the bisimilarity defined
in this paper is rather coarse-grained: it can determine whether a network is
connected or disconnected, but we can, for example, not determine the degree
of parallelism in a network. In order to be able to do this, it would be necessary
to establish a concurrent semantics for synchronized graph rewriting. Another
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interesting extension would be to enrich the notion of observation: so far we are
only able to observe the actions performed on external nodes, but we are not
able to determine whether, for example, two nodes are connected by an edge.
It seems therefore promising to extend the framework in such a way that we
are allowed to observe occurrences of specific subgraphs.

Acknowledgements: We would like to thank Roberto Bruni and Dan Hirsch
for their help.
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Chapter 10

A General Framework for
Types in Graph Rewriting

Abstract

A general framework for typing graph rewriting systems is pre-
sented: the idea is to statically derive a type graph from a
given graph. In contrast to the original graph, the type graph
is invariant under reduction, but still contains meaningful be-
haviour information. We present conditions, a type system for
graph rewriting should satisfy, and a methodology for proving
these conditions. In two case studies it is shown how to incorpo-
rate existing type systems (for the polyadic π-calculus and for
a concurrent object-oriented calculus) into the general frame-
work.

10.1 Introduction

In the past, many formalisms for the specification of concurrent and distributed
systems have emerged. Some of them are aimed at providing an encompass-
ing theory: a very general framework in which to describe and reason about
interconnected processes. Examples are action calculi [Mil96], rewriting logic
[Mes96] and graph rewriting [EKMR99] (for a comparison see [GM02]). They
all contain a method of building terms (or graphs) from basic elements and a
method of deriving reduction rules describing the dynamic behaviour of these
terms in an operational way.

A general theory is useful, if concepts appearing in instances of a theory
can be generalised, yielding guidelines and relieving us of the burden to prove
universal concepts for every single special case. An example for such a gener-
alisation is the work presented for action calculi in [LM00] where a method for
deriving a labelled transition semantics from a set of reaction rules is presented.
We concentrate on graph rewriting (more specifically hypergraph rewriting) and
attempt to generalise the concept of type systems, where, in this context, a type
may be a rather complex structure.
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Compared to action calculi1 and rewriting logic, graph rewriting differs in a
significant way in that connections between components are described explicitly
(by connecting them by edges) rather than implicitly (by referring to the same
channel name). We claim that this feature—together with the fact that it is easy
to add an additional layer containing annotations and constraints to a graph—
can simplify the design of a type system and therefore the static analysis of a
graph rewriting system.

After introducing our model of graph rewriting and a method for annotating
graphs, we will present a general framework for type systems where both—the
expression to be typed and the type itself—are hypergraphs and will show how
to reduce the proof obligations for instantiations of the framework. We are inter-
ested in the following properties: correctness of a type system (if an expression
has a certain type, then we can conclude that this expression has certain prop-
erties), the subject reduction property (types are invariant under reduction)
and compositionality (the type of an expression can always be derived from the
types of its subexpressions). Parts of the proofs of these properties can already
be conducted for the general case.

We will then show that our framework is realistic by instantiating it to two
well-known type systems: a type system avoiding run-time errors in the polyadic
π-calculus [Mil93] and a type system avoiding “message not understood”-errors
in a concurrent object-oriented setting. A third example enforcing a security
policy for untrustworthy applets is included in the full version [Kön00b].

10.2 Hypergraph Rewriting and Hypergraph Anno-
tation

We first define some basic notions concerning hypergraphs (see also [Hab92])
and a method for inductively constructing hypergraphs.

Definition 10.2.1 (Hypergraph) Let L be a fixed set of labels. A hypergraph
H = (VH , EH , sH , lH , χH) consists of a set of nodes VH , a set of edges EH , a
connection mapping sH : EH → V ∗H , an edge labelling lH : EH → L and a string
χH ∈ V

∗
H of external nodes. A hypergraph morphism ϕ : H → H ′ (consisting of

ϕV : VH → VH′ and ϕE : EH → EH′) satisfies2 ϕV (sH(e)) = sH′(ϕE(e)) and
lH(e) = lH′(ϕE(e)). A strong morphism (denoted by the arrow �) additionally
preserves the external nodes, i.e. ϕV (χH) = χH′ . We write H ∼= H ′ (H is
isomorphic to H ′) if there is a bijective strong morphism from H to H ′.

The arity of a hypergraph H is defined as ar(H) = |χH | while the arity of an
edge e of H is ar(e) = |sH(e)|. External nodes are the interface of a hypergraph
towards its environment and are used to attach hypergraphs.

1Here we mean action calculi in their standard string notation. There is also a graph
notation for action calculi, see e.g. [Has97].

2The application of ϕV to a string of nodes is defined pointwise.
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Notation: We call a hypergraph discrete, if its edge set is
empty. By m we denote a discrete graph of arity m ∈ lN
with m nodes where every node is external (see Figure (a)
to the right, external nodes are labelled (1), (2), . . . in their
respective order).
The hypergraph H = [l]n contains exactly one edge e with
label l where sH(e) = χH , ar(e) = n and3VH = Set(χH)
(see (b), nodes are ordered from left to right).

(a) ... (m)(1)

(b) ...

l

(1) (n)

The next step is to define a method (first introduced in [Kön99b]) for the
annotation of hypergraphs with lattice elements and to describe how these
annotations change under morphisms. We use annotated hypergraphs as types
where the annotations can be considered as extra typing information, therefore
we use the terms annotated hypergraph and type graph as synonyms.

Definition 10.2.2 (Annotated Hypergraphs) Let A be a mapping assign-
ing a lattice A(H) = (I,≤) to every hypergraph and a function Aϕ : A(H) →
A(H ′) to every morphism ϕ : H → H ′. We assume that A satisfies:

Aϕ ◦Aψ = Aϕ◦ψ AidH
= idA(H) Aϕ(a∨ b) = Aϕ(a)∨Aϕ(b) Aϕ(⊥) = ⊥

where ∨ is the join-operation, a and b are two elements of the lattice A(H) and
⊥ is its bottom element.

If a ∈ A(H), then H[a] is called an annotated hypergraph. And ϕ : H[a]→A
H ′[a′] is called an A-morphism if ϕ : H → H ′ is a hypergraph morphism and
Aϕ(a) ≤ a′. Furthermore H[a] and H ′[a′] are called isomorphic if there is a
strong bijective A-morphism ϕ with Aϕ(a) = a′ between them.

Example: We consider the following annotation mapping A: let
({false, true},≤) be the boolean lattice where false < true. We define A(H)
to be the set of all mappings from VH into {false, true} (which yields a lattice
with pointwise order). By choosing an element of A(H) we fix a subset of the
nodes. So let a : VH → {false, true} be an element of A(H) and let ϕ : H → H ′,
v′ ∈ VH . We define: Aϕ(a) = a′ where a′(v′) =

∨
ϕ(v)=v′ a(v). That is, if a node

v with annotation true is mapped to a node v′ by ϕ, the annotation of v′ will
also be true.

From the point of view of category theory, A is a functor from the category
of hypergraphs and hypergraph morphisms into the category of lattices and
join-morphisms (i.e. functions preserving the join operation of the lattice).

We now introduce a method for attaching (annotated) hypergraphs with a
construction plan consisting of discrete graph morphisms.

Definition 10.2.3 (Hypergraph Construction) Let H1[a1], . . . , Hn[an] be
annotated hypergraphs and let ζi : mi → D, 1 ≤ i ≤ n be hypergraph mor-
phisms where ar(Hi) = mi and D is discrete. Furthermore let ϕi : mi � Hi be
the unique strong morphisms.

3Set(s̃) is the set of all elements of a string s̃
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For this construction we assume that the node and edge sets of H1, . . . , Hn

and D are pairwise disjoint. Furthermore let ≈ be the smallest equivalence on
their nodes satisfying ζi(v) ≈ ϕi(v) if 1 ≤ i ≤ n, v ∈ Vmi

. The nodes of the
constructed graph are the equivalence classes of ≈. We define

D
n
i=1

(Hi, ζi) = ((VD ∪
⋃n

i=1
VHi

)/≈,
⋃n

i=1
EHi

, sH , lH , χH)

where sH(e) = [v1]≈ . . . [vk]≈ if e ∈ EHi
and sHi

(e) = v1 . . . vk. Furthermore
lH(e) = lHi

(e) if e ∈ EHi
. And we define χH = [v1]≈ . . . [vk]≈ if χD = v1 . . . vk.

If n = 0, the result of the construction is D itself.

We construct embeddings ϕ : D � H and ηi : Hi → H by mapping every
node to its equivalence class and every edge to itself. Then the construction of
annotated graphs can be defined as follows:

D
n
i=1

(Hi[ai], ζi) =
(

D
n
i=1

(Hi, ζi)
) [∨n

i=1
Aηi

(ai)
]

In other words: we join all graphs D,H1, . . . , Hn and fuse exactly the nodes
which are the image of one and the same node in the mi, χD becomes the new
sequence of external nodes. Lattice annotations are joined if the annotated
nodes are merged. In terms of category theory, D

n
i=1

(Hi[ai], ζi) is the colimit
of the ζi and the ϕi regarded as A-morphisms (D and the mi are annotated with
the bottom element ⊥). We do not mention this fact in the rest of the paper,
but it is used extensively in the proofs (for the proofs and several examples see
the full version [Kön00b]).

We also use another, more intuitive notation for graph
construction. Let ζi : mi → D, 1 ≤ i ≤ n.
Then we depict D

n
i=1

(Hi, ζi) by drawing the hypergraph
(VD, {e1, . . . , en}, sH , lH , χD) where sH(ei) = ζi(χmi

) and
lH(ei) = Hi.

...

H1 H2

(n)(1)

Example: we can draw n
2
i=1

(Hi, ζi) where ζ1, ζ2 : n � n as in the picture
above (note that the edges have dashed lines). Here we fuse the external nodes of
H1 and H2 in their respective order and denote the resulting graph by H12H2.
If there is an edge with a dashed line labelled with an edge [l]n we rather draw it
with a solid line and label it with l (see e.g. the second figure in section 10.4.1).

Definition 10.2.4 (Hypergraph Rewriting) Let R be a set of pairs (L,R)
(called rewriting rules), where the left-hand side L and the right-hand side R are
both hypergraphs of the same arity. Then →R is the smallest relation generated
by the pairs of R and closed under hypergraph construction.

In our approach we generate the same transition system as in the double-
pushout approach to graph rewriting described in [Ehr79] (for details see
[Kön00d]).

We need one more concept: a linear mapping which is an inductively defined
transformation, mapping hypergraphs to hypergraphs and adding annotation.

104



Definition 10.2.5 (Linear Mapping) A function from hypergraphs to hy-
pergraphs is called arity-preserving if it preserves arity and isomorphism classes
of hypergraphs.

Let t be an arity-preserving function that maps hypergraphs of the form
[l]n to annotated hypergraphs. Then t can be extended to arbitrary hypergraphs
by defining t( D

n
i=1

([li]ni
, ζi)) = D

n
i=1

(t([li]ni
), ζi) and is then called a linear

mapping.

10.3 Static Analysis and Type Systems for Graph
Rewriting

Having introduced all underlying notions we now specify the requirements for
type systems. We assume that there is a fixed set R of rewrite rules, an an-
notation mapping A, a predicate X on hypergraphs (representing the property
we want to check) and a relation . with the following meaning: if H . T where
H is a hypergraph and T a type graph (annotated wrt. to A), then H has type
T . It is required that H and T have the same arity.

We demand that . satisfies the following conditions: first, a type should con-
tain information concerning the properties of a hypergraph, i.e. if a hypergraph
has a type, then we can be sure that the property X holds.

H . T ⇒ X(H) (correctness) (10.1)

During reduction, the type stays invariant.

H . T ∧ H →R H
′ ⇒ H ′ . T (subject reduction property) (10.2)

From (10.1) and (10.2) we can conclude that H.T and H →∗R H
′ imply X(H ′),

that is X holds during the entire reduction.

The strong A-morphisms introduced in Definition 10.2.2 impose a preorder
on type graphs. It should always be possible to weaken the type with respect
to that preorder.

H . T ∧ T �A T
′ ⇒ H . T ′ (weakening) (10.3)

We also demand that the type system is compositional, i.e a graph has a type
if and only if this type can be obtained by typing its subgraphs and combining
these types. We can not sensibly demand that the type of an expression is
obtained by combining the types of the subgraphs in exactly the same way the
expression is constructed, so we introduce a partial arity-preserving mapping f
doing some post-processing.

∀ i : Hi . Ti ⇒ D
n
i=1

(Hi, ζi) . f( D
n
i=1

(Ti, ζi))

D
n
i=1

(Hi, ζi) . T ⇒ ∃Ti : (Hi . Ti and f( D
n
i=1

(Ti, ζi)) �A T )

(compositionality) (10.4)
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A last condition—the existence of minimal types—may not be strictly needed
for type systems, but type systems satisfying this condition are much easier to
handle.

H typable ⇒ ∃T :
(
H . T ∧ (H . T ′ ⇐⇒ T �A T

′)
)

(minimal types)
(10.5)

Let us now assume that types are computed from graphs in the following
way: there is a linear mapping t, such that H . f(t(H)), if f(t(H)) is defined,
and all other types of H are derived by the weakening rule, i.e. f(t(H)) is the
minimal type of H.

The meaning of the mappings t and f can be explained as follows: t is
a transformation local to edges, abstracting from irrelevant details and adding
annotation information to a graph. The mapping f on the other hand, is a global
operation, merging or removing parts of a graph in order to anticipate future
reductions and thus ensure the subject reduction property. In the example in
section 10.4.1 f “folds” a graph into itself, hence the letter f . In order to
obtain compositionality, it is required that f can be applied arbitrarily often at
any stage of type inference, without losing information (see condition (10.6) of
Theorem 10.3.1).

In this setting it is sufficient to prove some simpler conditions, especially
the proof of (10.2) can be conducted locally.

Theorem 10.3.1 Let A be a fixed annotation mapping, let f be an arity-
preserving mapping as above, let t be a linear mapping, let X be a predicate
on hypergraphs and let H . T if and only if f(t(H)) �A T . Let us further
assume that f satisfies4

f( D
n
i=1

(Ti, ζi)) ∼= f( D
n
i=1

(f(Ti), ζi)) (10.6)

T �A T
′ ⇒ f(T ) �A f(T ′) (10.7)

Then the relation . satisfies conditions (10.1)–(10.5) if and only if it satisfies

f(t(H)) defined ⇒ X(H) (10.8)

(L,R) ∈ R ⇒ f(t(R)) �A f(t(L)) (10.9)

The operation f can often be characterised by a universal property with the
intuitive notion that f(T ) is the “smallest” type graph (wrt. the preorder �A)
for which T �A f(T ) and a property C hold.

Proposition 10.3.2 Let C be a property on type graphs such that f(T ) can
be characterised in the following way: f(T ) satisfies C, there is a morphism
ϕ : T �A f(T ) and for every other morphism ϕ′ : T →A T

′ where C(T ′) holds,
there is a unique morphism ψ : f(T )→A T

′ such that ψ ◦ϕ = ϕ′. Furthermore
we demand that if there exists a morphism ϕ : T →A T

′ such that C(T ′) holds,
then f(T ) is defined.

4In an equation T ∼= T ′ we assume that T is defined if and only if T ′ is defined. And in a
condition of the form T �A T ′ we assume that T is defined if T ′ is defined.
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Then if f(T ) is defined, it is unique up to isomorphism. Furthermore f
satisfies conditions (10.6) and (10.7).

10.4 Case Studies

10.4.1 A Type System for the Polyadic π-Calculus

We present a graph rewriting semantics for the asynchronous polyadic π-calculus
[Mil93] without choice and matching, already introduced in [Kön00c]. Dif-
ferent ways of encoding the π-calculus into graph rewriting can be found in
[Yos94, Gar99, GM02].

We apply the theory presented in section 10.3, introduce a type system
avoiding runtime errors produced by mismatching arities and show that it sat-
isfies the conditions of Theorem 10.3.1. Afterwards we show that a graph has a
type if and only if the corresponding π-calculus process has a type in a standard
type system with infinite regular trees.

Definition 10.4.1 (Process Graphs) A process graph P is inductively de-
fined as follows: P is a hypergraph with a duplicate-free string of external nodes.
Furthermore each edge e is either labelled with (k, n)Q where Q is again a pro-
cess graph, 1 ≤ n ≤ ar(Q) and 1 ≤ k ≤ ar(e) = ar(Q) − n (e is a process
waiting for a message with n ports arriving at its k-th node), with !Q where
ar(Q) = ar(e) (e is a process which can replicate itself) or with the constant M
(e is a message sent to its last node).

The reduction relation is generated by the rules in (A) (replication) and by
rule (B) (reception of a message by a process) and is closed under isomorphism
and graph construction.

(A) ... ...
(1) (1)(m) (m)

Q!Q !Q

(B) ... ... ... if n = r
(1) (k) (m+ r)(m) (m+ 1)

QM(k, n)Q

A process graph may contain a bad redex, if it contains a subgraph corre-
sponding to the left-hand side of rule (B) with n 6= r, so we define the predicate
X as follows: X(P ) if and only if P does not contain a bad redex.

We now propose a type system for process graphs by defining the mappings
t and f . (Note that in this case, the type graphs are trivially annotated by ⊥,
and so we omit the annotation mapping.)

The linear mapping t is defined on the hyperedges
as follows: t([M ]n) = [3]n (3 is a new edge label),
t([!Q]m) = t(Q) and t([(k, n)Q]m) is defined as in
the image to the right (in the notation explained
after Definition 10.2.3). It is only defined if n +
m = ar(Q).

...... ...

t(Q)

(1) (k) (m)

t([(k, n)Q]m) =

3

n
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The mapping f is defined as in Proposition 10.3.2 where C is defined as
follows5

C(T ) ⇐⇒ ∀ e1, e2 ∈ ET : (bsT (e1)car(e1) = bsT (e2)car(e2) ⇒ e1 = e2)

The linear mapping t extracts the communication structure from a process
graph, i.e. an edge of the form [3]n indicates that its nodes (except the last)
might be sent or received via its last node. Then f makes sure that the arity
of the arriving message matches the expected arity and that nodes that might
get fused during reduction are already fused in f(t(H)).

Proposition 10.4.2 The trivial annotation mapping A (where every lattice
consists of a single element ⊥), the mappings f and t and the predicate X
defined above satisfy conditions (10.6)–(10.9) of Theorem 10.3.1. Thus if P .T ,
then P will never produce a bad redex during reduction.

We now compare our type system to a standard type system of the π-
calculus. An encoding of process graphs into the asynchronous π-calculus can
be defined as follows.

Definition 10.4.3 (Encoding) Let P be a process graph, let N be the name
set of the π-calculus and let t̃ ∈ N ∗ such that |t̃| = ar(P ). We define Θt̃(P )
inductively as follows:

Θa1...an+1
([M ]n+1) = an+1〈a1, . . . , an〉 Θt̃([!Q]m) =! Θt̃(Q)

Θa1...am([(k, n)Q]m) = ak(x1, . . . , xn).Θa1...amx1...xn(Q)

Θt̃( D
n
i=1

(Pi, ζi)) = (ν µ(VD\Set(χD)))(Θµ(ζ1(χm1
))(P1) | . . . | Θµ(ζn(χmn ))(Pn))

where ζi : mi → D, 1 ≤ i ≤ n and µ : VD → N is a mapping such that
µ restricted to VD\Set(χD) is injective, µ(VD\Set(χD)) ∩ µ(Set(χD)) = ∅ and
µ(χD) = t̃. Furthermore the x1, . . . , xn ∈ N are fresh names.

The encoding of a discrete graph is included in the last case, if we set n = 0
and assume that the empty parallel composition yields the nil process 0.

An operational correspondence can be stated as follows:

Proposition 10.4.4 Let p be an arbitrary expression in the asynchronous poly-
adic π-calculus without summation. Then there exists a process graph P and
a duplicate-free string t̃ ∈ N ∗ such that Θt̃(P ) ≡ p. Furthermore for process
graphs P, P ′ and for every duplicate-free string t̃ ∈ N ∗ with |t̃| = ar(P ) =
ar(P ′) it is true that:

• P ∼= P ′ implies Θt̃(P ) ≡ Θt̃(P
′)

• P →∗ P ′ implies Θt̃(P )→∗ Θt̃(P )

• Θt̃(P ) →∗ p 6= wrong implies that P →∗ Q and Θt̃(Q) ≡ p for some
process graph Q.

5bsci extracts the i-th element of a string s.
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• Θt̃(P ) →∗ wrong if and only if P →∗ P ′ for some process graph P ′ con-
taining a bad redex

We now compare our type system with a standard type system of the π-
calculus: a type tree is a potentially infinite ordered tree with only finitely many
non-isomorphic subtrees. A type tree is represented by the tuple [t1, . . . , tn]
where t1, . . . , tn are again type trees, the children of the root. A type assignment
Γ = x1 : t1, . . . , xn : tn assigns names to type trees where Γ(xi) = ti. The rules
of the type system are simplified versions of the ones from [PS93], obtained by
removing the subtyping annotations.

Γ ` 0
Γ ` p Γ ` q

Γ ` p | q
Γ ` p
Γ ` ! p

Γ, a : t ` p
Γ ` (νa)p

Γ(a) = [t1, . . . , tm] Γ, x1 : t1, . . . , xm : tm ` p
Γ ` a(x1, . . . , xm).p

Γ(a) = [Γ(a1) . . . ,Γ(am)]

Γ ` a〈a1, . . . , am〉

We will now show that if a process graph has a type, then its encoding has
a type in the π-calculus type system and vice versa. In order to express this we
first describe the unfolding of a type graph into type trees.

Proposition 10.4.5 Let T be a type graph and let σ be a mapping from VT
into the set of type trees. The mapping σ is called consistent, if it satisfies for
every edge e ∈ ET : sT (e) = v1 . . . vnv ⇒ σ(v) = [σ(v1), . . . , σ(vn)]. Every type
graph of the form f(t(P )) has such a consistent mapping.

Let P . T with n = ar(T ) and let σ be a consistent mapping for T . Then it
holds for every duplicate-free string t̃ of length n that bt̃c1 : σ(bχT c1), . . . , bt̃cn :
σ(bχT cn) ` Θt̃(P ).

Now let Γ ` Θt̃(P ). Then there exists a type graph T such that P . T and
a consistent mapping σ such that for every 1 ≤ i ≤ |t̃| it holds that σ(bχT ci) =
Γ(bt̃ci).

10.4.2 Concurrent Object-Oriented Programming

We now show how to model a concurrent object-oriented system by graph
rewriting and then present a type system. In our model, several objects may
compete in order to receive a message, and several messages might be waiting
at the same object. Typically, type systems in object-oriented programming
are there to ensure that an object that receives a message is able to process it.

Definition 10.4.6 (Concurrent object-oriented rewrite system) Let
(C, <:) be a lattice of classes with a top class6 > and a bottom class ⊥. We
denote classes by the letters A,B,C, . . .. Furthermore letM be a set of method
names. The function ar : C ∪M → lN\{0} assigns an arity to every class or
method name.

An object graph G is a hypergraph with a duplicate-free string of external
nodes, labelled with elements of C\{⊥}∪M where for every edge e it holds that

6This corresponds to the class Object in Java
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ar(e) = ar(lG(e)). A concurrent object-oriented rewrite system (specifying the
semantics) consists of a set of rules R satisfying the following conditions:

• the left-hand side of a rule always has the form shown in Figure (C) below
(where A ∈ C\{⊥}, ar(A) = n, m ∈M, ar(m) = k + 1).

The right-hand side is again an object
graph of arity n + k. If a left-hand side
RA,m exists, we say that A understands m.

...... (C)

A m = RA,m

(1) (n) (n + k)(n + 1)

• If A <: B, A 6= ⊥ and B understands m, then A also understands m.

• For all m ∈ M, either {A | A understands m} is empty or it contains a
greatest element.

An object graph G contains a “message not understood”-error if G contains a
subgraph RA,m, but A does not understand m.

Thus the predicate X for this section is defined as follows: X(G) if and only
if G does not contain a “message not understood”-error.

In contrast to the previous section, we now use annotated type graphs: the
annotation mapping A assigns a lattice ({a : VH → C ×C},≤)) to every hyper-
graph H. The partial order is defined as follows: a1 ≤ a2 ⇐⇒ ∀v : (a1(v) =
(A1, B2) ∧ a2(v) = (A2, B2) ⇒ A1 <: A2 ∧ B1 :> B2), i.e. we have covariance
in the first and contravariance in the second position. If a node v is labelled
(A,B), this has the following intuitive meaning: we can accept at least as many
messages as an object of class A on this node and we can send at most as many
messages as an object of class B can accept.

Furthermore we define Aϕ(a)(v′) =
∨
ϕ(v)=v′ a(v) where ϕ : H → H ′, a is

an element of A(H) and v′ ∈ VH′ .

We now define the operator f : let T [a] be a type graph of arity n where
it holds for all nodes v that a(v) = (A,B) implies A <: B (otherwise f
is undefined). Then f reduces the graph to its string of external nodes, i.e
f(T [a]) = n[b] where b(bχnci) = a(bχT ci).

The linear mapping t determines the type of a class or method. It is nec-
essary to choose a linear mapping that preserves the interface of left-hand and
right-hand sides, i.e. we can use any t that satisfies condition (10.9) and the
following two conditions below for A ∈ C\{⊥} and m ∈M:

t([A]n) = [A]n[a] where a(bχ[A]nc1) ≥ (A,>)

t([m]n) = [m]n[a] where a(bχ[m]ncn) ≥ (⊥,max{B | B understands m})

Proposition 10.4.7 The annotation mapping A, the mappings f and t and the
predicate X defined above satisfy conditions (10.6)–(10.9) of Theorem 10.3.1.
Thus if G . T , then G will never produce a “message not understood”-error
during reduction.

In this case we do not prove that this type systems corresponds to an object-
oriented type system, but rather present a semi-formal argument: we give the
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syntax and a type system for a small object calculus, and furthermore an en-
coding into hypergraphs, without really defining the semantics. For the formal
semantics of object calculi see [Wal95, IPW99], among others.

An expression e in the object calculus either has the form new A(e1, . . . , en)
where A ∈ C\{⊥} and ar(A) = n + 1 or e.m(e1, . . . , en) where m ∈ M and
ar(m) = n + 2. The ei are again expressions. Every class A is assigned an
(ar(A)−1)-tuple of classes defining the type of the fields of A (A : (A1, . . . , An))
and every method m with ar(m) = n+ 2 defined in class B is assigned a type
B.m : C1, . . . , Cn → C. If a method is overwritten in a subclass it is required
to have the same type. A simple type systems looks as follows:

e : A, A <: B

e : B

A : (A1, . . . , An), ei : Ai
new A(e1, . . . , en) : A

e : B, B.m : C1, . . . , Cn → C, ei : Ci
e.m(e1, . . . , en) : C

Now an encoding [[·]] can be de-
fined as shown in the figure to the
right. We introduce the conven-
tion that the penultimate node
of a message can be used to ac-
cess the result after the rewriting
step.

...

...

...

...

[[e]] mA

[[newA(e1, . . . , en)]] = [[e.m(e1, . . . , em)]] =

[[e1]] [[en]] [[e1]] [[en]]
(1)

(1)

If A : (A1, . . . , An) we define t in such a way that the n+ 1 external nodes
of t([A]n+1) are annotated by (A,>), (⊥, A1), . . ., (⊥, An). And if B.m :
C1, . . . , Cn → C (where B is the maximal class which understands method m),
we annotate the external nodes of t([m]n+2) by (⊥, C1), . . ., (⊥, Cn), (C,>),
(⊥, B). Now we can show by induction on the typing rules that if e : A, then
there exists a type graph T [a] such that [[e]] . T [a] and a(bχT c1) = (A,>).

10.5 Conclusion and Comparison to Related Work

This is a first tentative approach aimed at developing a general framework
for the static analysis of graph rewriting in the context of type systems. It
is obvious that there are many type systems which do not fit well into our
proposal. But since we are able to capture the essence of two important type
systems, we assume to be on the right track.

Types are often used to make the connection of components and the flow
of information through a system explicit (see e.g. the type system for the
π-calculus, where the type trees indicate which tuple of channels is sent via
which channel). Since connections are already explicit in graphs, we can use
them both as type and as the expression to be typed. Via morphisms we can
establish a clear connection between an expression and its type. Graphs are
furthermore useful since we can easily add an extra layer of annotation.

Work that is very close in spirit to ours is [Hon96] by Honda which also
presents a general framework for type systems. The underlying model is closer
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to standard process algebras and the main focus is on the characterisation and
classification of type systems.

The idea of composing graphs in such a way that they satisfy a certain
property was already presented by Lafont in [Laf90] where it is used to obtain
deadlock-free nets.

In graph rewriting there already exists a concept of typed graphs [CMR96],
related to ours, but nevertheless different. In that work, a type graph is fixed
a priori and there is only one type graph for every set of productions. Graphs
are considered valid only if they can be mapped into the type graph by a graph
morphism (this is similar to our proposal). In our case, we compute the type
graphs a posteriori and it is a crucial point in the design of every type system
to distinguish as many graphs as possible by assigning different type graphs to
them.

This paper is a continuation of the work presented in [Kön99b] where the
idea of generic type systems for process graphs (as defined in section 10.4.1) was
introduced, but no proof of the equivalence of our type system to the standard
type system for the π-calculus was given. The ideas presented there are now
extended to general graph rewriting systems.

Further work will consist in better understanding the underlying mechanism
of the type system. An interesting question in this context is the following:
given a set of rewrite rules, is it possible to automatically derive mappings f
and t satisfying the conditions of Theorem 10.3.1?

Acknowledgements: I would like to thank Reiko Heckel and Andrea Cor-
radini for their comments on drafts of this paper, and Tobias Nipkow for his
advice. I am also grateful to the anonymous referees for their valuable com-
ments.
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Chapter 11

Analysing
Input/Output-Capabilities of
Mobile Processes with a
Generic Type System

Abstract

We introduce a generic type system for the synchronous
polyadic π-calculus, allowing us to mechanise the analysis of
input/output capabilities of mobile processes. The parameter
of the generic type system is a lattice-ordered monoid, the ele-
ments of which are used to describe the capabilities of channels
with respect to their input/output-capabilities. The type sys-
tem can be instantiated in order to check process properties
such as upper and lower bounds on the number of processes
concurrently using a channel, confluence and absence of blocked
processes.

11.1 Introduction

With the increasing connection of computers and networks, the treatment of
code and process mobility is becoming more and more important. The increas-
ing importance of this topic brings about many challenges concerning analysis
and verification of mobile processes.

For the analysis and verification of processes and programs in general there
are basically two approaches: methods that are complete but cannot be fully
mechanised, and fully automatic methods, which—because of undecidability
issues—cannot be complete, i.e., not all processes satisfying the property to
be checked are accepted. There is a variety of methods which can be seen as
variants of the latter approach and which can be summarised as static analysis
techniques [NNH99].

One promising direction, especially for the π-calculus—a calculus describ-
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ing communicating mobile processes—is to use type or sort systems and type
inference with rather complex types abstracting from process behaviour. In the
last few years there have been several papers presenting such type systems for
the polyadic π-calculus and other process calculi, checking e.g., input/output
behaviour [PS96, KPT99], absence of deadlocks and livelocks [Kob98, Kob02],
security properties [Aba99, BDNN98, HVY00, HR00], allocation of permissions
to names [RH97] and many others. There are also interesting type systems for
higher-order variants of the π-calculus [YH02]. Types are compositional and
thus allow reuse of information obtained in the analysis of smaller subsystems.
Because of name mobility in the π-calculus, the difficulty in typing processes
lies in tracking the capabilities of names in a mobile environment.

One drawback of the type systems mentioned above is the fact that they
are specialised to check very specific properties. A much more general approach
is a theory of types by Honda [Hon96], which is based on typed algebras and
gives a classification of type systems. This theory is very general and it is thus
necessary to prove the subject reduction property and the correctness of a type
system for every instance.

Another generic approach is a type system by Kobayashi and Igarashi
[IK01], which assigns to each π-calculus process an abstract process of a simpler
process calculus, from the possible reductions of which one can infer properties
of the original process. This technique seems to be very powerful, but the anal-
ysis of these abstract processes could be rather costly from a complexity point
of view. A generic approach to resource usage analysis is shown in [KSS00].

Our contribution is to present a generic type system where the subject
reduction property can be shown for the general case, and by instantiating
the type system specific properties of processes can be analysed. With the
introduction of residuation (explained below) we manage to derive tight upper
and lower bounds for channel usage. The only paper we are aware of where this
technique is also used is [KNY95].

We concentrate on properties connected to input/output capabilities of pro-
cesses in the synchronous polyadic π-calculus. Our types can be seen as a
generalization of the linear types presented in [KPT99].

In the examples (see Section 11.6) we check properties such as upper and
lower bounds on the number of certain prefixes, confluence, absence of blocked
input or output prefixes. Determining these capabilities of a process involves
counting and we attempt to keep this concept as general as possible by basing
the generic type system on commutative monoids. Instantiating a type system
mainly involves choosing an appropriate monoid, and monoid elements associ-
ated with input and output prefixes (e.g. for counting the number of prefixes
with a certain subject).

Instead of giving the precise answer to every question, the type system uses
over-approximation (e.g. we can expect results of the form “there are at most
two processes using channel x at any given time”). Hence plain monoids are
not sufficient, but we need ordered monoids (so-called lattice-ordered monoids
or `-monoids), equipped with a partial order compatible with summation.

There is a huge class of lattice-ordered monoids which are residuated, i.e.,
some limited form of subtraction can be defined. Residuation can be put to
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good use in process analysis. Consider, e.g., the process P = x.x.0. While P
increases the number of (future) occurrences of the output prefix x by one, it
does not do so for the input prefix x, since we are interested in the number
of prefixes not located underneath another prefix (i.e. in the maximal number
of prefixes which are active at the same time) and x can only be reached by
a communication with x, which decreases the number of input prefixes in the
environment by one. This decrease can be anticipated when typing P , and is
taken into consideration by subtracting one from the number of input prefixes.
This is a new feature, which does not occur in related type systems such as
[KPT99] and which guarantees sharper bounds on the current capabilities of a
process.

The type assigned to a channel x occurring free in process P will be of the
form [t̃]a, similar to the types in [KPT99]. The letter a stands for a monoid
element which is expected to be an upper bound for the capabilities of channel
x. Furthermore t̃ = t1 . . . tn is a sequence of types, telling us that n-tuples of
channel names are communicated via x, where the i-th component of this tuple
should have type ti.

The aim of this paper is twofold: to show how capabilities of processes
can be parameterised and bounded by using algebraic structures and to start
developing a framework which can be used for verification and static analysis
of mobile processes.

The rest of this paper is structured as follows: in Section 11.2 we discuss the
general principles and ideas behind this work. Then, in Section 11.3, we intro-
duce some preliminaries, by giving a short summary of the π-calculus, present-
ing lattice-ordered commutative monoids and defining the notion of type (and
some operations on types). The type system itself is presented in Section 11.4
and the subject reduction property is shown for its most general version, i.e. for
arbitrary `-monoids. We then demonstrate how the type system can be used for
process analysis (Section 11.5), by giving the connection between the type of a
process and its input/output capabilities and by showing how type systems can
be composed to form new type systems. Afterwards in Sections 11.6 and 11.7
we discuss some examples and related work.

11.2 General Ideas

In order to illustrate how our type system will look like and how algebraic
structures can be used to describe capabilities of π-calculus processes, we give
the following examples.

11.2.1 Upper Bounds

We regard the following π-calculus process P = !a(x, y).x〈y〉 | a〈b, c〉, which re-
duces to !a(x, y).x〈y〉 | b〈c〉, and wish to give upper bounds for its input/output
behaviour.

The first step is to assign a type to each channel name which reflects the
arity of the tuples communicated via this channel. The name c will never be
used for communication, so we can assign an arbitrary type to c, for example
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c : [ ], where [ ] denotes the type of a channel over which empty sequences of
values are sent. Furthermore c will be sent via channel b, so we expect the
following type assignment: b : [[ ]], meaning that a single name with type [ ] will
be sent via b. Finally this gives us the type assignment a : [[[ ]], [ ]] for channel
name a. This is a standard procedure, occurring in many type systems for the
π-calculus.

We have so far neglected the monoid elements representing capabilities.
Adding these elements ma,mb,mc in retrospect gives us the type environment
Γ shown below for process P .

Γ = a : [[[ ]mc ]mb , [ ]mc ]ma , b : [[ ]mc ]mb , c : [ ]mc .

So in the second step we discuss which values these three monoid elements
should have, if we attempt to derive information about the capabilities of the
channel names of P .

We could, for example, suppose that, similar to [PS96], the capabilities are
taken from a set IO = {none, output , input , both} where the elements represent
no input/output capability, output capability only, input capability only and
both capabilities, respectively. These capabilities naturally form a lattice with
an order ≤ satisfying none ≤ output ≤ both and none ≤ input ≤ both. In this
case the monoid operation coincides with the join operation of the lattice.

So in our example in a type environment for process P we expect the monoid
elements ma,mb,mc to have the following values:

ma = both mb = output mc = none.

A somewhat more fine-grained analysis can be achieved by using pairs of
natural numbers (including infinity) with the natural partial order to give an
upper bound to the number of times a name can appear in an input or output
prefix at any given point in any reduction sequence. The first element of a pair
denotes output capability whereas the second element denotes input capability.
In our example the best upper bound for the input capability of name a is ∞
since it is available infinitely often (because of the replication operator). For
other names or other capabilities sharper bounds are possible:

ma = (1,∞) mb = (1, 0) mc = (0, 0).

Depending on the instantiation of the type system with the correct monoid,
the typing rules that will be presented allow the derivation of the above types
for process P .

11.2.2 Lower Bounds

One advantage of the general approach we are following here is the fact that the
type system can be easily adapted, in this case to derive lower bounds instead
of upper bounds. We consider the π-calculus process Q = a〈b〉 | a(x).x.x | b
with the reduction sequence Q → b.b | b → b. We can observe that during the
reduction of Q there will always be at least one input prefix with subject b.
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By instantiating the type system with pairs of natural numbers as monoid
elements (as above) and by using the inverted partial order ≥ instead of ≤, we
obtain the following type environment:

Γ = a : [[ ](0,0)](0,0), b : [ ](−1,1).

That is, the type system is, in this case, able to correctly predict the lower
bound 1 for the input capability of b. However, the lower bound for the output
capability of b is −1 since Q is able to “snatch” away an output prefix of the
form b from the environment by communication with b. The type of the names
communicated via a is [ ](0,0), which intuitively means that the input and output
capabilities of x inside a(x).x.x “neutralise” each other.

We have presented very simple examples in order to give a flavour of the
general ideas. More complex examples will be treated in Section 11.6.

11.3 Preliminaries

11.3.1 The π-Calculus

The π-calculus [MPW92, Mil93] is an influential paradigm describing communi-
cation and mobility of processes. In this paper we will consider the synchronous
polyadic π-calculus without choice and matching where replication is only al-
lowed for input prefixes. Its syntax is defined as follows:

P ::= 0 | (νx : t)P | P1|P2 | x〈z̃〉.P | x(ỹ).P | !x(ỹ).P

where t is a type tree (see Definition 11.4.1) and x is taken from a fixed set of
names N . Sequences of names from N are denoted by ỹ = y1 . . . yn. We call
x〈z̃〉 output prefix and x(ỹ) input prefix.

The set of all free names (i.e. names not bound by either ν or by an input
prefix) of a process P is denoted by fn(P ). The process obtained by replacing
the free names yi by xi in P (and avoiding capture) is written P{x̃/ỹ}.

Structural congruence is the smallest congruence obeying the rules in the
upper part of Table 11.1, and equating processes that can be converted into
one another by consistent renaming of bound names (α-conversion). The side
condition of rule (C-Restr1) will become clear in Section 11.4 where we define
type trees and the mapping mon. We use a reduction semantics as for the
chemical abstract machine [BB92] instead of a labelled transition semantics
(see Table 11.1).

Consider the following processes which we will use as an example in this
paper (see Section 11.6). We omit the final 0.

F = c(r).d〈r〉.d(a).c〈a〉 S = d(s).s(h1, h2).d〈h1〉

T = c〈h〉.c(x) H = h〈i1, i2〉

There is a forwarder F which receives requests on a channel c, forwards them on
a channel d to a server, receives the answer and sends it back on c. The server
S receives requests on d. These requests come with a name s where the server
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Structural Congruence:

(C-Com) P1|P2 ≡ P2|P1 (C-0) P |0 ≡ P

(C-Ass) P1|(P2|P3) ≡ (P1|P2)|P3

(C-Restr1) (νx : t)0 ≡ 0 if mon(t) ≥ 0

(C-Restr2) (νx : s)(νy : t)P ≡ (νy : t)(νx : s)P if x 6= y

(C-Restr3) ((νx : s)P1)|P2 ≡ (νx : s)(P1|P2) if x 6∈ fn(P2)

Reduction Rules:

(R-Comm) x〈z̃〉.Q | x(ỹ).P → Q | P{z̃/ỹ}

(R-Rep) x〈z̃〉.Q | !x(ỹ).P → Q | P{z̃/ỹ} | !x(ỹ).P

(R-Par)
P → P ′

P |Q→ P ′|Q
(R-Restr)

P → P ′

(νx : t)P → (νx : t)P ′

(R-Equ)
Q ≡ P, P → P ′, P ′ ≡ Q′

Q→ Q′

Table 11.1: Operational semantics of the π-calculus

can get further information. The server obtains this information, processes it
and sends the answer back on d (in our example we keep the “processing part”
very simple, the server just sends back the first component). Finally, T is a
trigger process, starting the execution of F and receiving the result in the end,
and H delivers information to the server.

We can combine the processes F , S, T , H to obtain P as the entire system.
If we want F and S to be persistent, we use P ′.

P = T | H | (νd : t)(F | S) P ′ = T | H | (νd : t)(!F |!S)

A programmer analysing this piece of code might be interested in the fol-
lowing properties: input/output behaviour, upper and lower bounds on the
number of messages in a channel, confluence properties and absence of blocked
prefixes that never find a communication partner. E.g., examining P will reveal
that at any given time every name is used for input and output at most once
and that P is therefore confluent.

11.3.2 Residuated Lattice-ordered Monoids

Lattice-ordered monoids are a well-developed mathematical concept (see e.g.
[Bir67]). We are interested in commutative residuated `-monoids in order to
represent input/output capabilities.

Definition 11.3.1 (Lattice-ordered Monoid)
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A commutative lattice-ordered monoid (`-monoid) is a tuple (I,+,≤) where
I is a set, +: I × I → I is a binary operation and ≤ is a partial order which
satisfy:

• (I,+) is a commutative monoid, i.e., + is associative and commutative,
and there is a unit 0 with 0 + a = a for every monoid element a ∈ I.

• (I,≤) is a lattice, i.e., ≤ is a partial order, where two elements a, b ∈ I
have a join (or least upper bound) a ∨ b and a meet (or greatest lower
bound) a ∧ b.

• I contains a bottom element ⊥, the smallest element in I, and a top
element >, the greatest element in I.

• For a, b, c ∈ I: a+(b∨c) = (a+b)∨(a+c) and a+(b∧c) = (a+b)∧(a+c).

For an element a ∈ I we define: sig(a) =





⊥ if a < 0,
0 if a = 0
> if a > 0
undefined otherwise

If the partial order ≤ and the operator + can be derived from the context,
we will sometimes write I instead of (I,+,≤). For many of our examples a
semi-lattice, i.e., a lattice for which only the join operation is defined, will be
sufficient.

Definition 11.3.2 (Residuated `-monoid) Let (I,+,≤) be an `-monoid and
let a, b ∈ I. The residual a−b is the smallest x (if it exists) such that a ≤ x+b.
A monoid I is called residuated if all residuals a− b exist in I for a, b ∈ I.

Examples: An `-monoid which has already been introduced in Section 11.2.1,
is IO = ({none, input , output , both},∨,≤) where none ≤ input ≤ both, none ≤
output ≤ both and the monoid operation is the join, i.e., the `-monoid degen-
erates to a lattice. This `-monoid is residuated and it holds for example that
input − input = none, output − input = output and both − input = output .

In order to count the number of inputs or outputs we use the `-monoid
Z
∞ = (Z ∪ {∞,−∞},+,≤) with all integers including ∞ and −∞. We define
∞+(−∞) = −∞ and otherwise summation works as expected. It is residuated
and residuation corresponds to subtraction for all monoid elements different
from ∞ and −∞.

The cartesian product of two residuated `-monoids, e.g. Z
∞×Z

∞, is also a
residuated `-monoid.

We need the following laws concerning residuated `-monoids.

Lemma 11.3.3 For all elements a, b, c of a residuated `-monoid it holds that

a ≤ (a− b) + b (a+ b)− b ≤ a (a+ b)− c ≤ (a− c) + b
(a+ b) ∨ 0 ≤ (a ∨ 0) + (b ∨ 0) ⊥+⊥ = ⊥ >+> = >
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Furthermore the monoid operation + is monotone, i.e., a ≤ a′ and b ≤ b′ imply
a+ b ≤ a′ + b′.

Proof: Most of the equations and inequations are straightforward to prove. We
show only a proof of (a + b) − b ≤ a and refer the reader to [Bir67] for proofs
of the other laws.

(a+ b)− b is the smallest x such that a+ b ≤ x+ b. But if we set x = a the
inequation holds. So it must be the case that (a+ b)− b ≤ a.

There are cases where the inequation is strict. If we consider, for example,
the `-monoid IO defined above and set a = input , b = input , we obtain (input +
input)− input = none < input .

Monotonicity follows from the `-monoid law a+(b∨ c) = (a+ b)∨ (a+ c). If
b ≤ b′, then b∨ b′ = b′, therefore a+ b ≤ (a+ b)∨ (a+ b′) = a+ (b∨ b′) = a+ b′.
2

11.4 The Type System and its Properties

We will first define the notion of type tree and type environment and introduce
some simple operations on types. We assume that a fixed `-monoid (I,+,≤) is
given.

Definition 11.4.1 (Type Tree) A type tree (or type) t is of the form
[t1, . . . , tn]a where a ∈ I and t1, . . . , tn are again type trees. This structure is
potentially infinite. Furthermore we will often abbreviate the sequence t1, . . . , tn
by t̃. We define mon([t̃]a) = a.

Summation on type trees is defined as follows:

[t1, . . . , tn]a ~ [t1, . . . , tn]b = [t1, . . . , tn]a+b.

In this case we say that the two types are compatible. In all other cases sum-
mation is undefined.

The following definition of type environments is standard. The summation
operation is taken from [KPT99]. Note that in the definition of Γ, x : t below
we do not require that x does not occur in Γ. Instead the assignment to x is
overwritten by this operation, a fact that will be important for the typing rules
introduced in Table 11.2. This choice allows us to avoid an explicit weakening
rule and thus enables an easier handling of the induction in the proof of the
subject reduction property (see Theorem 11.4.8).

Definition 11.4.2 (Type Environment) A type environment Γ is of the form

Γ = x1 : t1, . . . , xn : tn,

where x1, . . . , xn are distinct names and t1, . . . , tn are type trees. We also write
Γ(xi) = ti and define dom(Γ) = {x1, . . . , xn}. By Γ, x : t we denote the type
environment Γ where any assignment to the variable x, if it should exist, is
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overwritten by x : t. For x ∈ N , we denote by Γ\x the type environment Γ from
which any assignment to the name x is deleted.

Now let Γ1,Γ2 be two type environments. We define dom(Γ1 ~ Γ2) =
dom(Γ1) ∪ dom(Γ2) and

(Γ1 ~ Γ2)(x) =





Γ1(x) ~ Γ2(x) if x ∈ dom(Γ1(x)) ∩ dom(Γ2(x))
Γ1(x) if x ∈ dom(Γ1)\dom(Γ2)
Γ2(x) if x ∈ dom(Γ2)\dom(Γ1)

This summation operation is defined only if Γ1(x) ~ Γ2(x) is defined for all
x ∈ dom(Γ1(x)) ∩ dom(Γ2(x)). In this case Γ1 and Γ2 are called compatible.

In some cases (see rule (T-Out) in Table 11.2) we will use a slightly ex-
tended definition of a type environment, allowing that a name x appears more
than once. This is only permissible if the different types of x are compatible.
Such an extended type environment can be converted into an equivalent stan-
dard type environment using the following law: Γ, x : t1, x : t2 = Γ, x : (t1 ~ t2).

We also need the following join of a type environment with zero:

(x1 : [t̃1]a1 , . . . , xn : [t̃n]an) ∨ 0 = x1 : [t̃1]a1∨0, . . . , xn : [t̃n]an∨0.

Finally let Γ,Γ′ be two type environments with dom(Γ) = dom(Γ′). We
write Γ ≤ Γ′ if Γ and Γ′ are compatible and for every x ∈ dom(Γ) it holds that
mon(Γ(x)) ≤ mon(Γ′(x)).

The operations on type assignments satisfy the following laws:

Lemma 11.4.3

• The operation ~ is associative and commutative.

• It holds that (Γ1 ~ Γ2) ∨ 0 ≤ (Γ1 ∨ 0) ~ (Γ2 ∨ 0).

• It holds that Γ1 ≤ Γ′1 and Γ2 ≤ Γ′2 imply Γ1 ~ Γ2 ≤ Γ′1 ~ Γ′2 whenever
either of the two sides of the last inequation is defined.

Proof: Straightforward by the definition of the operations and Lemma 11.3.3.
2

We are now ready to define the rules of the type system (see Table 11.2).
We assume that there are two fixed monoid elements out and in (where in must
be comparable1 to 0) representing the capabilities of output and input prefixes
respectively.

The intuitive meaning of the rules is as follows:

(T-≤) We can always over-approximate the capabilities of a process.

1This is due to the fact that sig(in) must be defined, since it will be used in typing
replication of input prefixes.
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Γ ` P, Γ ≤ ∆

∆ ` P
(T-≤)

Γ ∨ 0 ` 0 (T-Nil)
Γ1 ` P1, Γ2 ` P2

Γ1 ~ Γ2 ` P1 | P2
(T-Par)

Γ, x : t ` P

Γ ` (νx : t)P
(T-Restr) if mon(Γ(x)) ≥ 0 whenever x ∈ dom(Γ)

Γ, x : [t̃]a, ỹ : t̃ ` P

Γ ∨ 0, x : [t̃](a−out)∨0+in ` x(ỹ).P
(T-In)

Γ, x : [t̃]a ` P

Γ′ ∨ 0, x : [t̃](a
′−in)∨0+out ` x〈z̃〉.P

(T-Out) if Γ′, x : [t̃]a
′

= (Γ, x : [t̃]a) ~ z̃ : t̃

Γ, x : [t̃]a ` x(ỹ).P

Γ, x : [t̃]a+sig(in) ` !x(ỹ).P
(T-Rep) if Γ ~ Γ ≤ Γ and a+ a ≤ a

Table 11.2: Typing rules

(T-Nil) The nil process can have an arbitrary type assignment, provided the
monoid elements of the free names are greater than 0. This stems from
the fact that we only over-approximate but never under-approximate.
Otherwise we could assign a negative monoid element to a name x in the
type environment, which would decrease the capability of x whenever two
type environments are added.

(T-Par) The parallel composition of two processes can be typed by adding
their respective type assignments.

(T-Restr) If a name is restricted, we remove the assumption on it, but retain
its type by integrating it into the process description. Note that Γ might
still contain an assignment to x, in which case we have to make sure that
its corresponding monoid element is greater than or equal to 0. This is
consistent with the fact that assumptions on names that do not occur
free in a process must have capabilities greater or equal to 0 due to over-
approximation (see also rule (T-Nil) or Lemma 11.4.5).

(T-In) In this rule we make sure that the types of the names in the sequence
ỹ match the types of the names that are sent via channel x. If this is the
case we remove the assumptions on ỹ since these names are bound by the
input prefix. Now since removing the input prefix x(ỹ) would also mean
the removal of a corresponding output prefix in the environment, we can
anticipate this by subtracting out from the capability a of x. Afterwards
we take the join with 0 and add in in order to record the input capability
of x. The join with 0 is necessary since we do not count capabilities
underneath a prefix. Taking into account negative capbilities located
underneath a prefix would therefore be under-approximation, whereas
positive capabilites lead to over-approximation, which is allowed and even
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necessary in order to show the subject reduction property. For similar
reasons, we take the join of Γ with 0.

(T-Out) This rule is slightly more complicated than the rule for the input
prefix. First, a tuple of names z̃ that is sent via x can be used by a
receiver in accordance with the types t̃. We anticipate this by adding z̃ : t̃
to the type environment of P . Whenever one of the zi already occurs in
Γ, x : [t̃]a, this makes sure that the respective types are compatible. Note
that x might occur in the sequence z̃, which changes its monoid element
from a to a′ during the operation.

The monoid element a′ is treated analogously to the way described for
input prefixes by subtracting in, taking the join with 0 and adding out .
For the rest of the monoid elements we are also required to take the join
with 0 as explained above.

(T-Rep) In this rule we have to make sure that a replicated process has a type
assignment which is either idempotent or gets smaller when added to itself.
This can be achieved if Γ contains only negative or idempotent monoid
elements on the top level. Furthermore, since we know that infinitely
many copies of the input prefix with subject x are available, we add ⊥,
> or 0, according to the value of in.

Example: In Table 11.3 we show how to derive a type assignment Γ for
the process P = !a(x, y).x〈y〉 | a〈b, c〉 introduced in Section 11.2.1. We use the
`-monoid Z

∞ × Z
∞ and set in = (0, 1), out = (1, 0).

Typing the replication operator involves the application of typing rule (T-
≤), replacing the monoid element (0, 1) of channel name a by (0,∞) in order
to make it idempotent.

a : [[[ ](0,0)](1,0), [ ](0,0)](0,0), b : [[ ](0,0)](0,0), c : [ ](0,0) ` 0

a : [[[ ](0,0)](1,0), [ ](0,0)](1,0)
a
, b : [[ ](0,0)](1,0), c : [ ](0,0) ` a〈b, c〉

a : [[[ ](0,0)](1,0), [ ](0,0)](0,0), x : [[ ](0,0)](0,0), y : [ ](0,0) ` 0

a : [[[ ](0,0)](1,0), [ ](0,0)](0,0), x : [[ ](0,0)](1,0)
b
, y : [ ](0,0) ` x〈y〉

a : [[[ ](0,0)](1,0), [ ](0,0)](0,1)
c
` a(x, y).x〈y〉

a : [[[ ](0,0)](1,0), [ ](0,0)](0,∞)d ` !a(x, y).x〈y〉

a : [[[ ](0,0)](1,0), [ ](0,0)](1,∞), b : [[ ](0,0)](1,0), c : [ ](0,0) ` P

a(1, 0) = ((0, 0)− (0, 1)) ∨ (0, 0) + (1, 0) = (0− in) ∨ 0 + out
b(1, 0) = ((0, 0)− (0, 1)) ∨ (0, 0) + (1, 0) = (0− in) ∨ 0 + out
c(0, 1) = ((0, 0)− (1, 0)) ∨ (0, 0) + (0, 1) = (0− out) ∨ 0 + in
dSmallest element a larger than (0, 1) which satisfies a+ a ≤ a is (0,∞).

Also (0,∞) + sig(in) = (0,∞) + (0,∞) = (0,∞).

Table 11.3: Deriving a type assignment

In order to better motivate the rules in Table 11.2, we will sketch in advance
the central case of the Subject Reduction Theorem (see Theorem 11.4.8) in
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a simplified form. Let us assume that Γ ` P where P = x〈z〉.Q | x(y).R.
Obviously P reduces to P ′ = Q | R{z/y}. Forgetting rule (T-≤) for the
moment this implies that

Γ = Γ′Q ~ Γ′R Γ′Q ` x〈z〉.Q Γ′R ` x(y).R.

Now, by looking at the typing rules in Table 11.2 we can infer that

Γ′Q = (ΓQ ~ z : t) ∨ 0, x : [t](a−in)∨0+out and ΓQ, x : [t]a ` Q.

Furthermore it holds that

Γ′R = ΓR ∨ 0, x : [t](b−out)∨0+in and ΓR, x : [t]b, y : t ` R.

We can argue that ΓR(z) is compatible with t if there should be an assignment
to z in ΓR. Therefore the Substitution Lemma (Lemma 11.4.7), which will be
shown below, gives us ΓR, x : [t]b ~ z : t ` R{z/y}. Everything combined we
obtain

ΓQ ~ ΓR ~ z : t, x : [t]a+b ` P ′.

It is now left to show that this is smaller than Γ and (T-≤) will give us the
desired result. This can be shown with Lemma 11.4.3 and by observing that
(a − in) ∨ 0 + out + (b − out) ∨ 0 + in ≥ a + b, which can be shown by using
some of the inequations for `-monoids introduced in Lemma 11.3.3.

We can now define how an instantiation of this general framework, a specific
type systems, looks like.

Definition 11.4.4 (Instance Type System) Let I be a residuated lattice-
ordered monoid and let in and out be two fixed monoid elements, where either
in ≤ 0 or in ≥ 0, i.e., in is comparable to 0.

Then we call the tuple T = (I, in, out) an instance type system. We write
Γ `T P if the type assignment Γ can be derived for the π-calculus process P ,
using the rules given in Table 11.2 and the components of T . We will often
omit the index T if it is obvious from the context.

In order to show the subject reduction property of the type system, i.e. the
fact that the type is invariant under reductions, we must first show the following
lemmas.

Lemma 11.4.5 (Weakening and Strengthening) If Γ ` P with x 6∈ fn(P ),
a is a monoid element with a ≥ 0 and t̃ is a sequence of type trees, then it holds
that Γ, x : [t̃]a ` P . Furthermore it holds that Γ\x ` P and mon(Γ(x)) ≥ 0
whenever x ∈ dom(Γ).

Proof: Proof by induction on the type derivation. 2

Lemma 11.4.6 Let P,Q be two processes that are equivalent with respect to
α-conversion. Then it holds that Γ ` P ⇐⇒ Γ ` Q.
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Proof: By induction on the typing rules. Whenever a name x is replaced by
y this amounts to replacing the occurrences of x by y in the type derivation.
Note that names that do not occur free in P and Q can be removed from the
type environment according to Lemma 11.4.5 and do not get in the way. 2

Every instance type system satisfies the following substitution lemma, which
is central for proving the subject reduction property:

Lemma 11.4.7 (Substitution) Let v 6= w be two names.
If Σ, w : [s̃]c ` P and w 6∈ dom(Σ), then Σ′ = Σ ~ v : [s̃]c ` P{v/w},

whenever Σ′ is defined.

Proof: We show this lemma by induction on the typing rules:

(T-≤) In this case Γ, w : [s̃]c
′

≤ Σ, w : [s̃]c and Γ, w : [s̃]c
′

` P with c′ ≤ c.
It holds that Σ′ is defined if and only if Γ ~ v : [s̃]c

′

is defined. The
induction hypothesis implies that Γ ~ v : [s̃]c

′

` P{v/w}, and clearly
Γ ~ v : [s̃]c

′

≤ Σ′, which implies Σ′ ` P{v/w}.

(T-Nil) In this case P = 0 and Σ, w : [s̃]c = Γ ∨ 0. This implies c ≥ 0. Now
Σ′(v) = [s̃]c

′+c where c′ ≥ 0 (we set c′ = 0 if v 6∈ dom(Σ)) and therefore
c + c′ ≥ 0. This holds also for all other topmost monoid elements in Σ′.
Therefore Σ′ ` 0 = P{v/w}.

(T-Par) In this case P = P1 | P2 with Γi ` Pi, i ∈ {1, 2} and Σ, w : [s̃]c =
Γ1 ~ Γ2. It holds that c = c1 + c2 with Γi = ∆i, w : [s̃]ci or ci = 0 and
w 6∈ dom(Γi). In the second case we set ∆i = Γi.

In the first case, we can infer with the induction hypothesis that ∆i ~

v : [s̃]ci ` Pi{x/y}. In the second case Lemma 11.4.5 gives us ∆i, w : [s̃]ci `
Pi, from which we can again infer with the induction hypothesis that
∆i ~ v : [s̃]ci ` Pi{x/y}. Combined this yields:

Σ′ = (∆1 ~ ∆2) ~ v : [s̃]c

= (∆1 ~ v : [s̃]c1) ~ (∆2 ~ v : [s̃]c2) ` P1{v/w} | P2{v/w}︸ ︷︷ ︸
=P{v/w}

.

(T-Restr) In this case P = (νx : t)P ′. Since x is bound we can assume that
x 6= v and x 6= w, due to Lemma 11.4.6. It follows that Σ, w : [s̃]c, x : t `
P ′ where mon(Σ(x)) ≥ 0 if x ∈ dom(Σ). The induction hypothesis
implies that Σ ~ v : [s̃]c, x : t ` P ′{v/w}. Furthermore it holds that
mon((Σ ~ v : [s̃]c)(x)) = mon(Σ(x)) ≥ 0 whenever x occurs in that type
environment. So we can infer that Σ′ = Σ~v : [s̃]c ` (νx : t)(P ′{v/w}) =
P{v/w}.

(T-In) In this case it holds that P = x(ỹ).P ′. Since all the yi are bound, we
can assume because of Lemma 11.4.6 that yi 6= w and yi 6= v for each i.
It holds that

Γ, x : [t̃]a, ỹ : t̃ ` P

Σ, w : [s̃]c = Γ ∨ 0, x : [t̃](a−out)∨0+in .
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Let σ be the mapping on names that maps w to v and is the identity on
all other names. Furthermore we set ∆ = Γ, x : [t̃]a, ỹ : t̃.

Obviously an assignment of the form w : [s̃]ĉ occurs in ∆. The induction
hypothesis gives us ∆\w ~ v : [s̃]ĉ ` P ′{v/w}. This type environment
contains an assignment to σ(x) in any case (since either (σ(x) = x and
w 6= x) or σ(x) = v). The type environment is therefore of the form

Γ̂, σ(x) : [t̃]â, ỹ : t̃ = ∆\w ~ v : [s̃]ĉ

We can also set
Σ̂ = Γ̂ ∨ 0, σ(x) : [t̃](â−out)∨0+in .

Because of rule (T-In) it holds that Σ̂ ` σ(x)(ỹ).(P ′{v/w}) = P{v/w}.

It remains to show that Σ̂ ≤ Σ′. First Σ̂ and Σ′ have the same domain
and the corresponding type trees in the type environment coincide in
everything but the topmost monoid elements. Let us now consider the
topmost monoid elements.

First, nothing changes for all type trees different from the type tree corre-
sponding to v. We now consider the following cases in order to show that
mon(Σ̂(v)) ≤ mon(Σ′(v)). Furthermore we set b = mon(∆(v)) whenever
v ∈ dom(∆). Otherwise we set b = 0.

w 6= x ∧ v 6= x: In this case it holds that

mon(Σ̂(v)) = (b+ ĉ) ∨ 0

≤ (ĉ ∨ 0) + (b ∨ 0)

= c+ (b ∨ 0)

= mon(Σ′(v)).

w = x: In this case σ(x) = v and we obtain

mon(Σ̂(v)) = ((b+ ĉ)− out) ∨ 0 + in

≤ ((ĉ− out) + b) ∨ 0 + in

≤ (ĉ− out) ∨ 0 + in + (b ∨ 0)

= c+ (b ∨ 0)

= mon(Σ′(v)).

v = x: Analogous to the case w = x above.

(T-Out) In this case it holds that P = x〈z̃〉.P ′ and

Γ, x : [t̃]a ` P ′

(Γ, x : [t̃]a) ~ z̃ : t̃ = Γ′, x : [t̃]a
′

Σ, w : [s̃]c = Γ′ ∨ 0, x : [t̃](a
′−in)∨0+out .

Let σ be the mapping on names that maps w to v and is the identity on
all other names. Furthermore we set ∆ = Γ, x : [t̃]a.
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Whenever an assignment of the form w : [s̃]ĉ occurs in ∆ we set ∆̂ = ∆,
otherwise we set ĉ = 0 and define ∆̂ = ∆, w : [s̃]ĉ. In the latter case we
can conclude with Lemma 11.4.5 that ∆̂ ` P ′. The induction hypothesis
gives us ∆\w~ v : [s̃]ĉ ` P ′{v/w} in both cases. This type environment
contains an assignment to σ(x) in any case.

Whenever w = x, then we know that t̃ = s̃. If w = zi, then we can be
sure that the types of v and zi are compatible, since the types of v and w
are compatible. So we can set:

Γ̂, σ(x) : [t̃]â = (∆\w ~ v : [s̃]ĉ) ~ σ(z̃) : t̃

We can also set

Σ̂ = Γ̂ ∨ 0, σ(x) : [t̃](â−in)∨0+out .

Because of rule (T-Out) it holds that Σ̂ ` σ(x)〈σ(z̃)〉.(P ′{v/w}) =
P{v/w}.

It remains to show that Σ̂ ≤ Σ′. First Σ̂ and Σ′ have the same domain
and the corresponding type trees in the type environment coincide in
everything but the topmost monoid element. Let us now consider the
topmost monoid elements.

First, nothing changes for all type trees different from the type tree cor-
responding to v. We now consider the following cases in order to show
that mon(Σ̂(v)) ≤ mon(Σ′(v)). We assume that each ti in the sequence
t̃ is of the form [ũi]

bi . Furthermore we set b = mon(∆(v)) whenever
v ∈ dom(∆). Otherwise we set b = 0.

w 6= x ∧ v 6= x: In this case it holds that

mon(Σ̂(v)) =


b+ ĉ+

∑

σ(zi)=v

bi


 ∨ 0

≤

(
ĉ+

∑

zi=w

bi

)
∨ 0 + (b ∨ 0)

= c+ (b ∨ 0)

= mon(Σ′(v)).
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w = x: In this case we obtain

mon(Σ̂(v)) =




b+ ĉ+

∑

σ(zi)=v

bi


− in


 ∨ 0 + out

=

((
b+ ĉ+

∑

zi=w

bi

)
− in

)
∨ 0 + out

≤

(((
ĉ+

∑

zi=w

bi

)
− in

)
+ b

)
∨ 0 + out

≤

((
ĉ+

∑

zi=w

bi

)
− in

)
∨ 0 + out + (b ∨ 0)

= c+ (b ∨ 0)

= mon(Σ′(v)).

v = x: Analogous to the case w = x above.

(T-Rep) In this case P = !x(ỹ).P ′. Furthermore

Γ, x : [t̃]a ` x(ỹ).P ′

Σ, w : [s̃]c = Γ, x : [t̃]a+sig(in)

and Γ ~ Γ ≤ Γ and a+ a ≤ a. Let σ be the mapping on names that maps
w to v and is the identity on all other names. Again we can assume that
yi 6= v and yi 6= w for each i. We distinguish the following cases:

w 6= x ∧ v 6= x: In this case it holds that Γ\w,w : [s̃]c, x : [t̃]a ` x(ỹ).P ′

and from Γ ~ Γ ≤ Γ it follows that c + c ≤ c. From the induction
hypothesis we can infer that

(Γ\w, x : [t̃]a) ~ v : [s̃]c︸ ︷︷ ︸
=(Γ\w~v : [s̃]c),x : [t̃]a

` σ(x)(ỹ).(P ′{v/w})

Because of c + c ≤ c and Γ ~ Γ ≤ Γ it holds that (mon(Γ(v)) +
c) + (mon(Γ(v)) + c) ≤ mon(Γ(v)) + c whenever v ∈ dom(Γ) and
therefore (Γ\w ~ v : [s̃]c) ~ (Γ\w ~ v : [s̃]c) ≤ Γ\w ~ v : [s̃]c.

From the typing rule (T-Rep) we can infer that

Σ′ = (Γ\w ~ v : [s̃]c), x : [t̃]a+sig(in) ` P{v/w}.

w = x: In this case it holds that a + sig(in) = c, s̃ = t̃ and Σ = Γ\w.
From the induction hypothesis we can infer that

Σ ~ v : [t̃]a ` v(ỹ).(P ′{v/w}).

As above we can show that (Σ ~ v : [t̃]a) ~ (Σ ~ v : [t̃]a) ≤ Σ ~ v : [t̃]a

and therefore rule (T-Rep) gives us

Σ′ = Σ ~ v : [t̃]a+sig(in) ` P{v/w}.
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v = x: In this case it holds that Γ\w,w : [s̃]c, v : [t̃]a ` v(ỹ).P ′ and fur-
thermore t̃ = s̃. From the induction hypothesis we can infer that

Γ\w, v : [t̃]a+c ` v(ỹ).(P ′{v/w}).

Again we can infer that (Γ\w, v : [t̃]a+c) ~ (Γ\w,
v : [t̃]a+c) ≤ Γ\w, v : [t̃]a+c and therefore it follows with rule (T-Rep)
that

Σ′ = Γ\w, v : [t̃]a+c+sig(in) ` P{v/w}.

2

Now we can state the subject reduction property in the following way.

Theorem 11.4.8 (Subject Reduction) If P ≡ Q, then Σ ` P ⇐⇒ Σ `
Q. If P → P ′ and Σ ` P then Σ ` P ′.

Proof: We show the first half of the proposition by induction on the rules of
structural congruence, taking into account that ≡ is a congruence. The cases
for reflexivity, transitivity, symmetry and contextualization are straightforward.

(C-Com) Follows immediately from the commutativity of ~.

(C-0) Follows immediately from the fact that 0 can be typed with the empty
type environment ∅, which is the unit of ~.

(C-Ass) Follows immediately from the associativity of ~.

(C-Restr1) Let (νx : t)0 ≡ 0 and we assume first that Σ ` (νx)0. From the
typing rules we can infer that Σ ≥ Γ, Γ ` (νx : t)0 and Γ, x : t ` 0. Since
x does not occur free in 0, Lemma 11.4.5 implies Γ ` 0. Finally rule
(T-≤) gives us Σ ` 0.

In the other direction we have Σ ` 0 and rule (C-Restr1) implies that
mon(t) ≥ 0. Therefore Lemma 11.4.5 implies that Σ, x : t ` 0, from which
we can infer Σ ` (νx : t)0 with rule (T-Restr).

(C-Restr2) Immediate from the fact that Γ, x : s, y : t = Γ, y : t, x : s.

(C-Restr3) Let ((νx : t)P1) | P2 ≡ (νx : t)(P1 | P2) and x 6∈ fn(P2).

Let us first assume that Σ ` ((νx : t)P1) | P2. This implies that Σ ≥
Γ1 ~ Γ2 where Γ1 ` (νx : t)P1, Γ2 ` P2. Since x 6∈ fn(((νx : t)P1) | P2) it
follows from Lemma 11.4.5 that mon(Σ(x)) ≥ 0 whenever x ∈ dom(Σ).
Furthermore Γ1 ≥ Γ′1 where Γ′1 ` (νx : t)P1 and Γ′1, x : t ` P1. From
Lemma 11.4.5 it follows that Γ2\x ` P2 and typing rules (T-Par) then
implies that

(Γ′1, x : t) ~ Γ2\x ` P1 | P2.

Summation of type environments is defined since Γ1 ~Γ2 is defined. With
rule (T-Restr) it follows that Γ′1\x~ Γ2\x ` (νx : t)(P1 | P2). It holds
that Σ\x ≥ Γ′1\x ~ Γ′2\x. By adding a possible assumption on x with
Lemma 11.4.5 we obtain Σ ` (νx : t)(P1 | P2).
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In the other direction we can infer that Σ ≥ Γ, Γ ` (νx : t)(P1 | P2),
Γ, x : t ` P1 | P2 and finally Γ, x : t ≥ Γ1 ~ Γ2 with Γi ` Pi, i ∈ {1, 2}.
We assume that t = [s̃]a. The type environment Γi has either the form
Γ′i, x : [s̃]ai or Γ′i where x 6∈ dom(Γ′i). If the latter is the case we set ai = 0
and it follows that Γ′i, x : [s̃]ai ` Pi.

From Lemma 11.4.5 we can infer that a2 ≥ 0 since x does not occur
free in P2. Because of a1 + a2 ≤ a it follows that a1 ≤ a. With rule
(T-≤) we can infer that Γ′1, x : [s̃]a ` P1. Then rule (T-Restr) implies
Γ′1 ` (νx : t)P1. Rule (T-Par) implies that Γ′1 ~ Γ′2 ` ((νx : t)P1) | P2. It
holds that Σ\x ≥ Γ′1 ~ Γ′2. By adding a possible assumption on x with
Lemma 11.4.5 we obtain Σ ` ((νx : t)P1) | P2.

The second part of the proposition is shown by induction on the reduction rules.
We only show the following two cases. The rest of the cases is obvious with the
induction hypothesis and the first part of this theorem.

(R-Comm) P = x〈z̃〉.Q | x(ỹ).R, P ′ = Q | R{z̃/ỹ} and Σ ` P . We can
assume that x does not occur in ỹ.

This implies that Σ ≥ ΣQ ~ ΣR where ΣQ ` x〈z̃〉.Q and ΣR ` x(ỹ).R.
Furthermore ΣQ ≥ ΥQ where

ΥQ = Γ′Q ∨ 0, x : [t̃](a
′−in)∨0+out

Γ′Q, x : [t̃]a
′

= (ΓQ, x : [t̃]a) ~ z̃ : t̃

ΓQ, x : [t̃]a ` Q.

Additionally ΣR ≥ ΥR where

ΥR = ΓR ∨ 0, x : [t̃](b−out)∨0+in

ΓR, x : [t̃]b, ỹ : t̃ ` R.

Since ~ respects ≤ it holds that Σ ≥ ΥQ ~ ΥR. From Lemma 11.4.7 we
can infer that

(ΓR, x : [t̃]b) ~ z̃ : t̃ ` R{z̃/ỹ},

which is well-defined, since (ΓQ, x : [t̃]a)~ z̃ : t̃ is well-defined and therefore
every name zi must have a type compatible with ti. From (T-Par) we
can infer that

(ΓQ, x : [t̃]a) ~ ((ΓR, x : [t̃]b) ~ z̃ : t̃) ` Q | R{z̃/ỹ}.

The type environment on the left-hand side is equal to

((ΓQ, x : [t̃]a) ~ z̃ : t̃) ~ (ΓR, x : [t̃]b)

= (Γ′Q, x : [t̃]a
′

) ~ (ΓR, x : [t̃]b)

= Γ′Q ~ ΓR, x : [t̃]a
′+b

≤ (Γ′Q ∨ 0) ~ (ΓR ∨ 0), x : [t̃](a
′−in)∨0+out+(b−out)∨0+in

= ΥQ ~ ΥR.
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The inequation holds because of Lemma 11.4.3 and (a′ − in) ∨ 0 + out +
(b − out) ∨ 0 + in ≥ (a′ − in) + in + (b − out) + out ≥ a′ + b for two
elements a′, b of an `-monoid (see Lemma 11.3.3). Then Σ ≥ ΥQ ~ ΥR

implies Σ ` P ′.

(R-Rep) P = x〈z̃〉.Q | !x(ỹ).R, P ′ = Q | R{z̃/ỹ} | !x(ỹ).R and Σ ` P . We
show that Υ ` !x(ỹ).R implies Υ ` x(ỹ).R | !x(ỹ).R, the rest follows from
case (R-Comm).

From Υ ` !x(ỹ).R it follows that Υ ≥ Γ, x : [t̃]a+sig(in) where Γ,
x : [t̃]a+sig(in) ` !x(ỹ).R and Γ, x : [t̃]a ` x(ỹ).R, Γ~Γ ≤ Γ and a+a ≤ a.

From (T-Par) we can infer that

(Γ, x : [t̃]a+sig(in)) ~ (Γ, x : [t̃]a) ` x(ỹ).R | !x(ỹ).R.

This type environment is equal to

Γ ~ Γ, x : [t̃]a+sig(in)+a ≤ Γ, x : [t̃]a+sig(in) ≤ Υ.

Finally this implies Υ ` x(ỹ).R | !x(ỹ).R.

2

11.5 Using the Type System for Process Analysis

As in other type systems for mobile processes, a type guarantees absence of
runtime errors which may appear in the form of arity mismatches in the com-
munication rules (R-Comm) and (R-Rep), but it also enables us to perform
more detailed process analysis.

11.5.1 Process Capabilities

The aim of this paper is to construct type systems yielding useful results for
the analysis and verification of parallel processes. In our case the generic type
system gives information about the properties of a process, especially concerning
its input and output capabilities. We will now formally define the connection
between the type of a process and its capabilities.

Definition 11.5.1 Let P be a process and let w be a free name occurring in
P . We define P ’s capability wrt. w, denoted by Cw(P ) by adding the following
monoid elements: for every use of w as an output port we add out and for every
use of w as an input port we add in. Notice that we do not continue summation
after prefixes (see Table 11.4).

We can now show that the type system is sound, in the sense that it gives
appropriate upper bounds for the capabilities of processes.

Theorem 11.5.2 (Type Safety) If Γ ` P , P →∗ P ′ and w is a free name of
P it follows that Cw(P ′) ≤ mon(Γ(w)). If P ′ contains a subexpression (νx : t)Q
which is not located underneath a prefix it follows that Cx(Q) ≤ mon(t).
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Cw(0) = 0 Cw(P | Q) = Cw(P ) + Cw(Q)

Cw(x〈z̃〉.P ) =

{
out if x = w
0 otherwise

Cw(x(ỹ).P ) =

{
in if x = w
0 otherwise

Cw(!x(ỹ).P ) =

{
sig(in) if x = w
0 otherwise

Cw((νx : s)P ) =

{
Cw(P ) if x 6= w
0 otherwise

Table 11.4: Determining the capabilities of a process

Proof: We show the proposition in two steps:

• First we show that for every process P , Γ ` P implies Cw(P ) ≤ mon(Γ(w)).

This can easily be done by induction on P , the only problematic case
being replication: If Σ = Γ, x : [t̃]a ` !x(ỹ).Q, it follows from (T-Rep)
and (T-≤) that Γ′, x : [t̃]b ` x(ỹ).Q, where Γ ≥ Γ′ and a ≥ b + sig(in).
Since Γ′, x : [t̃]b was produced by typing rule (T-In) (and maybe rule (T-
≤)) it follows that b ≥ (a′ − out) ∨ 0 + in for some monoid element a′.
This implies that a ≥ (a′−out)∨0+ in +sig(in) ≥ in +sig(in) = sig(in).

Therefore Cx(P ) = sig(in) ≤ a = mon(Σ(x)). For all other names w 6= x
it is straightforward to show that Cw(P ) = 0 ≤ mon(Σ(w)).

• Furthermore we can show by induction on the number of steps and with
Theorem 11.4.8 that whenever P →∗ P ′ and Γ ` P , then also Γ ` P ′.
Therefore Cw(P ′) ≤ mon(Γ(w)).

The second part of the theorem can also be shown with Theorem 11.4.8. Note
that for this part of the proof the side condition on rule (C-Restr1) in Ta-
ble 11.1 is essential. 2

The properties we can derive are of the form: “it is always the case that
Cw(P ) ≤ a”. In many cases more complex properties of processes can be
derived from inequations of this form.

Definition 11.5.3 (Instance Type System for Property Y ) Let Y be a
predicate on π-calculus processes. We call T = (I, in, out , X) an instance type
system for the predicate Y whenever T ′ = (I, in, out) is an instance type system
according to Definition 11.4.4 and X is a predicate on type assignments such
that

Γ `T ′ P and X(Γ) imply Y (P ).

In Section 11.6 we give some examples for typical predicates X and Y .

11.5.2 Composition of Type Systems

Given two type systems checking certain capabilities of processes, it is not
difficult to construct a type system computing upper bounds for tuples of ca-
pabilities. Let Ti = (Ii, ini, out i, Xi), i ∈ {1, 2} be two instance type systems
for predicates Y1 and Y2 respectively.
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Then T = (I1× I2, (in1, in2), (out1, out2), X) is an instance type system for
the conjunction of Y1 and Y2 if X(i1, i2) = X1(i1)∧X2(i2) and it is an instance
type system for the disjunction of Y1 and Y2 if X(i1, i2) = X1(i1)∨X2(i2). (All
monoid operations on I1 × I2 are conducted pointwise.)

11.6 Examples

We now get back to the two example processes

P = T | H | (νd : td)(F | S) P ′ = T | H | (νd : td)(!F |!S)

introduced in Section 11.3.1 and type them with several instantiations of our
type system, and thereby show how to mechanise process analysis in these cases.

First, in both cases, we obtain the same type environment from the point
of view of structure. However the monoid elements differ with the various
instantiations. The structure of type environment looks as follows:

Γ = c : tc, h : t1, i1 : t1, i2 : t2

where tc = [t1]mc , t1 = [t1, t2]m1 , t2 = [ ]m2

and furthermore td = [t1]md .

Note that t1 stands for an infinite, but regular, tree and t1 = [t1, t2]m1 is its
defining equation.

In the sequel we present several analyses of P and P ′ where the `-monoids
used appear in Table 11.5 and the results of the analysis, i.e. the monoid ele-
ments substituted for md,mc,m1,m2, are shown in Table 11.6.

property to be checked underl. set operation order out in

1 input/output behaviour of P and P ′
{none, output ,
input , both}

∨ ≤ output input

2 upper bounds on prefixes in P Z
∞ × Z

∞ + ≤ (1, 0) (0, 1)

3 upper bounds on prefixes in P ′ Z
∞ × Z

∞ + ≤ (1, 0) (0, 1)

4 lower bounds on prefixes in P Z
∞ × Z

∞ + ≥ (1, 0) (0, 1)

5 lower bounds on prefixes in P ′ Z
∞ × Z

∞ + ≥ (1, 0) (0, 1)

6 avoiding blocked output prefixes in P Z
∞ × Z

∞ + va (1, 0) (0, 1)

7 avoiding blocked output prefixes in P ′ Z
∞ × Z

∞ + va (1, 0) (0, 1)

a(i, j) v (i′, j′) iff i ≤ i′ and j ≥ j′.

Table 11.5: The `-monoids for different instantiations of the generic type system

11.6.1 Input/Output Behaviour of Channels

One simple application of our type system is to check whether channels are
used for input or for output or for both. We use the monoid IO (with ele-
ments none, output–“output only”, input–“input only” and both) introduced
in Section 11.3.2 (see Table 11.5, row 1). We set in = input , out = output .
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property to be checked md mc m1 m2

1 input/output behaviour of P and P ′ both both both none

2 upper bounds on prefixes in P (1, 1) (1, 1) (1, 1) (0, 0)

3 upper bounds on prefixes in P ′ (∞,∞) (1,∞) (1,∞) (0, 0)

4 lower bounds on prefixes in P (−1, 0) (−1, 0) (−1,−1) (0, 0)

5 lower bounds on prefixes in P ′ (−∞,∞) (−∞,∞) (−∞,−1) (0, 0)

6 avoiding blocked output prefixes in P (1, 0) (1, 0) (1,−1) (0, 0)

7 avoiding blocked output prefixes in P ′ (∞,∞) (1,∞) (1,−1) (0, 0)

Table 11.6: Resulting monoid elements for different instantiations of the generic
type system

For both processes P and P ′ we obtain the same type assignments where
the upper bounds are shown in Table 11.6 (row 1), i.e., the name i2 is used
neither for input nor output while all other names may be used for both. Note
that, because of residuation, typing F on its own would yield capability input
for name c, but no output capability. This is due to the fact that F alone will
never reduce to a process with an output prefix with subject c.

This type system has some similarities to the one in [PS96], our type system
however lacks a concept of co- and contravariance which is present in [PS96].

11.6.2 Upper Bounds on the Number of Prefixes

We attempt to define a type system, similar to the one presented in [KPT99]
for our framework, i.e., we want to check how many processes try to input or
output concurrently on the same channel.

We use the `-monoid Z
∞ × Z

∞ (cartesian product of the set of integers
with ∞ and −∞) introduced in Section 11.3.2 (see Table 11.5, rows 2 & 3).
The first component represents the number of active output prefixes (with a
fixed subject) and the second component represents the number of active input
prefixes.

We set out = (1, 0), in = (0, 1), and typing the processes P and P ′ yields
the results given in Table 11.6 (rows 2 & 3). Since for P the upper bound is
always (1, 1) or smaller we can conclude that there is at most one active input
port and one active output port for any given subject at a time. For P ′ we can
for example guarantee that c always occurs at most once as an output prefix,
although it occurs underneath a replicated input prefix.

11.6.3 Confluence

As in [KPT99] we can use upper bounds on the number of active prefixes
to guarantee confluence for π-calculus processes (see also [NS97]). Let Q be
a process, and for every name x in Q which is either free or bound by the
scope operator ν it holds that its capabilities never exceed (1, 1). Then we
can guarantee that every channel (also bound channels) occurs at most once at
any given time as the subject of an input or output prefix, and we thus have
non-overlapping redexes in (R-Comm). Thus we can conclude that if Q→∗ Q′,
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Q′ → Q1 and Q′ → Q2, then either Q1 ≡ Q2 or there is a process Q3 such that
Q1 → Q3 and Q2 → Q3.

Row 2 in Table 11.6 provides upper bound (1, 1) for all capabilities in P .
So we can state that P is confluent. Note that the same process would not be
recognised as confluent by the type system in [KPT99].

11.6.4 Lower Bounds on the Number of Prefixes

The type system is not limited to statements of the form: “there at most n
processes concurrently using channel x”, we can also guarantee that there are
at least m processes concurrently using channel x. In order to achieve this,
we use the type system above and just invert the partial order, i.e. we take
≥ instead of ≤ (see Table 11.5, rows 4 & 5), out and in remain unchanged.
This means also that the join ∨ in the new partial order is now the meet ∧
of the original partial order. Typing P does not give us much information,
since we cannot guarantee that there are any prefixes active at any given time
(see Table 11.6, row 4) for any channel. In fact, some lower bounds are even
(−1) stating that the respective channel “removes” input (or output) prefixes
instead of making them available. In this case P →∗ 0, which means that no
lower bounds can be guaranteed.

Typing P ′ yields the monoid elements given in Table 11.6 (row 5), which
states that input prefixes with subjects c, d are available infinitely often.

Another lower bounds analysis will be presented in Section 11.6.6.

11.6.5 Avoiding Blocked Output Prefixes

Another interesting feature is to avoid blocked prefixes, i.e. prefixes which are
waiting for a non-existing communication partner. We will first define—with
the help of a lattice-ordered monoid—what it means for an output prefix to be
blocked.

We take Z
∞ × Z

∞ as an `-monoid and define a new partial order: (i, j) v
(i′, j′) iff i ≤ i′ and j ≥ j′ (see Table 11.5, rows 6 & 7). The first component
represents the number of output prefixes and the second the number of input
prefixes of the same subject. Let out = (1, 0) and in = (0, 1). We say a name
x is output-blocked in P , if P →∗ P ′, Cx(P ′) w (1, 0) (i.e. there is at least one
output prefix with subject x and no corresponding input prefixes) and for all
P ′′ with P ′ →∗ P ′′ it follows that Cx(P ′′) w (1, 0) (no communication with x
will ever take place).

We can, e.g., avoid this situation, by demanding that it is always the case
that Cx(P ′) = (a, b) and either a ≤ 0 or b ≥ 1 (i.e. (a, b) 6w (1, 0)). We take the
`-monoid and out , in introduced above. This type system can be obtained by
composing a type system establishing upper bounds for output prefixes and one
establishing lower bounds for input prefixes (see Section 11.5.2). In this way
we find out that no output prefixes with subjects c and d are output-blocked
in P ′ (see Table 11.6, row 6, where the tuples are composed out of the first
component of the tuples in row 3 and the second component of the tuples in
row 5).
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This type system is not the only way to check for blocked prefixes. There
are alternatives which can be employed in case this version fails. We can take
Z
∞ as a monoid with the ordinary partial order ≤, and define out = 1, in = −1.

Now we can guarantee that a channel x in P is non-blocking if Cx(P ) ≤ 0, i.e.
if there are always at least as many active input prefixes as output prefixes.

11.6.6 Availability of Printers

In order to give another example for the usefulness of the instance type system
guaranteeing lower bounds, we consider the following scenario. We assume that
there are two printers, printer 1 and printer 2, and several print services Pr i,
ready to accept tasks for either of the two printers. A print service Pr i (see
Table 11.7) receives a task via pr i and then discards (or rather prints) it. Print
services are not addressed directly by the process User , but via a print manager
PM , which receives a task x, which should be printed, enquires for an available
print service at the address server, sends the task x there and starts another
print service for the same printer immediately afterwards. The address server
AS distributes names of print services, in this case we assume that it outputs
names pr1 and pr2 in an alternating order. The user constantly sends tasks to
be printed to the print manager. Table 11.7 contains process System, which
describes the entire system. Note that the address server and the user need
extra triggers tr 1 and tr2 since only input prefixes can be replicated.

Print manager: PM = !pm(x).as(y).y〈x〉.y(t)
Address server: AS = !tr 1.as〈pr1〉.as〈pr2〉.tr1

Print service: Pr i = pr i(t)
User: User = !tr2.pm〈t1〉.pm〈t2〉.tr2

System: System = (νtr 1 : ttr1
)(νtr2 : ttr2

)(νpm : tpm)(
(νas : tas)(PM | AS ) | Pr1 | Pr1 |
Pr2 | Pr2 | pr1〈t〉 | User | tr1 | tr2 )

Table 11.7: Example: availability of printers

The names of the print services pr 1 and pr2 are free and can still be ad-
dressed from the outside. We want to make sure that there are always suffi-
ciently many print services available to the environment.

We apply an instance type system similar to the one described in Sec-
tion 11.6.4, taking the monoid Z

∞ with ≥ as partial order and setting out = 0,
in = 1. This means we only use the second component of each pair in the type
system described in Section 11.6.4. We obtain the following type environment.

Γ = pr1 : [[ ]0]1, pr2 : [[ ]0]2, t1 : [ ]0, t2 : [ ]0

and ttr1
= ttr2

= [ ]0, tpm = [[ ]0]∞, tas = [[[ ]0]0]−2

We can summarise the results of this analysis as follows (including also
bound names):
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name x pr1 pr2 t1 t2 pm as tr1 tr2

Cx(System) ≥ 1 2 0 0 ∞ −2 0 0

In this way one can see that there is always at least one print service Pr 1

and at least two print services Pr 2 available at any time.

11.7 Related Work and Conclusion

We have presented a generic type system, which can be instantiated in order
to analyse input/output capabilities of π-calculus processes. The notion of
capabilities is kept very general, we only assume that they can be described by
elements of a lattice-order monoid.

Inspiration for this work came from papers deriving information on the
behaviour of a process by inspecting its input/output capabilities, such as
[PS96, KPT99, NS97]. We now make a closer comparison.

• Kobayashi, Pierce, Turner: “Linearity and the pi-calculus” [KPT99]

A type system that has close connections to ours is the linear type sys-
tem by Kobayashi, Pierce and Turner [KPT99], since it also involves the
typing of input/output capabilities of processes. A channel being linear
means that the channel is used exactly once for input and output. The
type system checks whether each channel is linear or not. (A slightly dif-
ferent variant of this type system is presented in [IK00], including a type
inference algorithm.)

One aim of [KPT99] is to study a process equivalence relation under the
linear type system. This question has not been addressed in this paper,
it is an interesting direction for future work.

While the type system in [KPT99] counts all input and output prefixes
of a process, we determine upper bounds on the number of prefixes which
are concurrently active. Otherwise our type system can be seen as an
extension of the variant of the linear type system given in [IK00]. The
case of replication is handled in a slightly different way in our type system.

Our type system still implies confluence and partial confluence respec-
tively. The process P in our examples is identified as a confluent process
(see Section 11.6.3), while this would not be the case in the type system
in [KPT99].

We could also directly use the cababilities of [IK00] in our framework.
Consider the `-monoid {0, 1, ω} × {0, 1, ω} where the first component of
a tuple stands for input whereas the second component stands for output
(see Section 11.6.2). Join and meet are defined component-wise where
0 ≤ 1 ≤ ω is the partial order. Summation is also defined component-
wise with 0 + x = x+ 0 = x, x+ ω = ω + x = ω and 1 + 1 = ω for every
x ∈ {0, 1, ω}. Residuation is defined and it holds that x−y = 0 whenever
x ≤ y, x− 0 = 0 and ω − 1 = 1.
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However, because of residuation and because of the fact that we count
prefixes in a different way, the type systems may produce different results.
In our framework we obtain x : [ ](1,0) ` x.x.0, whereas the type system
of [IK00] typechecks x : [ ](1,1) ` x.x.0.

Using the capabilities of [KPT99] however, fails, since the structure de-
fined there can be seen as an `-monoid, but not as a residuated `-monoid.

• Naoki Kobayashi, Shin Saito, Eijiro Sumii: “An implicitly-typed deadlock-
free process calculus” [KSS00]

While this type systems aims mainly at avoiding deadlocks, it is also
interesting in that is considers resource usage analysis. For example,
omitting the annotations, an assignment of the form x : [τ̃ ]/I.O.0 tells
us that name x is first used for input and then for output. It might be
conceivable to compute monoid elements representing capabilities from
these usage expressions.

However, this does not work right away. For example the process x.y.0 is
assigned a type environment of the form Γ = x : []tx/I.0, y : []ty/O.0, from
which it is not clear that y is not currently active. The tag ordering (in
this case (tx, ty)), which gives some information about nesting of channels
is an over-approximation, and can not be used immediately to compute,
for example, lower bounds.

• Pierce, Sangiorgi: “Typing and subtyping for mobile processes” [PS96]

In the work of Pierce and Sangiorgi, input/output behaviour of π-calculus
processes is checked in a very refined way, using co- and contravariant
types. It is not entirely clear how to incorporate the concept of co- and
contravariance into our framework in a generic way, although it might
lead to sharper bounds in some cases.

• Kobayashi, Nakade, Yonezawa: “Static Analysis of Communication for
Asynchronous Concurrent Programming Languages” [KNY95]

This paper presents an analysis technique for determining upper bounds
for the number of enqueued messages and processes in HACL (Higher-
order ACL). This corresponds to the analysis presented in Section 11.6.2.
There are several similarities to our approach, especially since both ap-
proaches use subtraction.

The technique presented in [KNY95] is an effect system rather than a type
system and also because of the nature of HACL, which contains function
abstraction and application, this effect system presented has a different
flavour than our type system.

• Honda: “Composing processes” [Hon96]

Our work has a similar aim as that of Honda [Hon96], in that it attempts
to describe a general framework for process analysis using type systems.
We concentrate on a more specialised but still generic type system, which
enables us to prove the subject reduction property for the general case.
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We have shown that, despite its generality, the type system can be instan-
tiated in order to yield type systems related to existing ones. We have also
shown how to parameterise type systems and what kind of parameters are
feasible (in our case an `-monoid).

• Igarashi, Kobayashi: “A generic type system for the pi-calculus” [IK01]

This paper shows how to approximate π-calculus processes by processes
of a simpler process calculus, thereby allowing the analysis of deadlock-
freedom and race-freedom. This certainly gives a very powerful type sys-
tem, even if it is often not entirely obvious how to extract information
from a process type.

Our aim was to give a less complex type system. It is clear that such
a type system as ours might not be sufficient whenever a very detailed
analysis of a process is required, but can certainly be very useful for fast
debugging and for obtaining a first approximation of the capabilities of a
process.

We did not introduce a type inference algorithm for our type system, but it
should be possible to design a type inference algorithm along the lines of [IK00].

Our type system was partly inspired by a type system for a graph-based pro-
cess calculus with graphs as types, which make it rather easy to add additional
behaviour information (via morphisms and categorical functors) [Kön99a].
Graph-based type systems with lattices instead of monoids were presented in
[Kön99b, 1]. For lattices or non-negative cones of `-monoids, generic type sys-
tems are often easier to define. The main complication arises from non-positive
elements and residuation.

There is also some similarity to dataflow analysis for which exists the concept
of monotone frameworks which are parameterised over lattices [NNH99].

In order to conduct process analysis concerning more complex properties (as
was done e.g. in [Kob98, BDNN98]) it is necessary to use type systems assigning
behaviour information (i.e. monoid elements in our case) not only to single
channels, but rather to tuples of channels or other more complex structures.
This normally results in a semi-additive type system, in the terminology of
Honda [Hon96], while our present type system is strictly additive. In order
to extend this type system, a first solution would be to allow monoid labels
for n-ary tuples of names. Another idea is to integrate it into the categorical
framework presented in [Kön99b], which would allow us to specify very general
behaviour descriptions.

We believe that generic type systems can be developed into tools suitable
for fast debugging and the analysis of concurrent programs.

Acknowledgements: I would like to thank the anonymous referees for
their detailed and extremely helpful comments.
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Chapter 12

A Static Analysis Technique
for Graph Transformation
Systems
(Joint work with Paolo Baldan and Andrea Corradini)

Abstract

In this paper we introduce a static analysis technique for graph
transformation systems. We present an algorithm which, given
a graph transformation system and a start graph, produces a
finite structure consisting of a hypergraph decorated with tran-
sitions (Petri graph) which can be seen as an approximation of
the Winskel style unfolding of the graph transformation system.
The fact that any reachable graph has an homomorphic image
in the Petri graph and the additional causal information pro-
vided by transitions allow us to prove several interesting prop-
erties of the original system. As an application of the proposed
technique we show how it can be used to verify the absence of
deadlocks in an infinite-state Dining Philosophers system.

12.1 Introduction

Graphs are very useful to describe complex structures in a direct and intu-
itive way. Graph Transformation Systems (GTSs) [Roz97] add to the static
description given by graphs a further dimension which models graph evolu-
tion via the application of rules, usually having local effects only. GTSs have
been recognized to have fruitful applications in various fields of Computer Sci-
ence [EEKR99], and specifically in the modelling and specification of concurrent
and distributed systems [EKMR99].

As a high-level specification formalism for concurrent systems, GTSs are
known to be more expressive than (Place/Transition) Petri nets, which can
be seen, indeed, as GTSs acting on discrete graphs only (i.e., multisets of to-
kens) [Cor96]. However, even if the theory of GTSs is nowadays well developed
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and a number of tools for the support of specifications based on this formalism
have been developed, GTSs are not yet used as widely as Petri nets. One reason
for this could be the lack of analysis techniques, which have been proven to be
extremely effective for Petri nets. Verification and validation techniques play
an important role during the design of the specification of a complex system, as
they offer the designer the possibility to raise confidence in the quality of the
specification, for example by allowing the early detection of logical errors.

While several static analysis techniques have been proposed for Petri nets,
ranging from the calculus of invariants [Rei85] to model checking based on finite
complete prefixes [McM93],1 the rich literature on GTSs does not contain many
contributions to the static analysis of such systems (see [Koc00, 1]).

In this paper we present an original analysis technique for a class of (hy-
per)graph transformation systems, which, given a system and a start hyper-
graph, extracts from them an approximated unfolding, which is a finite struc-
ture (called Petri graph) consisting of a hypergraph and of a P/T net over it.
Both the graphical and Petri net components of the approximated unfolding
can be used to analyze the original system. For example, we will show that
every hypergraph reachable from the start graph can be mapped homomorphi-
cally to the (graphical component of the) approximated unfolding. Therefore,
if a property over graphs is reflected by graph morphisms, then if it holds
on the approximated unfolding it also holds on all reachable graphs. Among
these properties we mention the non-existence and non-adjacency of edges with
specific labels, the absence of certain paths (for checking security properties)
or cycles (for checking deadlock-freedom). Furthermore, the transitions of the
Petri net component of the approximated unfolding can be seen as (approxi-
mated) occurrences of rules of the original graph transformation system, and
indeed every reachable graph of the GTS corresponds (in a sense formalized
later) to a reachable marking of the net. This allows one to prove other prop-
erties directly on the Petri net component, including upper and lower bounds
on the number of times an edge with a certain label is present in a reachable
graph and certain causal dependencies among rule applications. Notice that in
general the net component of the approximated unfolding is neither safe nor
acyclic; roughly one can say that, at least for certain properties, the analysis
of a graph transformation system can be reduced to the analysis of a Petri
net, which is a computationally less powerful model and for which the existing
analysis techniques can be used.

The construction of the approximated unfolding of a graph transforma-
tion system is similar in spirit to the construction of the finite complete pre-
fix [McM93] of a net, but more complex. Both are based on the unfolding
construction, which in the case of nets [NPW81] unwinds a Petri net into a
branching occurrence net (a particularly simple Petri net satisfying suitable
acyclicity and conflict freeness requirements), behaviourally equivalent to the
original net. The unfolding cannot be used “directly” for verification purposes,
since it is usually infinite. In the case of bounded nets, McMillan has observed

1We use the term “static analysis” in a quite wide meaning, as for example it is used in
the community of the Static Analysis Symposia.
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in [McM93] that it is possible to truncate the unfolding in such a way that the
resulting finite structure, the finite complete prefix, contains as much informa-
tion as the unfolding itself, and can therefore be used for checking efficiently
behavioural properties ([Esp94, ERV66, VSY98]).

The unfolding construction has been generalized to graph transformation
systems [Rib96, BCM99, Bal00], and the technique we propose makes use of
unfolding steps for generating the (finite) approximated unfolding, but the anal-
ogy with the finite prefix construction of nets ends here. In fact the GTSs we
consider are not finite-state in general, hence, we must abandon the idea of
finding a complete finite part of the unfolding, where every state reachable in
the considered GTS has an isomorphic image. Even if we relax the last require-
ment, by asking only that every reachable state has an homomorphic image
in the constructed unfolding, since the states of the systems we consider are
more structured (graphs versus multisets), it is not possible to rudely truncate
the unfolding construction: at certain stages we have to merge parts of the
unfolding already constructed. Because of this merging, the resulting structure
is not acyclic (unlike the finite complete prefixes), and part of the information
on the causality and concurrency of the system is lost. For what concerns state
reachability, every state reachable in the original system is also reachable in the
approximated unfolding, but we loose the converse implication (which instead
holds for the finite complete prefix).

Technically, the algorithm that computes the approximated unfolding of a
GTS is defined through two basic transformations, called unfolding and folding
operations, which are applied as long as possible to the (Petri graph represent-
ing the) start graph of the system. Since both folding and unfolding are applied
only if certain conditions are satisfied, the algorithm can be shown to terminate,
a fact which guarantees that the resulting Petri graph is finite. Furthermore,
although the proposed algorithm is non-deterministic, a local confluence prop-
erty of the unfolding and folding transformations ensures that the approximated
unfolding of a GTS is uniquely determined.

The paper is organized as follows. In Section 12.2 we introduce the class of
GTSs on which our static analysis technique will be defined, as well as Petri
graphs and some basic operations on them. The algorithm computing the ap-
proximated unfolding of a GTS is presented in Section 12.3, while Section 12.4
collects the main results about the algorithm, namely its termination, its con-
fluence, and the fact that every reachable graph can be mapped to a reachable
subgraph of the approximated unfolding. Section 12.5 illustrates the proposed
method by applying it to the classical dining philosophers, both in a finite-
and in an infinite-state variant. Section 12.6 concludes and hints at possible
developments of the ideas presented in the paper.

12.2 Hypergraph rewriting, Petri nets and Petri
graphs

In this section we first introduce the class of (hyper)graph transformation sys-
tems considered in the paper. Then, after recalling some basic notions for Petri
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nets, we will define Petri graphs, the structure combining hypergraphs and Petri
nets, which will be used to approximate the behaviour of GTSs.

12.2.1 Graph transformation systems

In the following, given a set A we denote by A∗ the set of finite strings of
elements of A. Furthermore, if f : A → B is a function then we denote by
f∗ : A∗ → B∗ its extension to strings. Throughout the paper Λ denotes a fixed
set of labels and each label l ∈ Λ is associated with an arity ar(l) ∈ lN.

Definition 12.2.1 (hypergraph) A (Λ-)hypergraph G is a tuple (VG, EG, cG,
lG), where VG is a finite set of nodes, EG is a finite set of edges, cG : EG → VG

∗

is a connection function and lG : EG → Λ is the labelling function for edges
satisfying ar(lG(e)) = |cG(e)| for every e ∈ EG. Nodes are not labelled.

A node v ∈ VG is called isolated if it is not connected to any edge, i.e. if
there are no edges e ∈ EG and u,w ∈ VG

∗ such that cG(e) = uvw.

Let G,G′ be (Λ-)hypergraphs. A hypergraph morphism ϕ : G→ G′ consists
of a pair of total functions 〈ϕV : VG → VG′ , ϕE : EG → EG′〉 such that for
every e ∈ EG it holds that lG(e) = lG′(ϕE(e)) and ϕV

∗(cG(e)) = cG′(ϕE(e)).

In the sequel, when dealing with hypergraph morphisms we will often omit
the subscripts V and E when referring to the components of a morphism ϕ.

Definition 12.2.2 (rewriting rule) A rewriting rule r is a triple (L,R, α),
where L and R are hypergraphs, called left-hand side and right-hand side, re-
spectively, and α : VL → VR is an injective mapping.

A rule r = (L,R, α) is called basic if lL is injective, i.e., different edges in
the left-hand side L have different labels, no node in L is isolated and no node
in VR − α(VL) is isolated in R.

In the following we will consider only basic rules. This restriction is not strictly
needed, but makes the presentation simpler. For example, a morphism of a
left-hand side into a hypergraph is completely determined by the image of its
edges. Furthermore, to simplify the notation we will assume, without loss of
generality, that VL ⊆ VR, EL ∩ER = ∅ and that the mapping α is the identity.

Intuitively, a rule r = (L,R, α) specifies that an occurrence of the left-hand
side L can be “replaced” by R, according to the following definition.

Definition 12.2.3 (hypergraph rewriting) Let r = (L,R, α) be a rewriting
rule. A match of r in a hypergraph G is any morphism ϕ : L → G. In this
case we write G ⇒r,ϕ H or simply G ⇒r H, where H is defined as follows:
VH = VG ] (VR − VL), EH = (EG − ϕ(EL)) ] ER, and if ϕ : VR → VH is the
obvious extension of ϕ then

cH(e) =

{
cG(e) if e ∈ EG − ϕ(EL)
ϕ∗(cR(e)) if e ∈ ER

,

lH(e) =

{
lG(e) if e ∈ EG − ϕ(EL)
lR(e) if e ∈ ER
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Given a graph transformation system (GTS), i.e., a finite set of rules R, we
write G ⇒R H if G ⇒r H for some r ∈ R. Furthermore we will denote the
transitive closure of ⇒R by ⇒∗R. A GTS with a start graph (R, GR) is called
a graph grammar.

The application of the rule r to G at the match ϕ first removes from G the
image of the edges of L. Then the graph G is extended by adding the new
nodes in R (i.e., the nodes in VR − VL) and the edges of R. Observe that the
(images of) the nodes in L are “preserved”, i.e., not affected by the rewriting
step.

The reader which is familiar with the double-pushout (DPO) approach
[Ehr79] to graph rewriting would have recognized that our rules (L,R, α) can be

seen as DPO rules (L←↩ VL
α
↪→ R) and that our notion of rewriting is equivalent

to a DPO construction. Hence compared to general DPO rules L
ϕL← K

ϕR→ R
we have that (i) K is discrete, i.e., it contains no edges, (ii) no two edges in
the left-hand side L have the same label, (iii) the morphism ϕL is surjective on
nodes, (iv) VL and VR − ϕR(VK) do not contain isolated nodes.

12.2.2 Petri nets

In this subsection we fix some basic notation for Petri nets [Rei85, MM90].
Given a set A we will denote by A⊕ the free commutative monoid over A,
whose elements will be called multisets over A. Given a function f : A→ B, by
f⊕ : A⊕ → B⊕ we denote its monoidal extension. On multisets m,m′ ∈ A⊕, we
use some common relations and operations, like inclusion, defined by m ≤ m′

when there exists m′′ ∈ A⊕ such that m ⊕m′′ = m′ and difference, which, in
the same situation, is defined by m′ −m = m′′. Furthermore, for m ∈ A⊕ and
a ∈ A we write a ∈ m for a ≤ m. The set underlying a multiset m ∈ A⊕ is
defined by [[m]] = {a ∈ A | a ∈ m}. Often we will confuse a subset X ⊆ A with
the multiset

⊕
x∈X x.

Definition 12.2.4 (Petri net) Let A be a finite set of action labels. An A-
labelled Petri net is a tuple N = (S, T, •(), ()•, p) where S is a set of places, T
is a set of transitions, •(), ()• : T → S⊕ assign to each transition its pre-set
and post-set and p : T → A assigns an action label to each transition.

The Petri net is called irredundant if there are no distinct transitions with
the same label and pre-set, i.e., if for any t, t′ ∈ T

p(t) = p(t′) ∧ •t = •t′ ⇒ t = t′. (12.1)

A marked Petri net is pair (N,mN ), where N is a Petri net and mN ∈ S
⊕

is the initial marking.

The irredundancy condition (12.1) requires that two distinct transitions
differ for the label or for the pre-set. This condition, in the case of branch-
ing processes, allows one to interpret each transition as an occurrence of firing
of a transition in the original net, uniquely determined by its causal history
(see [Eng91]). Similarly, here it aims at avoiding the presence of multiple events
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which are indistinguishable for what regards the behaviour of the system. Here-
after all the considered Petri nets will be implicitly assumed irredundant, unless
stated otherwise.

Definition 12.2.5 (causality relation) Let N be a (marked) Petri net. The
causality relation <N over N is the least transitive relation such that, for any
t ∈ T , s ∈ S, we have (i) s <N t if s ∈ •t and (ii) t <N s if s ∈ t•. For
any x ∈ S ∪ T we define its sets of causes bxc = {y ∈ S ∪ T | y <N x} and
consequences dxe = {y ∈ S ∪ T | x <N y}. The definitions are extended in the
obvious way to subsets of S ∪ T .

Observe that, since we want to use Petri nets to represent the causality structure
of a system only in an approximated way, no assumptions are made concerning
the acyclicity of the net.

12.2.3 Petri graphs

We next introduce the structure that we intend to use to approximate graph
transformation systems, the so-called Petri graphs, which consist of an hyper-
graph and of a Petri net whose places are the edges of the graph.

Definition 12.2.6 (Petri graph) Let R be a GTS. A Petri graph (over R)
is a tuple P = (G,N, µ) where G is a hypergraph, N = (EG, TN ,

•(), ()•, pN ) is
an R-labelled Petri net where the places are the edges of G, and µ associates
to each transition t ∈ TN , with pN (t) = (L,R, α), a hypergraph morphism
µ(t) : L ∪R→ G such that

•t = µ(t)⊕(EL) ∧ t• = µ(t)⊕(ER) (12.2)

A Petri graph for a graph grammar (R, GR) is a pair (P, ι) where P = (G,N, µ)
is a Petri graph for R and ι : GR → G is a graph morphism. The multiset
ι⊕(EGR

) is called the initial marking of the Petri graph. A marking m ∈ EG
⊕

will be called reachable (coverable) in (P, ι) if it is reachable (coverable, i.e.,
there exists a reachable m′ such that m ≤ m′) in the underlying Petri net.

Condition (12.2) requires that each transition in the net can be viewed as an
“occurrence” of a rule in R. More precisely, if pN (t) = (L,R, α) and µ(t) :
L ∪ R → G is the morphism associated to the transition, then µ(t)|L : L → G
must be a match of the rule in G such that the image of the edges of L in
G coincides with the pre-set of t. Observe that, due to the assumption on
the rules (no multiple labels and no isolated node in the left-hand side) the
morphism µ(t)|L (if it exists) is completely determined by •t. Then, the result
of applying the rule to the considered match must be already in graph G, and
the corresponding edges must coincide with the post-set of t. This is formalized
by the condition over the image through µ(t) of the edges of R (note that the
set ER is seen as a multiset and µ(t) as a multiset function to take care of
multiplicities).
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Every hypergraph G can be considered as a Petri graph [G] = (G,N, µ) for
R, by taking N as the net with SN = EG and no transitions. Similarly, GR
can be seen as Petri graph for (R, GR) by taking as ι : GR → GR the identity.

We now introduce a merging operation on Petri graphs which constructs the
quotient of a Petri graph through an equivalence induced by a suitable relation.

Definition 12.2.7 (consistent and closed relation on a Petri graph)
Let P = (G,N, µ) be a Petri graph and let _ be a relation on VG ∪ EG ∪ TN
(assume the sets VG, EG, TN to be disjoint). We say that _ is consistent when
(i) if x _ x′ then x, x′ ∈ X for some X ∈ {VG, EG, TN}, (ii) for all e, e′ ∈ EG
if e _ e′ then lG(e) = lG(e′) and (iii) for all t, t′ ∈ TN , if t _ t′ then
pN (t) = pN (t′).

A consistent relation _ over P is called closed if for all t, t′ ∈ TN , e, e′ ∈ EG

pN (t) = pN (t′) = (L,R, α) ∧ (∀e ∈ EL : µ(t)(e) _ µ(t′)(e))

⇒ t _ t′ (12.3)

t _ t′ ⇒ ∀e ∈ EL ∪ ER : µ(t)(e) _ µ(t′)(e) (12.4)

e _ e′ ∧ cG(e) = v1 . . . vm ∧ cG(e′) = v′1 . . . v
′
m

⇒ ∀1 ≤ i ≤ m : vi _ v′i (12.5)

To ensure that the quotient of a Petri graph with respect to a relation is
well-defined and irredundant, the relation must be closed. Hence the simple
observation below is essential for defining the merging operation.

Fact. Given any consistent relation _ over a Petri graph P there exists a least
equivalence relation ≈ including _ and closed.

Definition 12.2.8 (Petri graph merging) Let P = (G,N, µ) be a Petri
graph and let _ be a consistent relation over P . Then the merging of P w.r.t.
_, denoted by P//_, is the Petri graph (G′, N ′, µ′) defined as follows. Let ≈
be the least equivalence relation extending _ and closed in the sense of Defini-
tion 12.2.7. Then

G′ = (VG/≈, EG/≈, cG′ , lG′),

where cG′([e]≈) = [v1]≈ . . . [vn]≈ and lG′([e]≈) = lG(e) whenever e ∈ EG and
cG(e) = v1 . . . vn. Furthermore N ′ = (EG′ , TN/≈,

•(), ()•, pN ′), where •[t]≈ =⊕
e∈ •t[e]≈, [t]≈

• =
⊕

e∈t• [e]≈ and pN ′([t]≈) = pN (t) whenever t ∈ TN . For
each t ∈ TN the morphism µ′([t]≈) is defined by µ([t]≈)(x) = [µ(t)(x)]≈ for any
graph item x in the rule pN (t).

Given a graph morphism h : H → G we will denote by h//_ : H → G′ the
corresponding morphism, defined by h//_(x) = [h(x)]≈ for any x ∈ VH ∪ EH .

The merging operation can be extended to sets of Petri graphs. Let Pi =
(Gi, Ni, µi), with i ∈ {1, . . . , n}, be Petri graphs and assume that the sets VGi

,
EGi

, TNi
are pairwise disjoint. Then the componentwise union P = P1∪. . .∪Pn

is a Petri graph. A relation _ over P1, . . . , Pn is called consistent (closed) if
it is a consistent (closed) relation over P . Given a consistent relation over
P1, . . . , Pn, we define the merging {P1, . . . , Pn}//_ = P//_.
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12.2.4 The category of Petri graphs

Although the constructive definition of Petri graph merging given above is more
intuitive and more suited for the presentation of an algorithm, in our proofs
it is more convenient to work in the category of Petri graphs defined below,
and to exploit the fact that Petri graph merging can be expressed by a colimit
construction.

Definition 12.2.9 (category of Petri graphs) A Petri graph morphism is
a pair ψ = (ϕ, τ) : (G,N, µ)→ (G′, N ′, µ′) where

• ϕ : G→ G′ is a hypergraph morphism;

• τ : TN → TN ′ is a mapping such that for every t ∈ TN , •τ(t) = ϕ⊕( •t)
and τ(t)• = ϕ⊕(t•), and pN ′ ◦ τ = pN (in other words, (ϕE , τ) : N → N ′

is a Petri net morphism).

• for every t ∈ TN , µ′(τ(t)) = ϕ ◦ µ(t).

The category of Petri graphs and Petri graph morphisms is denoted by PG.

In the context of this paper we are only interested in coequalizers and
pushouts, but it is also possible to express other forms of colimits in terms
of the merging operation.

Proposition 12.2.10 (coequalizers and pushouts in PG) Let (ϕ1, τ1),
(ϕ2, τ2) : P → P ′ be two morphisms in PG, with P = (G,N, µ). The coequalizer
of (ϕ1, τ1), (ϕ2, τ2) is isomorphic to P//_ where _ is defined as

ϕ1(v) _ ϕ2(v) ϕ1(e) _ ϕ2(e) τ1(t) _ τ2(t)

for v ∈ VG, e ∈ EG and t ∈ TN .
Let (ϕi, τi) : P → Pi, i ∈ {1, 2} be two morphisms in PG, with P =

(G,N, µ). The pushout (ϕ1, τ1), (ϕ2, τ2) is isomorphic to {P1, P2}//_, where
_ is defined as

ϕ1(v) _ ϕ2(v) ϕ1(e) _ ϕ2(e) τ1(t) _ τ2(t)

for v ∈ VG, e ∈ EG and t ∈ TN .

12.3 Algorithm computing the approximated unfold-
ing

In this section we describe an algorithm which computes the approximated un-
folding of a graph grammar. Given a graph grammar, the algorithm produces a
finite Petri graph such that every graph reachable in the grammar corresponds,
in a sense formalized later, to a marking which is reachable in the Petri graph.

Let (R, GR) be a graph grammar. Its ordinary unfolding [Rib96, BCM99]
is constructed inductively beginning from the start graph and then applying at
each step in all possible ways the rules, without deleting the left-hand side, and
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recording each occurrence of a rule and each new graph item generated in the
rewriting process. As a result one obtains an acyclic branching graph gram-
mar describing the behaviour of (R, GR). In particular every reachable graph
embeds in (a concurrent subgraph of) the graph produced by the unfolding
construction.

The unfolding is usually infinite, also in the case of finite-state systems.
Here, to ensure that the our algorithm produces a finite structure, we consider—
besides the unfolding rule, which extends the graph by simulating the applica-
tion of a rule without deleting its left-hand side—a folding rule, which allows
us to “merge” two occurrences of the left-hand side of a rule whenever they are,
in a sense made precise later, one causally dependent on the other.

Definition 12.3.1 (folding operation) Let P = (G,N, µ) be a Petri graph
for a GTS R. Let r = (L,R, α) ∈ R be a rule and let ϕ′, ϕ : L→ G be matches
of r in G. Let _ be the relation over P defined as follows: for every e ∈ EL

ϕ′(e) _ ϕ(e).

The folding of P at the matches ϕ′, ϕ is the Petri graph fold(P, r, ϕ′, ϕ) = P//_.
If (P, ι) is a Petri graph for a graph grammar (R, GR), in the same situation,
we define fold((P, ι), r, ϕ′, ϕ) = (P//_, ι//_).

To introduce the unfolding operation, we first need to fix some notation. If
t is a transition and r = (L,R, α) is a rule we will write P (t, r) to denote the
Petri graph (L ∪ R,N, µ) where N = (EL∪R, {t},

•t = EL, t
• = ER, pN (t) = r)

and µ(t) = idL∪R. Whenever we can find a match of rule r in a given Petri
graph, the unfolding operation extends the Petri graph by merging P (t, r) at
the match.

Definition 12.3.2 (unfolding operation) Let P = (G,N, µ) be a Petri graph
for a GTS R. Let r = (L,R, α) ∈ R be a rule and let ϕ : L → G be a match
of r in G. Let _ be the relation over {P, P (t, r)} defined as follows: for every
e ∈ EL

ϕ(e) _ e.

The unfolding of P with rule r at match ϕ is the Petri graph unf(P, r, ϕ) =
{P, P (t, r)}//_. If (P, ι) is a Petri graph for a graph grammar (R, GR), in the
same situation, we define unf((P, ι), r, ϕ) = ({P, P (t, r)}//_, ι//_).

We can now describe the algorithm which produces the approximated un-
folding of a given graph grammar. The algorithm generates a sequence of Petri
graphs, beginning from the start graph and applying, non-deterministically, at
each step, a folding or unfolding operation, until none of such steps is admitted.

Definition 12.3.3 (approximated unfolding) Let (R, GR) be a graph gram-
mar. The algorithm generates a sequence (Pi, ιi)i∈lN of Petri graphs as follows.

(Step 0) Initialize (P0, ι0) = ([GR], idGR
).

(Step i + 1) Let (Pi, ιi), with Pi = (Gi, Ni, µi), be the Petri graph produced at
step i. Choose non-deterministically one of the following actions
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? Folding: Find a rule r = (L,R, α) in R and two matches ϕ′, ϕ : L→ Gi of r
such that

• ϕ⊕(EL) is a coverable marking in Pi;

• there exists a transition t ∈ TNi
such that

pNi
(t) = r ∧ •t = ϕ′

⊕
(EL) ∧ ∀e ∈ ϕ⊕(EL) : (e ∈ •t ∨ t <Ni

e). (12.6)

Then set (Pi+1, ιi+1) = fold((Pi, ιi), r, ϕ
′, ϕ).

? Unfolding: Find a rule r = (L,R, α) in R and a match ϕ : L→ Gi such that

• ϕ⊕(EL) is a coverable marking in Pi;

• there is no transition t ∈ TNi
such that •t = ϕ⊕(EL) and pNi

(t) = r;

• there is no other match ϕ′ : L→ Gi satisfying condition (12.6).

Then set (Pi+1, ιi+1) = unf((Pi, ιi), r, ϕ).

If no folding or unfolding step can be performed, the algorithm terminates.
The resulting Petri graph (Pi, ιi) is called the approximated unfolding of (R, GR)
and denoted by U(R, GR).

Condition (12.6) basically states that we can fold two matches of a rule r when-
ever the first one has been already unfolded producing a transition t, and the
second match depends on the first one, in the sense that any edge in the second
match is already in the first one or causally depends on t. Roughly, the idea is
that we should not unfold a left-hand side again, if we have already done the
same unfolding step in its past, since this might lead to infinitely many steps.
There are some similarities, to be further investigated, with the work in [Gen98]
where the sets of descendants and of normal forms of term rewriting systems are
approximated by constructing an approximation automaton. Condition e ∈ •t
in the disjunction is really needed: omitting such condition it would be possible
to construct an input grammar on which the algorithm does not terminate.

The coverability of a marking can be decided by computing the coverability
tree of the net, as described in [Rei85]. If this gets too costly, the condition of
coverability can be relaxed or checked in an approximated way, a choice which
does not compromise the result of correctness (see Proposition 12.4.2), but only
reduces the “precision” of the algorithm: it will generate a worse approximation,
where less properties of the given GTS can be proved.

12.4 Correctness, termination and confluence of the
algorithm

We show that the algorithm described in the previous section is correct, namely
that every reachable graph of a grammar is represented in the approximated
unfolding produced by the algorithm. Furthermore the algorithm is terminating
and confluent. Hence, by a classical result, its result is uniquely determined.
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Correctness.

We first show that the computed Petri graph is an appropriate approximation
of the given graph grammar, in the sense that for any graph reachable in the
graph grammar, there is a morphism into the approximated unfolding such that
the image of its edge set corresponds to a reachable marking.

For this purpose we need the following lemma which will also be relevant
for the proof of confluence. It states that a folding operation, as introduced in
Definition 12.3.2, corresponds to a coequalizer and that an unfolding operation,
as introduced in Definition 12.3.1, corresponds to a pushout in the category PG.

Lemma 12.4.1 Let P = (G,N, µ) be a Petri graph, let r = (L,R, α) be a
rewriting rule and let ϕ′, ϕ : L→ G be graph morphisms.

Then P ′ = fold(P, r, ϕ′, ϕ) is the coequalizer of (ϕ′, ∅), (ϕ, ∅) : [L] → P in
the category PG where ∅ is a function having the empty set of transitions as a
domain. Now let ι : GR → G such that (P, ι) is a Petri graph for a grammar
and let (ϕ0, τ0) : P → P ′ be the arrow generated by the coequalizer. Then it
holds that (P ′, ϕ0 ◦ ι) = fold((P, ι), r, ϕ′, ϕ).

Moreover unf(P, r, ϕ) is the pushout of (ϕ, ∅) : [L] → P, (idL, ∅) : [L] →
P (t, r) in the category PG. Again let (P, ι) be a Petri graph for a grammar and
let (ϕ0, τ0) : P → P ′ be one of the arrows generated by the pushout. Then it
holds that (P ′, ϕ0 ◦ ι) = unf((P, ι), r, ϕ).

Proposition 12.4.2 Let (R, GR) be a graph grammar and assume that the
algorithm computing the approximated unfolding terminates producing the Petri
graph U(R, GR) = ((U,N, µ), ι).

Then for every graph G with GR ⇒
∗
R G there exists a morphism ϕG : G→ U

and the marking ϕG
⊕(EG) is reachable in U(R, GR). Furthermore, if G⇒R G

′

then ϕG
⊕(EG)

t
→ ϕG′

⊕(EG′) for a suitable transition t in U(R, GR).

Proof: By induction on the length of the derivation ⇒∗R:

Length 0: It holds that G = GR. In this case we simply set ϕ = ι and
m = ϕ⊕(EGR

) and the result holds since m is the initial marking of the
Petri graph which is trivially reachable.

Length k + 1: Assume that GR ⇒
∗
R H︸ ︷︷ ︸

k steps

⇒R G.

From the induction hypothesis it follows that there exists a morphism
ϕH : H → U , such that the marking mH = ϕH

⊕(EH) is reachable in
U(R, GR).

Let r = (L,R, α) be the rule applied in the last rewrite step, transforming
H into G, and let ηL : L→ H be the corresponding match of r in H. From
the point of view of the double-pushout approach we have the following
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situation, where both squares below are pushouts:

L

ηL

��

VL? _
ιL=id
oo � �ιR=id

//

η

��

R

ηR

��

H D
η1

oo
η2

// G

It holds that ϕH◦ηL : L→ U and (ϕH ◦ ηL)⊕(EL)
(ηL)E inj.

= ϕH
⊕(ηL(EL)) ≤

ϕH
⊕(EH) = mH , which means that the marking corresponding to the im-

age of the left-hand side is coverable.

Since the algorithm terminates it holds that no further folding or unfolding
operations were applicable. Thus there must be a transition t ∈ TN such
that pN (t) = r and the morphism µ(t) : L ∪ R → U satisfies •t =
(ϕH ◦ ηL)⊕(EL) = µ(t)⊕(EL), µ(t)|L = ϕH ◦ ηL.

If we set η′R = µ(t)|R, then t• = η′R
⊕(ER) and we obtain the following

diagram

L

ηL

��

VL? _
ιLoo � � ιR //

η

��

R

ηR

��
η′R

��
/
/
/
/
/
/
/
/
/
/
/
/
/
/

H

ϕH

**UUUUUUUUUUUUUUUUUUUUUUU D
η1

oo
η2

// G

ϕ
��

@
@

@
@

U

We have to check that it commutes, that is that (ϕH ◦η1)◦η = ϕH ◦ηL◦ιL
and η′R ◦ ιR are equal: let v ∈ VL which implies that (ϕH ◦ ηL ◦ ιL)(v) =
(ϕH ◦ ηL)(v) = µ(t)(v) = η′R(v) = (η′R ◦ ιR)(v).

This implies the existence of a morphism ϕ : G → U such that ϕ ◦ η2 =
ϕH ◦ η1 and ϕ ◦ ηR = η′R.

By firing transition t we can immediately reach the marking

mH −
•t⊕ t• = ϕH

⊕(EH)

−(ϕH ◦ ηL)⊕(EL)⊕ η′R
⊕

(ER)

(ηL)E inj.
= ϕH

⊕(EH − ηL(EL))⊕ η′R
⊕

(ER)

= ϕH
⊕(η1(ED))⊕ η′R

⊕
(ER)

(η1)E inj.
= (ϕH ◦ η1)⊕(ED)⊕ (ϕ ◦ ηR)⊕(ER)

= (ϕ ◦ η2)⊕(ED)⊕ (ϕ ◦ ηR)⊕(ER)

(ηR)E ,(η2)E inj.
= ϕ⊕(η2(ED)⊕ ηR(ER)) = ϕ⊕(EG)

2

Termination.

The basic result towards the proof of termination shows that it is not possible to
perform infinitely many unfolding steps, without having the folding condition
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satisfied at some stage. This property is independent of the graph structure and
can be proved by considering only the causality structure of a Petri graph, as
expressed by the underlying Petri net. More formally, we show that in any infi-
nite Petri net, satisfying suitable acyclicity and well-foundedness requirement,
there exists a pair of transitions t, t′ (called a folding pair) such that the pre-set
of t′ is dependent on t in the sense of Condition (12.6) in Definition 12.3.3. Let
us start formalizing the notion of folding pair.

Definition 12.4.3 Let N = (S, T, •(), ()•, p) be a Petri net. A folding pair in
N is a pair of transitions t, t′ ∈ T such that t 6= t′, p(t) = p(t′) and for all
s ∈ •t′ either s ∈ •t or t <N s.

We will also need an operation which removes from a given Petri net a
subnet and all its consequences, as expressed by the following definition.

Definition 12.4.4 Let N = (S, T, •(), ()•, p) be a Petri net and let Q ⊆ T .
We define

N −Q = (S′ = S − {s | ∃t ∈ Q : t <N s},

T ′ = T − {t′ | ∃t ∈ Q : (t <N t′ ∨ t = t′)}, •()|T ′ , ()•|T ′ , p|T ′),

i.e., all elements of Q and their consequences are removed from N .

The next key lemma ensures that in any infinite net obtained by applying
only unfolding steps there exists a folding pair.

Lemma 12.4.5 Let N = (S, T, •(), ()•, p) be an infinite irredundant Petri net,
labelled over a finite set A, and satisfying the following conditions:

• for any x ∈ S ∪ T the set bxc (the causes of x) is finite;

• the set Min(N) = {s | bsc = ∅} is finite, i.e., only finitely many places
have an empty set of causes;

• the relation <N is acyclic;

• the pre-set •t of each transition is a set (rather than a proper multiset);

• for t, t′ ∈ T with p(t) = p(t′) it holds that | •t| = | •t′|.

Then net N contains a folding pair.

Proof: If Q is empty, the lemma is trivially true, otherwise let m be the cardi-
nality of the pre-sets of all elements of Q.

The proof is conducted by (downward) induction on n = |
⋂
t∈Q[[ •t]]|.

• Let n = m where m is the upper bound for n. In this case •t = •t′ for
all t, t′ ∈ Q, since furthermore p(t) = p(t′) it follows from the fact that N
is irredundant that Q contains at most one element, it is therefore finite
and we can set Q′ = ∅.
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• We assume that the lemma holds for all setsQ′ which satisfy |
⋂
t∈Q′ [[ •t]]| >

n and we assume that |
⋂
t∈Q[[ •t]]| = n.

Now let M be the set of minimal elements of Q with respect to <N . We
distinguish the following cases:

– Q contains a folding pair. Then we are done.

– M is infinite. In this case we consider the set S ′ =
⋃
t∈M [[ •t]]. By

contradiction we can show that S ′ is infinite: if S′ is finite, then we
can derive from the irredundancy and from the fact that we have
finitely many rewrite rules that the elements of S ′ can be the direct
causes of only finitely many transitions. But this is a contradiction
since M is infinite.

Since the elements of M are minimal the set S ′ is still contained in
the places ofN−M = N−Q and since the presence of infinitely many
places implies the presence of infinitely many transitions (following
from the fact that originally we have only finitely many places), we
can infer that N − Q is still infinite and in this case we can set
Q′ = Q.

– M is finite and Q does not contain a folding pair. We show by
induction on |M | that there is a Q′ ⊆ Q such that Q − Q′ is finite
and N −Q′ is infinite.

∗ Let |M | = 0. In this case Q itself is empty and it suffices to set
Q′ = ∅.

∗ We assume that the statement holds for all M with |M | ≤ k and
we now have |M | = k + 1.
We choose one t ∈ M and since there is no folding pair, then
for every t′ ∈ Q − {t} there must be a place st′ ∈

•t′ such that
t 6< st′ and st′ 6∈

•t. Otherwise we would have found a folding
pair.
Since for every t′ ∈ Q−{t} it holds that st′ 6∈

•t, specifically we
have that st′ 6∈

⋂
t∈Q[[ •t]].

We now consider the following two cases:

· the set {st′ | t
′ ∈ Q − {t}} is finite, i.e. it has the form

{s1, . . . , sl}. We can now define Qi = {t ∈ Q | si ∈
•t} and

it holds that Q = {t} ∪Q1 ∪ . . . ∪Ql.
For every one of the Qi it holds that |

⋂
t∈Qi

[[ •t]]| ≥ n + 1
and we can apply the (outer) induction hypothesis which
implies that we can—one after the other—remove almost all
of the elements of the sets Q1, . . . , Ql from N and obtain a
still infinite Petri net. That is there is a set Q′ ⊆ Q − {t}
such that Q−Q′ is finite and N −Q′ is infinite. Note that
by removing Qi, we might also remove some elements of Qj

with j > i.
More formally this can be shown by induction on l.

· the set {st′ | t
′ ∈ Q−{t}} is infinite, but since it is not con-

tained in the consequences of t, the Petri net N ′ = N − {t}
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still contains infinitely many places and therefore infinitely
many transitions.
Furthermore the set of minimal elements of P = Q ∩ TN ′

is M − {t} which has cardinality k and thus the (inner)
induction hypothesis is applicable. It implies that there is a
set P ′ ⊆ P such that P −P ′ is finite and N ′−P ′ is infinite.
We now set Q′ = P ′ ∪ {t} ∪ {t′ ∈ Q | t <N t′} and it follows
that Q′ ⊆ Q, furthermore Q−Q′ = (Q∩SN ′)−P ′ = P −P ′

and is therefore finite. And it holds that N −Q′ = N ′ − P ′

which is infinite.

2

By using Lemma 12.4.5 we can show that there cannot be an infinite net
without a folding pair.

Lemma 12.4.6 If N = (S, T, •(), ()•, p) is a Petri net satisfying the conditions
of Lemma 12.4.5, then it contains a folding pair.

Proof: Let A′ = {a ∈ A | ∃ωt : p(t) = a}, i.e. the set of all action labels that
occur infinitely often in the net. Since A is finite, it follows immediately that
A′ is also finite. We proceed by induction on |A′|.

• If |A′| = 0, then N is finite and the lemma is trivially true.

• We assume that the lemma holds for the case where k rewrite rules occur
infinitely often and we assume that |A′| = k + 1. Choose one a ∈ A′ and
regard the set Q = {t ∈ T | p(t) = a}.

Then according to Lemma 12.4.5 it either holds that Q contains a folding
pair and we are done or we can remove almost all the elements of Q and
retain an infinite net N ′. Since in N ′ only k rewrite rules occur infinitely
often, but N ′ is still infinite, it follows from the induction hypothesis that
N ′ contains a folding pair, which is also a folding pair of N .

2

The above lemma ensures that in our algorithm a folding step will be even-
tually performed. We have yet to show termination of the algorithm.

Proposition 12.4.7 The algorithm computing the approximated unfolding (see
Definition 12.3.3) terminates for every graph grammar (R, GR).

Proof (Sketch): In parallel to the computation of the approximated unfolding
we construct a second acyclic Petri net N ′ as follows. For every unfolding
step we add to N ′ a new transition, corresponding to the transition added to
the approximated unfolding. The net N ′ is left unchanged in a folding step.
The construction is done in order to ensure the existence of a surjective net
morphism from N ′ to its “folded” counterpart, i.e., the net Ni underlying the
Petri graph constructed by the algorithm.
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Suppose by contradiction that the algorithm does not terminate. Hence the
net N ′ gets infinitely large and therefore, by Lemma 12.4.6, it contains a folding
pair ū, t̄. The image of such a folding pair through the net morphism from N ′

to the net underlying the approximated unfolding U(G, GG), provides a folding
pair u, t also in U(G, GG). But then we can show that the second transition t in
the pair could never have been added to the Petri graph since this would have
been a violation of the third condition of the unfolding step in Definition 12.3.3.

Assume we are given a start graph G0 = GR and a set of rewrite rules R as
the input to the algorithm. This results in a sequence P0 = (G0, N0, µ0), P1 =
(G1, N1, µ1), . . . of Petri graphs. Our aim is to show that this sequence will
eventually terminate.

• In parallel to the unfolding/folding of the graph we construct a sequence
of tuples (N ′0, β0), (N ′1, β1), . . . where the N ′i are irredundant Petri nets
satisfying the conditions of Lemma 12.4.5 and the βi : N ′i → Ni are net
morphisms. This sequence is constructed in the following way:

start tuple: we set N ′0 = N0 and β0 : N ′0 → N0 is the identity.

unfolding step: we assume that Pi+1 was obtained by an unfolding step,
i.e., a transition t′ was added to Ni, with pNi+1

(t′) = (L,R, α) and
there is a PG morphism (ϕi+1, τi+1) : Pi → Pi+1, the existence of
which is ensured by Lemma 12.4.1. We set ϕL = µi+1(t′)|L and
ϕR = µi+1(t′)|R.

We assume that EL = {e1, . . . , ek} and ER = {e′1, . . . , e
′
l}. For every

edge ej of the left-hand side we choose a sj ∈ β
−1
i (ϕL(ej)). (Since

we will later show that all the βi are surjective, such an si always
exists.)

Furthermore let t̄ be a new transition and let s′1, . . . , s
′
l be new places.

We construct N ′i+1 as follows:

N ′i+1 = (SN ′
i
∪ {s′1, . . . , s

′
l}, TN ′

i
∪ {t̄},

•() ∪ {t̄ 7→ {s1, . . . , sl}}, ()
• ∪ {t̄ 7→ {s′1, . . . , s

′
k}},

pN ′
i
∪ {t̄ 7→ r}).

And βi+1 is set to

βi+1 = (((ϕi+1)E , τi+1) ◦ βi) ∪ {s
′
j 7→ ϕR(e′j) | 1 ≤ j ≤ l} ∪ {t̄ 7→ t′}

where t′ is the new transition in Ni+1.

folding step: we assume that Pi+1 was obtained by a folding step and
there is a PG morphism (ϕi+1, τi+1) : Pi → Pi+1, the existence of
which is again implied by Lemma 12.4.1.

In this case we set N ′i+1 = N ′i , βi+1 = ((ϕi+1)E , τi+1) ◦ βi.

Note that the described procedure is non-deterministic since we have sev-
eral possibilities to choose the sj in the unfolding step. Furthermore the
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construction is defined in such a way that the places and transitions of
every net N ′i are contained in the places and transitions of N ′i+1.

• By induction on i we can show that the following invariants hold:

– every occurrence net Ni satisfies the conditions of Lemma 12.4.5.

– the mappings βi are surjective.

– the βi are net morphisms, i.e. for every transition t ∈ TN ′
i

it holds

that •(βi(t)) = βi
⊕( •t) and (βi(t))

• = βi
⊕(t•). And furthermore

pN ′
i

= pNi
◦ βi.

(By definition of < this implies that x <N ′
i
y for x, y ∈ SN ′

i
∪ TN ′

i

implies βi(x) <Ni
βi(y).)

The first two conditions and the fact that the βi preserve action labels are
straightforward to check, we only prove that the βi preserve pre-sets and
post-sets: since N ′0 does not contain any transitions, it is obvious that the
invariant holds for N ′0 and β0. We have to show that it is also preserved
by unfolding and folding steps:

unfolding step: now let t ∈ TN ′
i+1

. We distinguish the following two
cases:

– t ∈ TN ′
i
, which means that βi(t) ∈ TNi

. Therefore the induc-

tion hypothesis implies that •(βi(t)) = βi
⊕( •t) and (βi(t))

• =
βi
⊕(t•).

It holds that βi+1(t) = τi+1(βi(t)), which implies that •(βi+1(t)) =
•(τi+1(βi(t))) = ϕi+1

⊕( •βi(t)) = ϕi+1
⊕(βi

⊕( •t)) = βi+1
⊕(t).

In the same way we can show that (βi+1(t))• = βi+1
⊕(t•).

– t = t̄ and the transition was added by the last construction
step. In this case •(βi+1(t̄)) = •t′ = ϕL

⊕({e1, . . . , ek}) =
βi+1

⊕({s1, . . . , sk}) = βi+1
⊕( •t̄).

We can also show that (βi+1(t̄))• = t′• = ϕR
⊕({e′1, . . . , e

′
l}) =

βi+1
⊕({s′1, . . . , s

′
l}) = βi+1

⊕(t̄•).

folding step: the mapping βi+1 is obviously a net morphism since it is
the composition of two net morphisms ((ϕi+1)E , τi+1) and βi.

From the fact that the βi are net morphisms, we can also show, by con-
tradiction, that every N ′i is irredundant: we assume that we add (in an
unfolding step) a new transition t̄ to N ′i with a pre-set •t̄ = {s1, . . . , sk},
but there is already a transition ū ∈ TN ′

i
such that •ū = {s1, . . . , sk}.

We set u′ = βi(ū) and it holds that •u′ = βi(
•ū) = ϕL

⊕(EL) and
pNi

(u′) = pN ′
i
(ū) = r. But this implies that the third condition for the

unfolding step was violated, i.e. there is a contradiction.

• We now assume that the algorithm does not terminate, which implies
that it makes infinitely many unfolding steps (folding steps decrease the
size of the graph Gi). But since unfolding steps increase the size of N ′i
and folding steps do not alter its size, it follows that the infinite union
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N ′ =
⋃∞
i=1N

′
i (defined in the obvious way) is infinite. We can check that

also the infinite net N ′ satisfies all the conditions of Lemma 12.4.5. The
finiteness conditions holds since adding a new transition t̄ and new places
s′1, . . . , s

′
k in the unfolding step does not alter the causes of already existing

transitions and places. Furthermore bt̄c =
⋃l
i=1bsic which is finite and

bs′jc = bt̄c∪{t̄} which is also finite. And finally we never introduce places
which have no causes, and therefore the size of Min(N ′i) is constant.

Therefore we can apply Lemma 12.4.6 and obtain the existence of a folding
pair ū, t̄ ∈ TN ′ where ū 6= t̄, p(ū) = p(t̄) = r and ∀s′ ∈ •t̄ : (s′ ∈ •ū∨ū <N ′

s′).

• We assume that t̄ was added when N ′i+1 was constructed from N ′i , which
must have consequently been an unfolding step, adding the transition
βi+1(t̄) = t′ to Ni. It is our aim to show that this unfolding operation
could never have been applied and thus obtain a contradiction.

Since the causes of an already existing transition are never altered during
the construction of the N ′i+1, the folding pair ū, t̄ is already present in
N ′i+1.

We set u′ = βi+1(ū) and since ū is already present in N ′i , it holds that
u′ = τi+1(βi(ū)) ∈ TNi

, which implies that u′ 6= t′ (an unfolding step
does not merge any transitions). Since the mapping p of the Petri nets is
preserved by βi+1, it also holds that pNi+1

(u′) = pNi+1
(t′) = r = (L,R, α).

Now let e′ ∈ •t′ and from the construction of N ′i+1 it follows that there

is an s′ ∈ β−1
i+1(e′) such that s′ ∈ •t̄. It follows from the folding condition

that s′ ∈ •ū or ū <N ′
i+1

s′.

In the former case it follows that e′ = βi+1(s′) ∈ •(βi+1(ū)) = •u′ and in
the latter case it follows that u′ = βi+1(ū) <Ni+1

βi+1(s′) = e′. (In both
cases we use that fact that βi is a net morphism and therefore preserves
the causality relation.)

• We set ϕu = µi+1(u′)|L and ϕt = µi+1(t′)|L and it holds that that
ϕu
⊕(EL) = •u′ and ϕt

⊕(EL) = •t′. Furthermore for every e′ ∈ ϕt
⊕(EL) =

•t′, either e′ ∈ •u′ or u′ <Ni+1
e′.

Since the causes of u′ and ϕt(EL) are not changed by the unfolding step,
this means that the condition for the application of the folding step is
satisfied, which forbids the application of the unfolding step and leads to
a contradiction.

2

Confluence.

In order to prove that the algorithm produces a uniquely determined result,
independently of the order in which folding and unfolding steps are applied,
we show that the rewriting relation on Petri graphs induced by folding and
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unfolding steps is locally confluent. We first need two preliminary lemmata.
The first one observes that the coverability property of markings is preserved
under Petri graph morphism.

Lemma 12.4.8 Let (N,mN ), (N ′,mN ′) be two Petri nets with initial markings
and let β : N → N ′ be a net morphism such that mN ′ = β⊕(mN ). If a marking
m is coverable in (N,mN ), then β⊕(m) is coverable in (N ′,mN ′).

The second lemma shows that, under specific conditions, folding and un-
folding steps have no effect on the Petri graph. However, notice that in both
these cases the respective application conditions would not be satisfied.

Lemma 12.4.9 Let (P, ι) with P = (G,N, µ) be a Petri graph for a graph
grammar, let r = (L,R, α) be a rewriting rule and let ψ : L → G be an occur-
rence of the left-hand side in G. Then fold((P, ι), r, ψ, ψ) ∼= (P, ι).

If furthermore P contains a transition t ∈ TN such that pN (t) = r and
•t = ψ⊕(EL), then unf((P, ι), r, ψ) ∼= (P, ι).

We introduce the following notation: we write (P, ι) ;
unf
r,ψ (P ′, ι′) whenever

(P ′, ι′) ∼= unf((P, ι), r, ψ) . We write (P, ι) 99K
unf
r,ψ (P ′, ι′) whenever (P, ι) ;

unf
r,ψ

(P ′, ι′) and the application conditions of the unfolding step are satisfied.

In the same way (P, ι) ;
fold
r,ψ,η (P ′, ι′) whenever (P ′, ι′) ∼= fold((P, ι), r, ψ, η).

Again we write (P, ι) 99K
fold
r,ψ,η (P ′, ι′) whenever (P, ι) ;

fold
r,ψ,η (P ′, ι′) and the

application conditions of the folding step are satisfied. The following proposition
only holds if we consider irredundant Petri nets.

Proposition 12.4.10 We write (P, ι) 99K (P ′, ι′) whenever there is a rule r

and morphisms ψ, η such that (P, ι) 99K
unf
r,ψ (P ′, ι′) or (P, ι) 99K

fold
r,ψ,η (P ′, ι′).

Let (P, ι) 99K (Pi, ιi) for i ∈ {1, 2}. Then there is a Petri graph (P ′, ι′) such
that (Pi, ιi) 99K∗ (P ′, ι′).

Proof (Sketch): The proof mainly relies on the fact that both folding and un-
folding operations can be described as special colimits in a suitable category of
Petri graphs. Then a general categorical result that ensures the commutativity
of colimits can be exploited. Finally, things must be accommodated to take
into account also the applicability conditions of folding and unfolding steps as
described in the algorithm (see Definition 12.3.3).

confluence without application conditions: if (P, ι) 99K (Pi, ιi) then there
are PG morphisms (ϕi, τi) : P → Pi such that ιi = ϕi ◦ ι. Since both
folding and unfolding steps can be described in terms of colimits (see
Lemma 12.4.1) and colimits commute, it holds that

• (P, ι) 99K
unf
ri,ψi

(Pi, ιi), i ∈ {1, 2} implies (P1, ι1) ;
unf
r2,ϕ1◦ψ2

(P ′, ϕ′1◦ι1)

and (P2, ι2) ;
unf
r1,ϕ2◦ψ1

(P ′, ϕ′2 ◦ ι2) for a Petri graph P ′ which is the
colimit of ϕ1 and ϕ2.
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Figure 12.1: Confluence of the rewriting system

By (ϕ′i, τ
′
i) : Pi → P ′ we denote the arrows generated by this colimit.

It holds that ϕ′1 ◦ ι1 = ϕ′1 ◦ ϕ1 ◦ ι = ϕ′2 ◦ ϕ2 ◦ ι = ϕ′2 ◦ ι2.

• (P, ι) 99K
fold
ri,ψi,ηi

(Pi, ιi), i ∈ {1, 2} implies (P1, ι1) ;
fold
r2,ϕ1◦ψ2,ϕ1◦η2

(P ′, ι′) and (P2, ι2) ;
fold
r1,ϕ2◦ψ1,ϕ2◦η1

(P ′, ι′) for some Petri graph (P ′, ι′).
(The morphism ι′ can be computed as above.)

• (P, ι) 99K
fold
r1,ψ1,η1

(P1, ι1) and (P, ι) 99K
unf
r2,ψ2

(P2, ι2) implies (P1, ι1)

;
unf
r2,ϕ1◦ψ2

(P ′, ι′) and (P2, ι2) ;
fold
r1,ϕ2◦ψ1,ϕ2◦η1

(P ′, ι′) for some Petri
graph (P ′, ι′). (The morphisms ι′ can be computed as above.)

In this way we have shown confluence without regarding the application
conditions. In the next step we show that the rewriting system is still
confluent if we consider the conditions (also see Fig. 12.1).

unfolding/unfolding: Let (P, ι) 99K
unf
ri,ψi

(Pi, ιi), i ∈ {1, 2} where P = (G,N,
µ), Pi = (Gi, Ni, µi), ri = (Li, Ri, αi) and ψi : Li → G. We show that
either the application conditions for the unfolding of rule r2 at the oc-
currence ϕ1 ◦ ψ2 : L2 → G1 are satisfied or that (P1, ι1) and (P2, ι2) are
isomorphic. (The same is true for the unfolding of rule r1 in P2.)
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• we first have to show that (ϕ1 ◦ ψ2)⊕(EL2
) is coverable. This follows

from the fact that ψ2
⊕(EL2

) is coverable and from Lemma 12.4.8.

• if there is a transition t ∈ TN1
such that pN1

(t) = r2, •t =
(ϕ1 ◦ ψ2)⊕(EL2

) and µ(t)|L2
= ϕ1 ◦ ψ2, then t was introduced by

the last unfolding step, since otherwise the unfolding of r2 would not
have been possible in P .

This implies that pN1
(t) = r1 = r2, µ(t)|L1

= ϕ1◦ψ1 = ϕ1◦ψ2. Since
ϕ1 is injective it follows that ψ1 = ψ2, therefore both steps unfold
the same occurrence of a left-hand side and the results are therefore
isomorphic.

• since the unfolding step does not change the causes of (ϕ1 ◦ ψ2)⊕(EL2
),

the folding condition can not be satisfied, i.e. there is no other oc-
currence of L2 such that the folding condition holds for the pair of
the two occurrences.

folding/folding: Let (P, ι) 99K
fold
ri,ψi,ηi

(Pi, ιi), i ∈ {1, 2} where P = (G,N, µ),
Pi = (Gi, Ni, µi), ri = (Li, Ri, αi) and ψi, ηi : Li → G. We show that
either the application conditions for the folding of the two occurrences
ϕ1 ◦ ψ2, ϕ1 ◦ η2 : L2 → G1 are satisfied or that (P1, ι1) and (P ′, ι′) are
isomorphic. (The same is true for the corresponding folding in P2.)

• we first have to show that (ϕ1 ◦ η2)⊕(EL2
) is coverable. This follows

from the fact that η2
⊕(EL2

) is coverable and from Lemma 12.4.8.

• if the two occurrences ϕ1 ◦ ψ2, ϕ1 ◦ η2 : L2 → G1 are equal, and
we know that (P1, ι1) ;r2,ϕ1◦ψ2,ϕ1◦η2 (P ′, ι′), it follows from Lemma
12.4.9 that (P1, ι1) and (P ′, ι′) are isomorphic.

• the folding condition for the occurrences ψ2, η2 : L2 → G is satisfied,
i.e. there is a transition t with pN (t) = r2 and •t = ψ2

⊕(EL2
)

and every e ∈ η2
⊕(EL2

) is either a member of ψ2
⊕(EL2

) or t <N e.
Since (ϕ1, τ1) is a PG morphism, it follows that there is a transition
t′ = τ1(t) such that every e′ ∈ (ϕ1 ◦ η2)⊕(EL2

) is either a member of
(ϕ1 ◦ ψ2)⊕(EL2

) of t′ <N1
e′.

Therefore the folding condition is again satisfied.

folding/unfolding: Let (P, ι) 99K
fold
r1,ψ1,η1

(P1, ι1) and (P, ι) 99K
unf
r2,ψ2

(P2, ι2) =
(G2, N2, µ2) where P = (G,N, µ) and Pi = (Gi, Ni, µi). This is the most
difficult case, since the application of the folding step might invalidate the
application condition of the unfolding step.

• With the same argumentation as above (see folding/folding) we can
show that either (P2, ι2) and (P ′, ι′) are isomorphic or the conditions

for the folding step are satisfied and (P2, ι2) 99K
fold
r1,ϕ2◦ψ1,ϕ2◦η1

(P ′, ι′).

Furthermore (P1, ι1) ;
unf
r2,ϕ2◦ψ2

(P ′, ι′) and there is a PG morphism
(ϕ′, τ ′) : (P1, ι1)→ (P ′, ι′) (see Fig. 12.1).

• But in P1 ϕ1◦ψ2 : L2 → G1 might be part of a folding pair ζ1, ϕ1◦ψ2 :
L2 → G1, which forbids unfolding, and after folding this pair, the
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image of L2 might again be part of a folding pair, etc. So there is a
(possibly empty) sequence of transitions of the form

(P1, ι1) = (P 0
1 , ι

0
1) 99K

fold
r2,ζ1,ϕ1◦ψ2

(P 1
1 , ι

1
1) 99K

fold

r2,ζ2,ϕ1◦ϕ1◦ψ2

. . . 99Kfold

r2,ζk,ϕk◦...◦ϕ1◦ϕ1◦ψ2
(P k1 , ι

k
1)

where the (ϕi+1, τ i+1) : P i1 → P i+1
1 are PG morphisms. We assume

that in the Petri graph P k1 no further folding step of this form is ap-
plicable. The sequence must terminate since a folding step decreases
the size of a Petri graph.

• Now we can construct another sequence of Petri graphs starting from
(P ′, ι′) of the form (P ′, ι′) = (P ′0, ι

′
0), . . . , (P ′k, ι

′
k) such that (P ′i , ι

′
i)

and (P ′i+1, ι
′
i+1) are either isomorphic, or there is a folding step from

one to the other. And furthermore it holds that

(P i1, ι
i
1) ;

unf

r2,ϕi◦...◦ϕ1◦ϕ1◦ψ2
(P ′i , ι

′
i) (12.7)

We show this by induction on i, it clearly holds for i = 0.

We now assume that (12.7) holds and let (ϕ′i, τ
′
i) : P i1 → P ′i be the

corresponding PG morphism. As previously (see folding/folding) we
can argue that ϕ′i◦ζi, ϕ

′
i◦ϕ

i◦. . .◦ϕ1◦ϕ1◦ψ2 either are equal or satisfy
the conditions for the application of a folding rule. In the former
case we set (P ′i+1, ι

′
i+1) = (P ′i , ι

′
i) and in the latter case we define

(P ′i+1, ι
′
i+1) = fold((P ′i , ι

′
i), r2, ϕ

′
i ◦ ζi, ϕ

′
i ◦ ϕ

i ◦ . . . ◦ ϕ1 ◦ ϕ1 ◦ ψ2).

Since colimits commute it also holds that

(P i+1
1 , ιi+1

1 ) ;
unf

r2,ϕi+1◦...◦ϕ1◦ϕ1◦ψ2
(P ′i+1, ι

′
i+1)

• So finally we reach two Petri graphs (P k
1 , ι

k
1) with P k1 = (Gk1, N

k
1 , µ

k
1)

respectively (P ′k, ι
′
k) with P ′k = (G′k, N

′
k, µ
′
k) from (P1, ι1) respectively

(P2, ι2) by folding steps, such that condition (12.7) holds for i = k.

Now the application condition for folding is not satisfied any more
and the occurrence of L2 in Gk1 is still coverable since coverabil-
ity is preserved by application of morphisms (see Lemma 12.4.8).
The only condition that might forbid the application of the unfold-
ing step is the existence of a transition t ∈ TNk

1
such that •t =

(ϕk ◦ . . . ◦ ϕ1 ◦ ϕ1 ◦ ψ2)
⊕

(EL2
). But then we can derive from Lemma

12.4.9 that (P k1 , ι
k
1) and (P ′k, ι

′
k) are isomorphic.

If there is no such transition we directly get (P k
1 , ι

k
1) ;

unf

r2,ϕk◦...◦ϕ1◦ϕ1◦ψ2

(P ′k, ι
′
k).

2

Since for a rewriting system local confluence and termination imply conflu-
ence we conclude the following result.
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Proposition 12.4.11 For any input (R, GR) the algorithm computing the ap-
proximated unfolding terminates with a result U(R, GR) unique up to isomor-
phism.

Proof: Recall that, by Proposition 12.4.10, the algorithm computing the approx-
imated unfolding is confluent and, by Proposition 12.4.7, it is also terminating.
Then uniqueness follows from the Diamond Lemma [DJ90], which states that
local confluence and termination imply global confluence. 2

12.5 The approximated unfolding at work: checking
absence of deadlocks for dining philosophers

In order to illustrate our method, in this section we show how it can be applied
to a well-known example, the dining philosophers system, which is presented in
two versions, finite- and infinite-state.

Let us start with the classical finite-state version of the problem. Assume
that sitting at the table are a left-handed philosopher and a right-handed
philosopher with two forks between them. Our method is also applicable to
instances of the problem with a greater number of philosophers. The restric-
tion to two philosophers only avoids that the involved graphs become very large
and hard to draw.

A philosopher, modelled by a binary edge, cycles through states HX (hun-
gry), WX (waiting for the second fork), EX (eating) where X ∈ {L,R} depend-
ing on whether the philosopher is left- or right-handed. The thinking state is
omitted. A fork is also represented by a binary edge labelled F . The system
is described by the set of rewriting rules and by the start graph depicted in
Fig. 12.2. A rule (L,R, α) is drawn in the form L ⇒ R, where edges are de-
picted by square boxes which are connected to a source node (the first node)
and a target node (the second node). The mapping α is indicated by dashed
arrows.

The algorithm in Definition 12.3.3 produces the Petri graph (a) in Fig. 12.3.
Transitions are depicted by small rectangles and the connection to their pre-sets
and post-sets is indicated by dashed arrows.

The algorithm terminates after six unfolding steps and four folding steps.
Two unfolding steps which apply rules (WaitL) and (EatL), respectively, to
edge HL with the corresponding forks, give rise to edge EL. Then a further
unfolding step using rule (HungryL) unfolds this edge into a graph consisting of
two edges labelled F and one edge labelled HL. But this graph consists of two
left-hand sides of previously applied rules and the edges are causally dependent
on the corresponding transitions. Hence two folding steps can be applied, that
merge the three edges (F , HL and F ) of the newly unfolded graph with the
original edges from which they were derived. A symmetric reasoning applies
for edge HR.

We would like to prove that no deadlocks can occur in the system. First
observe that any reachable graph is a cycle and, since an eating philosopher
can always be reduced, a deadlocked state is necessarily a cycle including only
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Figure 12.2: A graph grammar modelling the dining philosophers (finite-state
version).
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Figure 12.3: Approximated unfoldings as Petri graphs: (a) dining philosophers,
finite-state version; (b) dining philosophers, infinite-state version.

hungry and waiting philosophers, where no forks are to the left of a left-handed
hungry or a right-handed waiting philosopher and no forks are to the right of
a right-handed hungry and a left-handed waiting philosopher. The absence of
cycles is a property reflected by graph morphisms. Thus we can try to verify the
absence of deadlocked states by analyzing cycles in the hypergraph associated
to the approximated unfolding. To this aim we consider such graph as a finite-
state automaton over the alphabet Σ = {F,HX ,WX , EX | X ∈ {L,R}}—with
nodes as states and edges as transitions—and declare one of the four nodes
as the initial and final state, thereby obtaining the languages Lnw (northwest
node), Lne (northeast node), Lsw (southwest node), Lse (southeast node). In
this way we obtain all possible cycles of forks and philosophers as a regular
language. By declaring, e.g., the northeast node as initial and final node we

163



obtain the following language:

Lne = (((FHL +WL)(ERHL)∗F + EL)(WRHL(ERHL)∗F )∗HR)∗.

An additional analysis of the Petri net would of course reveal that only a small
finite subset of Lne will ever occur, but here this is not needed for the analysis.

The language of all cycles allowing for the application of a rewrite rule is

Llhs = Σ∗ELΣ∗ + Σ∗ERΣ∗ + Σ∗FHLΣ∗ +HLΣ∗F + Σ∗HRFΣ∗ +

FΣ∗HR + Σ∗WLFΣ∗ + FΣ∗WL + Σ∗FWRΣ∗ +WRΣ∗F.

The language of all cycles which may occur but which do not allow the
application of any rewriting rule can be now computed as (Lnw ∪ Lne ∪ Lsw ∪
Lse) − Llhs = λ, i.e., the empty word. It is immediately clear that the circle
of philosophers will never disappear entirely and thus we can conclude that no
deadlocks will ever occur.

It is worth observing that if we forget about the graphical structure of
the Petri graph, considering only the underlying Petri net, then we obtain a
classical Petri net model of the dining philosophers. Therefore, in this case, the
absence of deadlocks can be proved also by analyzing the Petri net underlying
the approximated unfolding with classical Petri net techniques.

Now, in order to make things more interesting, we extend the example to an
infinite-state system by adding a rule (RepX) which allows an eating philosopher
to reproduce, creating another hungry philosopher with an adjacent fork.

(RepX) X ∈ {L,R}EX FHX⇒EX

Observe that we can reuse the unfolding of the finite-state case and continue by
unfolding the edges ER and EL using the two new rules. A sequence of further
unfolding and folding steps causes the causes the two pairs of opposite nodes
in the square to collapse, ending up with Petri graph (b) in Fig. 12.3.

Again we would like to prove that no deadlocks can occur. By declaring the
left-hand node as initial and final state, we obtain the following language:

Lleft = (W ∗R((HL +HR)W ∗L(F + EL + ER))∗)∗

while using the right-hand node in the same role, we obtain the language:

Lright = (W ∗L((F + EL + ER)W ∗R(HL +HR))∗)∗.

The language of all cycles which may occur but which do not allow the applica-
tion of a rewriting rule can be now computed as (Lleft∪Lright)−Llhs = W ∗L+W ∗R.
Then, an analysis of the Petri net underlying the approximated unfolding re-
veals that actually no marking which consists of tokens exclusively in WL or of
tokens exclusively in WR is reachable from the initial marking which consists
of two tokens on F and one token on HL and HR each. Hence the system will
never reach a deadlock.

Observe that in this case the analysis of the underlying Petri net by itself
is not sufficient. In fact the Petri net can deadlock: we start from the initial
marking and after the firing of two transitions we obtain a marking with one
token on WR and one token on WL, where no further firing is possible.
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12.6 Conclusion

We have presented a static analysis technique for graph transformation systems
which produces a finite structure, called Petri graph, combining hypergraphs
and Petri nets, which approximates the graphs which are reachable in the orig-
inal grammar. Such a structure can be used to check safety properties, like the
absence of deadlocks, in the original system.

An interesting question which has only been brushed in the paper, concerns
the techniques which should be used to extract information from a computed
Petri graph. It is certainly possible to reuse most of the well-established analysis
techniques developed for Petri nets in the literature, such as coverability trees.
However, as observed in the example, also the graphical structure underlying
a Petri graph might play an essential role when establishing a property of the
system. Since every graph reachable in the original grammar can be mapped to
the approximated unfolding through a graph morphism, all properties which are
reflected by graph morphisms can be checked on the approximated unfolding.
We are currently investigating a syntactical characterization of such a class of
properties. Other interesting issues are the use of methods from formal language
theory (as hinted at in the example) and of model checking techniques.

Another question is the following: what can we do when we fail to prove
a property? Obviously, it might still be the case that the considered property
holds of the system, but this fact cannot be derived from the approximated
unfolding where we have lost too much information by over-approximating. A
partial solution could be to refine the description of the system, by computing
a better approximation of the “complete” unfolding. This can be done by
delaying folding steps and unfolding the Petri graph a bit further, “freezing”
some parts of the approximated unfolding in order to avoid that a folding step
leads to confuse them with other parts. A sequence of subsequently better
approximations should converge to the whole, usually infinite, unfolding. In
connection to this it would be interesting to determine which kind of systems
can be “approximated” in an exact way—maybe by variations of the folding
condition—one candidate being certainly Petri nets.

It is our aim to extend the proposed analysis technique to more general
forms of graph rewriting, e.g., to the general double-pushout approach. In
this case, since also edges might be preserved by a rewriting rule, the Petri
net underlying a Petri graph cannot be simply an ordinary net, but it will be
necessary to resort to contextual nets as in [Bal00].
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Chapter 13

Approximating the Behaviour
of Graph Transformation
Systems
(Joint work with Paolo Baldan)

Abstract

We propose a technique for the analysis of graph transforma-
tion systems based on the construction of finite structures ap-
proximating the behaviour of such systems with arbitrary accu-
racy. Following a classical approach, one can construct a chain
of finite under-approximations (k-truncations) of the Winskel’s
style unfolding of a graph grammar. More interestingly, also
a chain of finite over-approximations (k-coverings) of the un-
folding can be constructed and both chains converge (in a cate-
gorical sense) to the full unfolding. The finite over- and under-
approximations can be used to check properties of a graph trans-
formation system, like safety and liveness properties, expressed
in (meaningful fragments of) the modal µ-calculus. This is done
by embedding our approach in the general framework of ab-
stract interpretation.

13.1 Introduction

Graph transformation systems (gtss) [Roz97] are a powerful specification for-
malism for concurrent and distributed systems [EKMR99], generalising Petri
nets. Along the years their concurrent behaviour has been deeply studied and
a consolidated theory of concurrency is now available [Roz97, EKMR99]. Al-
though several semantics of Petri nets, like process and unfolding semantics,
have been extended to gtss (see, e.g., [CMR96, Rib96, BCM98, BCM99]),
concerning automated verification, the literature does not contain many contri-
butions to the static analysis of gtss (see [Koc00, 1]).

Most of the mentioned semantics for gtss define an operational model of
computation, which gives a concrete description of the behaviour of the system
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in terms of non-effective (e.g., infinite, non-decidable) structures. In this pa-
per, generalising the work in [1], we provide a technique for constructing finite
approximations of the behaviour for a class of (hyper)graph transformation sys-
tems. We show how one can construct under- and over-approximations of the
behaviour of the system. The “accuracy” of such approximations can be fixed
and arbitrarily increased in a way that the corresponding chain of (both under-
and over-) approximations converges to the exact behaviour.

We concentrate on the unfolding semantics of gtss, one reason for referring
to a concurrent semantics being the fact that it allows to avoid to check all
the interleavings of concurrent events. The unfolding construction for gtss
produces a static structure which fully describes the concurrent behaviour of
the system, including all possible rewriting steps and their mutual dependencies,
as well as all reachable states [Rib96, BCM99]. However, as already mentioned,
the unfolding, being infinite for any non-trivial system, cannot be used directly
for verification purposes. Given a graph grammar, i.e., a gts with a start
hypergraph, we show how to construct finite structures which can be seen as
approximations of the full unfolding of the grammar, at a chosen level k of
accuracy.

Under-approximations (k-truncations). The unfolding of a graph grammar G
can be defined categorically as the colimit of its prefixes of finite causal depth.
Hence “under-approximations” of the behaviour of G can be trivially produced
by stopping the construction of the unfolding at a finite causal depth k, thus
obtaining the so-called k-truncation T k(G) of the unfolding of G. In the case
of Petri nets this is at the basis of the finite prefix approach: if the system is
finite-state and if the stop condition is suitably chosen, the prefix turns out to
be complete, i.e., it contains the same information as the full unfolding [McM93,
Esp94]. In general, for infinite-state systems, any truncation of the unfolding
will be just an under-approximation of the behaviour of the system, in the sense
that any computation in the truncation can be really performed in the original
system, but not vice versa. Nevertheless, finite truncations can still be used to
check interesting properties of the grammar, e.g., some liveness properties of
the form “eventually A” for a predicate A (see Section 13.5).

Over-approximations (k-coverings). A more challenging issue is to provide (sen-
sible) over-approximations of the behaviour of a grammar G, i.e., finite approx-
imations of the unfolding which “represent” all computations of the original
system (but possibly more). To this aim, generalising [1], we propose an algo-
rithm which, given a graph grammar G, produces a finite structure, called Petri
graph, consisting of a hypergraph and of a P/T net (possibly not safe or cyclic)
over it, which can be seen as an over-approximation of the unfolding. Differ-
ently from [1], one can require the approximation to be exact up to a certain
causal depth k, thus obtaining the so-called k-covering Ck(G) of the unfolding
of G.

The covering Ck(G) over-approximates the behaviour of G in the sense that
every computation in G is mapped to a valid computation in Ck(G). Moreover
every hypergraph reachable from the start graph can be mapped homomorphi-
cally to (the graphical component of) Ck(G) and its image is reachable in the
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Petri graph. Therefore, given a property over graphs reflected by graph mor-
phisms, if it holds for all graphs reachable in the covering Ck(G) then it also
holds for all reachable graphs in G. Important properties of this kind are the
non-existence and non-adjacency of edges with specific labels, the absence of
certain paths (for checking security properties) or cycles (for checking deadlock-
freedom). Temporal properties, such as several safety properties of the form
“always A”, can be proven directly on the Petri net component of the coverings
(see Section 13.5).

The fact that the unfolding can be approximated with arbitrary high ac-
curacy is formalised by proving that both under- and over-approximations of
the unfolding, converge to the full (exact) unfolding. In categorical terms, the
unfolding U(G) of a graph grammar G can be expressed both as the colimit of
the chain of k-truncations T k(G) and as the limit of the chain of k-coverings
Ck(G):

T 0(G)

++XXXXXXXXXXXXXXXXXX
// T 1(G)

((QQQQQQ
T k(G)

��

// T k+1(G)

uullllll

. . .

U(G)

ssffffffffffffffffff

vvmmmmmmm
�� ))RRRRRRR

C0(G) C1(G)oo Ck(G) Ck+1(G)oo . . .

The idea that finite under- and over-approximations can be used for checking
properties of a graph grammar G is enforced by identifying significant fragments
of the µ-calculus for which the validity of a formula in some approximation
implies the validity of the same formula in the original grammar. Nicely, this
is done by viewing our approach as a special case of the general paradigm of
abstract interpretation.

13.2 Hypergraph rewriting, Petri nets and Petri
graphs

In this section we first introduce the class of (hyper)graph transformation sys-
tems considered in the paper. Then, after recalling some basic notions for Petri
nets, we will define Petri graphs, the structure combining hypergraphs and Petri
nets, which will be used to represent and approximate the behaviour of gtss.

13.2.1 Graph transformation systems

Given a set A we denote by A∗ the set of finite strings of elements of A. For
u ∈ A∗ we write |u| for the length of u. Moreover, if f : A → B is a function
then f∗ : A∗ → B∗ denotes its extension to strings. Throughout the paper Λ
denotes a fixed set of labels and each label l ∈ Λ is associated with an arity
ar(l) ∈ lN.

Definition 13.2.1 (hypergraph) A (Λ-)hypergraph G is a tuple (VG, EG, cG,
lG), where VG is a set of nodes, EG is a set of edges, cG : EG → VG

∗ is
a connection function and lG : EG → Λ is the labelling function for edges
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satisfying ar(lG(e)) = |cG(e)| for every e ∈ EG. Nodes are not labelled. A node
v ∈ VG is called isolated if it is not connected to any edge.

We use rules as in the double-pushout approach [Ehr79], with some restric-
tions.

Definition 13.2.2 (rewriting rule) A graph rewriting rule is a span of in-

jective hypergraph morphisms r = (L
ϕL
←↩ K

ϕR
↪→ R), where L, K, R are finite

hypergraphs. The rule is called simple if (i) K is discrete, i.e. it contains no
edges, (ii) no two edges in the left-hand side L have the same label, (iii) the
morphism ϕL is bijective on nodes, (iv) VL does not contain isolated nodes.

Hereafter we will restrict to simple rules. A simple rule can delete and produce
but not preserve edges, while nodes cannot be deleted (conditions (i) and (iii)).
Moreover, it cannot consume two edges with the same label and its left-hand
side must be connected (conditions (ii) and (iv)). These restrictions are mainly
aimed at simplifying the presentation. Only (iii), which allows to apply a rule
without checking the dangling condition, could require serious technical com-
plications to be removed (but observe that deletion of nodes can be simulated
considering graphs up to isolated nodes and leaving a node isolated instead of
deleting it).

To simplify the notation, in the following we will assume that for any rule

r = (L
ϕL
←↩ K

ϕR
↪→ R), the morphisms ϕL and ϕR are (set-theoretical) inclusions

and that K = L ∩ R (componentwise). Furthermore the components of a rule
r will be denoted by Lr, Kr and Rr.

Definition 13.2.3 (hypergraph rewriting) Let r be a rewriting rule. A
match of r in a hypergraph G is any morphism ϕ : Lr → G. In this case
we write G⇒r,ϕ H or simply G⇒r H, if there exists a double-pushout diagram

Lr
ϕ ��

Kr
? _oo � � //

��

Rr
��

G D?
_oo � � // H

Given a graph transformation system (gts), i.e., a finite set of rules R, we
write G⇒R H if G⇒r H for some r ∈ R. Moreover⇒∗R denotes the transitive
closure of ⇒R. A gts with a (finite) start graph G = (R, GR) is called a graph
grammar.

13.2.2 Petri nets

We fix some basic notation for Petri nets [Rei85, MM90]. Given a set A we will
denote by A⊕ the free commutative monoid over A (multisets over A). Given
a function f : A→ B, by f⊕ : A⊕ → B⊕ we denote its monoidal extension.

Definition 13.2.4 (Petri net) Let A be a finite set of action labels. An A-
labelled Petri net is a tuple N = (S, T, •(), ()•, p) where S is a set of places, T
is a set of transitions, •(), ()• : T → S⊕ assign to each transition its pre-set
and post-set and p : T → A assigns an action label to each transition.
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The Petri net is called irredundant if there are no distinct transitions with
the same label and pre-set, i.e., if for any t, t′ ∈ T

p(t) = p(t′) ∧ •t = •t′ ⇒ t = t′. (13.1)

A marked Petri net is a pair (N,mN ), where N is a Petri net and mN ∈ S
⊕

is the initial marking.

The irredundancy condition (13.1) aims at avoiding the presence of multiple
events, indistinguishable for what regards the behaviour of the system. Here-
after all the considered Petri nets will be assumed irredundant, unless stated
otherwise.

Definition 13.2.5 (causality relation) Let N be a (marked) Petri net. The
causality relation <N over N is the least transitive relation such that, for any
t ∈ T , s ∈ S, we have (i) s <N t if s ∈ •t and (ii) t <N s if s ∈ t•.

13.2.3 Petri graphs

Petri graphs, as introduced in [1], are structures consisting of a hypergraph and
of a Petri net whose places are the edges of the graph.

Definition 13.2.6 (Petri graph) Let R be a gts. A Petri graph (over R)
is a tuple P = (G,N, µ) where G is a hypergraph, N = (EG, TN ,

•(), ()•, pN )
is an R-labelled Petri net with edges of G as places, and µ associates to each
transition t ∈ TN , with pN (t) = r, a hypergraph morphism µ(t) : Lr ∪ Rr → G
such that

•t = µ(t)⊕(ELr) ∧ t• = µ(t)⊕(ERr) (13.2)

A Petri graph for a grammar (R, GR) is a pair (P, ι) where P = (G,N, µ) is a
Petri graph for R and ι : GR → G is a graph morphism. The multiset ι⊕(EGR

)
is called initial marking of the Petri graph. A marking m ∈ EG

⊕ is called
reachable (coverable) in (P, ι) if it is reachable (coverable) in the underlying
Petri net.

Condition (13.2) allow to interpret transitions in the net as “occurrences”
of rules in R. More precisely, if pN (t) = r and µ(t) : Lr ∪ Rr → G is the
morphism associated to the transition, then µ(t)|L : Lr → G must be a match
of r in G such that the image of the edges of Lr in G coincides with the pre-set
of t. Then, the graph items resulting from the application of r must be already
in G, and the corresponding edges must coincide with the post-set of t. This
is formalised by the condition over the image through µ(t) of the edges of Rr.
For an example see Section 13.5, where Fig. 13.2 presents two Petri graphs for
the gts in Fig. 13.1.

A safe marking m of a Petri graph P = (G,N, µ) is intended to represent
the subgraph of G consisting of the edges in m and of the nodes attached to
these edges. For a general non-safe marking edges with k tokens will result in
k “parallel” edges. This is formalised in the next definition.
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Definition 13.2.7 Let P = (G,N, µ) be a Petri graph. Given a hypergraph
morphism ϕ : G′ → G injective on nodes, we say that the marking ϕ⊕(EG′)
generates the graph G′.

In the following we will often confuse a marking of a Petri graph with its
generated graph, and say, e.g., that a given graph is reachable in a Petri graph.

Every hypergraph G can be considered as a Petri graph [G] = (G,N, µ) for
R, by taking N as the net with SN = EG and no transitions. Similarly, GR can
be seen as a Petri graph for (R, GR) by taking as ι : GR → GR the identity.

Definition 13.2.8 (category of Petri graphs) A Petri graph morphism is
a pair ψ = (ϕ, τ) : (G,N, µ)→ (G′, N ′, µ′) where

• ϕ : G→ G′ is a hypergraph morphism;

• τ : TN → TN ′ is a mapping such that for every t ∈ TN , •τ(t) = ϕ⊕( •t)
and τ(t)• = ϕ⊕(t•), and pN ′ ◦ τ = pN .

• for every t ∈ TN , µ′(τ(t)) = ϕ ◦ µ(t).

The category of Petri graphs and Petri graph morphisms is denoted by PG.

It is possible to show that the category PG is finitely cocomplete, i.e. it con-
tains all finite colimits. In particular we will later make use of pushouts and
coequalizers to define unfolding and folding operations.

13.3 Unfolding and under-approximations

In this section we define the unfolding of a graph grammar. Following a common
approach in the literature (see, e.g., [Rib96, Sas94]) the unfolding is defined as
the limit (actually, the categorical colimit) of the chain of its finite prefixes,
each of which can be seen as an under-approximation of the behaviour of the
system.

The finite prefixes of the unfolding are constructed inductively beginning
from the start graph of the grammar and performing, at each stage, all the
possible basic unfolding steps, until the given causal depth is reached. A basic
step roughly consists of the “partial” application of a rule to a match, which does
not delete the left-hand side, but only records the new graph item generated in
the rewriting process and the rule occurrence.

To formally define a basic step we need to fix some notation. Given a
transition t and a rule r we will denote by P (t, r) the Petri graph (Lr∪Rr, N, µ)
where N = (ELr∪Rr , {t},

•t = ELr , t
• = ERr , pN (t) = r) and µ(t) = idLr∪Rr .

By ∅ we denote a function with an empty set as domain.

Definition 13.3.1 (unfolding operation) Let P = (G,N, µ) be a Petri graph
for a gts R. Let r ∈ R be a rule and let ϕ : Lr → G be a match of r in G.
The unfolding of P with rule r at match ϕ, denoted by unf(P, r, ϕ), is the Petri
graph obtained as pushout of (ϕ, ∅) : [Lr]→ P and (idLr , ∅) : [Lr]→ P (t, r).
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If (P, ι) is a Petri graph for a graph grammar (R, GR), in the same situation,
we define unf((P, ι), r, ϕ) = (P ′, ψ◦ι) where (ψ, τ) : P → P ′ is the PG morphism
generated by the pushout.

We need to define the depth of an item in a Petri graph. We start with a
definition of depth over Petri nets. To deal with the presence of causal cycles it
is convenient to define several depth functions, each one measuring the depth of
an item up to a fixed level k. Consider the monoid Mk = ({0, . . . , k},+), where
for m,n ∈ {0, . . . , k}, m + n is ordinary addition if m + n ≤ k and m + n = k
otherwise.

Definition 13.3.2 (depth in a Petri net) Let N be a Petri net. We define
a function D : (SN ∪ TN →Mk)→ (SN ∪ TN →Mk) as follows:

D(d)(x) = max{d(s) | s ∈ SN ∧ s < x}+ 1.

Then the function depthk : SN ∪ TN → Mk, assigning depth information to
every Petri net item is the least fixed point of D.

The function depthk assigns to each item x of a Petri net its causal depth, i.e.,
the length h of the maximal chain of causally related items leading from the
initial marking to x, when h ≤ k and k otherwise. Note that an item x located
in a causality cycle has always maximal depth, i.e., depthk(x) = k for any k.

The definition generalises to Petri graphs in a straightforward way: places
become edges and the depth of a node v is defined as the maximal depth of
rules r where v appears in Rr \ Lr (intuitively, of rules which can “generate”
node v).

Definition 13.3.3 (depth of items in a Petri graph) Let (P, ι) be a Petri
graph with P = (G,N, µ). For any k the function depthk : EG ∪ TN → Mk is
defined as in Definition 13.3.2. This function is extended to nodes by defining,
for v ∈ VG

depthk(v) = max{depthk(t) | pN (t) = r ∧ v ∈ µ(t)(VRr\VLr)}

The prefixes of the unfolding of a graph grammar up to a given causal depth
k are defined by the following algorithm.

Definition 13.3.4 (k-truncation) Let k ∈ lN and let G = (R, GR) be a graph
grammar. The algorithm generates a sequence (Pi, ιi)i∈lN of Petri graphs.

(Step 0) Initialise (P0, ι0) = ([GR], idGR
).

(Step i + 1) Let (Pi, ιi), with Pi = (Gi, Ni, µi), be the Petri graph produced at
step i.

? Unfolding: Find a rule r in R and a match ϕ : Lr → Gi such that

• ϕ⊕(ELr) is a coverable marking in Pi;

• there is no transition t ∈ TNi
such that •t = ϕ⊕(ELr) and pNi

(t) = r;
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• for all x ∈ ϕ(Lr) it holds that depthk(x) 6= k.

Then set (Pi+1, ιi+1) = unf((Pi, ιi), r, ϕ).

If no unfolding step can be performed, the algorithm stops. The resulting
Petri graph (Pi, ιi) is called k-truncation of the unfolding of G and denoted by
T k(G).

It can be easily proven that the unfolding procedure described above is ter-
minating and confluent, and thus that T k(G) is well-defined. Furthermore,
T k+1(G) can be obtained from T k(G) by performing only the unfolding steps
which involve items of depth k. This gives a uniquely determined embedding

λk : T k(G) → T k+1(G) for any k ∈ lN. The diagram T 0(G)
λ0→ . . . T k(G)

λk→

T k+1(G)
λk+1
→ . . . is called the truncation tower.

The next definition introduces the full unfolding of a graph grammar as
colimit of its finite truncations (which can be shown to exist).

Definition 13.3.5 (unfolding as colimit of the k-truncations) The (full)
unfolding U(G) of a graph grammar G is the colimit of the truncation tower.

The proposition below clarifies in which sense the unfolding represents the
behaviour of the original grammar: any graph reachable in a graph grammar
can be mapped isomorphically to a reachable subgraph of its unfolding, and,
vice versa, any reachable subgraph of the unfolding is the isomorphic image of
a reachable graph in the original grammar. Furthermore steps in the original
grammar correspond to steps in the unfolding [Rib96, BCM99].

Proposition 13.3.6 Let G = (R, GR) be a graph grammar and let U(G) =
(U,N, µ) be its unfolding. Then for every graph G we have GR ⇒

∗
R G iff

there exists an injective morphism ϕG : G → U and the marking ϕG
⊕(EG)

is reachable in U(G). Furthermore, in the situation above if G ⇒R G′ then

ϕG
⊕(EG)

t
→ ϕG′

⊕(EG′) for a suitable transition t in U(G). And if ϕG
⊕(EG)

t
→

m for some marking m, then there exists a graph G′ such that G ⇒R G′ and
m = ϕG′

⊕(EG′).

Clearly, k-truncations provide, in general, only under-approximations of the
behaviour of the original grammar G, i.e., only one implication of Proposi-
tion 13.3.6 holds: any graph reachable in T k(G) is mapped isomorphically to
a graph reachable in G and any valid computation in T k(G) corresponds to a
valid derivation sequence in G, but, in general, not vice versa. Still, as we will
see in Section 13.5, k-truncations can be useful for proving properties of the
original grammar.

13.4 Folding and over-approximations

In this section we define an algorithm which, given a graph grammar G and
a level of accuracy k, produces a finite Petri graph Ck(G), called k-covering,
which can be seen as an over-approximation of the behaviour of the grammar
G.
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We have already mentioned that the full unfolding is usually infinite, also
for finite-state systems. To obtain a finite over-approximation we modify the
unfolding procedure by considering, besides the unfolding rule, also a folding
rule which allows us to “merge” two occurrences of the left-hand side of a
rule whenever they are, in a sense made precise later, one causally dependent
on the other. Intuitively, the presence of such two occurrences of a left-hand
side reveals a cyclic behaviour and applying the folding rule one avoids to un-
fold the corresponding infinite path. While guaranteeing finiteness, the folding
operation causes a loss of information in a way that the resulting structure
over-approximates the behaviour of the original system: every graph reachable
in the original grammar G corresponds to a marking which is reachable in the
covering and every valid derivation in G corresponds to a valid firing sequence
in the covering (but not vice versa).

In order to compute better over-approximations of the behaviour the idea is
to delay folding steps, constraining the algorithm to apply only unfolding steps
until a given causal depth is reached. Roughly, this is obtained by “freezing” an
initial part of the approximated unfolding, up to a given causal depth k, and by
allowing only unfolding and no folding steps to affect that part. The resulting
over-approximation Ck(G) is “exact” up to causal depth k, in the sense that any
graph reachable in G in less than k steps will have a reachable isomorphic image
in Ck(G). Instead, graphs which are reachable in a larger number of steps, in
general, will be mapped homomorphically in Ck(G) (still to a reachable graph).

In this way one can obtain arbitrarily accurate approximations, a fact which
is enforced by proving that the chain of k-coverings of a grammar G converges
to the full (possibly infinite) unfolding U(G). In categorical terms, U(G) turns
out to be the limit of the chain of coverings in a suitable subcategory of Petri
graphs.

13.4.1 Computing k-coverings

A basic definition needed to introduce k-coverings is that of a folding operation.
Intuitively, it allows to merge two matches of the same rule in a Petri graph.

Definition 13.4.1 (folding operation) Let P = (G,N, µ) be a Petri graph
for a gts R. Let r ∈ R be a rule and let ϕ′, ϕ : Lr → G be matches of r in
G. The folding of P at the matches ϕ′, ϕ, denoted fold(P, r, ϕ′, ϕ) = P ′, is
the Petri graph P ′ obtained as the coequalizer of (ϕ, ∅), (ϕ′, ∅) : [Lr] → P in
category PG.

If (P, ι) is a Petri graph for a graph grammar (R, GR), in the same situation,
we define fold((P, ι), r, ϕ′, ϕ) = (P ′, ψ ◦ ι) where (ψ, τ) : P → P ′ is the PG
morphism generated by the coequalizer.

The algorithm which produces the k-covering Ck(G) generates a sequence of
Petri graphs, beginning from the start graph of G and applying, non-determin-
istically, at each step, a folding or unfolding operation, until none of such steps
is admitted. Folding steps will be applied only at depth k or greater. Note that
as soon as folding steps are applied, the Petri graph will contain cycles.
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Definition 13.4.2 (k-covering) Let G = (R, GR) be a graph grammar and
let k ∈ lN. The algorithm generates a sequence (Pi, ιi)i∈lN of Petri graphs, as
follows.

(Step 0) Initialise (P0, ι0) = ([GR], idGR
).

(Step i + 1) Let (Pi, ιi), with Pi = (Gi, Ni, µi), be the Petri graph produced at
step i. Choose non-deterministically one of the following actions

? Folding: Find a rule r in R and two different matches ϕ′, ϕ : Lr → Gi of r
such that

• ϕ⊕(ELr) is a coverable marking in Pi;

• there exists a transition t ∈ TNi
such that

pNi
(t) = r ∧ •t = ϕ′

⊕
(ELr) ∧ ∀e ∈ ϕ⊕(ELr) : (e ∈ •t ∨ t <Ni

e) (13.3)

• for every edge or node x ∈ ELr ∪ VLr it holds that

ϕ(x) = ϕ′(x) ∨ depthk(ϕ(x)) = depthk(ϕ
′(x)) = k. (13.4)

Then set (Pi+1, ιi+1) = fold((Pi, ιi), r, ϕ
′, ϕ).

? Unfolding: Find a rule r in R and a match ϕ : Lr → Gi such that

• ϕ⊕(ELr) is a coverable marking in Pi;

• there is no transition t ∈ TNi
such that •t = ϕ⊕(ELr) and pNi

(t) = r;

• there is no other match ϕ′ : Lr → Gi satisfying the folding condition.

Then set (Pi+1, ιi+1) = unf((Pi, ιi), r, ϕ).

If no folding or unfolding step can be performed, the algorithm terminates.
The resulting Petri graph (Pi, ιi) is called k-covering of the unfolding of G and
denoted by Ck(G).

Condition (13.3) basically states that we can fold two matches of a rule r when-
ever the first one has been already unfolded producing a transition t, and the
second match depends on the first one, in the sense that any edge in the second
match is already in the first one or causally depends on t. Roughly, the idea is
that we should not unfold a left-hand side again, if we have already done the
same unfolding step in its past, since this might lead to infinitely many steps.
There are some similarities, to be further investigated, with the work in [Gen98]
where the sets of descendants and of normal forms of term rewriting systems
are approximated by constructing an approximation automaton. Additionally,
by Condition (13.4) only items of depth k can be merged, in a way that the
prefix up to depth k of the unfolding is not involved in any folding operations.
Actually some items of depth less than k can be part of a folding operation,
but they must be left unchanged by the step.
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13.4.2 Correctness, termination and confluence

We first show that the computed Petri graph Ck(G) gives an over-approximation
of the behaviour of the given graph grammar, exact up to causal depth k. More
precisely we prove that for any graph reachable in G, there is a morphism into
the covering Ck(G) such that the image of its edge set corresponds to a reachable
marking. Furthermore, if a graph is reachable in G in less than k steps, then it
will be mapped isomorphically to to (the graphical component) of Ck(G).

Proposition 13.4.3 (correctness) Let G = (R, GR) be a graph grammar and
assume that the algorithm computing the k-covering terminates producing the
Petri graph Ck(G) = ((U,N, µ), ι). Then for every graph G

i) if GR ⇒
∗
R G there exists a morphism ϕG : G → U and the marking

ϕG
⊕(EG) is reachable in Ck(G). Furthermore, if G ⇒R G′ then ϕG

⊕(EG)
t
→

ϕG′
⊕(EG′) for a suitable transition t in Ck(G).

ii) If GR ⇒
∗
R G with a (possibly parallel) derivation of length less than k

then there exists an injective morphism ϕG : G → U such that the marking
ϕG
⊕(EG) is reachable in Ck(G) and max{depthk(x)) | x ∈ G} < k, and vice

versa. Furthermore if ϕG
⊕(EG)

t
→ m for some transition t, then there exists a

graph G′ such that G⇒R G
′ and m = ϕG′

⊕(EG′).

It is not obvious at first glance that the algorithm computing the k-covering
always terminates. To prove termination we rely on the corresponding result
in [1] where we show that it is not possible to perform infinitely many unfolding
steps, without having the folding condition satisfied at some stage.

Proposition 13.4.4 (termination) The algorithm computing the k-covering
(see Definition 13.4.2) terminates for every graph grammar G and every k ∈ lN.

In order to prove that the algorithm produces a uniquely determined result,
independently of the order in which folding and unfolding steps are applied,
we can show that the rewriting relation on Petri graphs induced by folding
and unfolding steps is locally confluent. By the Diamond Lemma [DJ90], for a
rewriting system local confluence and termination imply confluence.

Proposition 13.4.5 (confluence) For any input grammar G and k ∈ lN the
algorithm computing the k-covering terminates with a result Ck(G) unique up
to isomorphism.

13.4.3 Full unfolding as limit of the coverings

The fact that folding and unfolding operations are given in terms of colimits
allows us to define, for any k, a (uniquely determined) Petri graph morphism
υk : Ck+1(G)→ Ck(G).

The diagram C0(G)
υ0← . . . Ck(G)

υk← Ck+1(G)
υk+1
← . . . is called the covering

tower.
The next proposition presents a central result of this paper. For technical

reasons we consider the full subcategory PG∗ of PG having as objects Petri
graphs in which every edge is coverable and every transition can be fired.
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Proposition 13.4.6 (unfolding as limit of the coverings) The limit in the

category PG∗ of the covering tower C0(G)
υ0← . . . Ck(G)

υk← Ck+1(G)
υk+1
← . . . is the

full unfolding U(G) of the graph grammar.

13.5 Checking Temporal Properties

In this section we illustrate how our technique can be seen as a specific instance
of abstract interpretation [Cou96, JN95]. Embedding our work into this con-
text we can resort to some results from [LGS+95], thus identifying classes of
temporal properties (µ-calculus formulae) which, being preserved/reflected by
abstractions, can be studied over suitable approximations of a gts.

We recall some concepts from [LGS+95], the more basic one being the for-
malisation of abstraction given in terms of Galois connections (over powerset
lattices).

Definition 13.5.1 (Galois connection) Let Q1 and Q2 be two sets of states.
A Galois connection from P(Q1) to P(Q2) is a pair of monotonic functions
(α, γ), with α : P(Q1) → P(Q2) (abstraction) and γ : P(Q2) → P(Q1) (con-
cretization), such that idQ1

⊆ γ ◦ α and α ◦ γ ⊆ idQ2
.

Next we introduce 〈α, γ〉-simulations which turn out to coincide with simu-
lations in the sense of Milner (see [LGS+95] for details).

Definition 13.5.2 (〈α, γ〉-simulation) Let Ti = (Qi,→i) with i ∈ {1, 2} be
transition systems, where Qi is a set of states and→i⊆ Qi×Qi is the transition
relation. Let furthermore (α, γ) be a Galois connection from P(Q1) to P(Q2).

We say that T2 〈α, γ〉-simulates T2, written T1 v〈α,γ〉 T2, if α ◦ pre[→1] ◦
γ ⊆ pre[→2], where the function pre[→i] : P(Qi) → P(Qi) is defined by
pre[→i](Q) = {q ∈ Qi | ∃ q

′ ∈ Q : q →i q
′}.

Let T1, T2 be transition systems and let ϕ : T1 → T2 be a transition system
morphism, i.e., a function ϕ : Q1 → Q2 such that such that for any q, q′ ∈ Q1 if
q →1 q

′ then ϕ(q)→2 ϕ(q′) (in other words, ϕ is a special kind of simulation).
Then, it can be easily seen that the pair (ϕ,ϕ−1) is a Galois connection and
furthermore T1 v〈ϕ,ϕ−1〉 T2.

We next discuss how our under- and over-approximations of the behaviour of
a graph grammar can be interpreted in this context. First observe that, a Petri
graph (P, ι), with P = (G,N, µ), can be associated with a transition system
M(P,ι), having reachable markings (multi-sets of edges) as states and the firing
relation of the underlying Petri net N as transition relation. Alternatively we
can consider the transition system, G(P,ι), where states are graphs (generated
by the reachable markings, in the sense of Definition 13.2.7) and the transition
relation is again induced by the firing relation of N .

Let G be a graph grammar and consider the full unfolding U(G), the k-
truncations T k(G) and the k-coverings Ck(G). Since by Definition 13.3.5 and
Proposition 13.4.6 the full unfolding is the colimit of the truncations and the
limit of the coverings, we have (unique) morphisms ηk : T k(G) → U(G) and
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θk : U(G) → Ck(G), which can be regarded as functions from sets of markings
to sets of markings and furthermore they are morphisms between the transition
systems of the underlying Petri nets. Hence we have the following result.

Proposition 13.5.3 Let G be a graph grammar. Then (ηk, η
−1
k ) and (θk, θ

−1
k )

are Galois connections and MT k(G) v〈ηk,η
−1

k
〉 MU(G) v〈θk,θ

−1

k
〉 MCk(G).

Modal µ-calculus. One of the central results of [LGS+95] is the preservation
and reflection of modal µ-calculus formulae on transitions systems. Recall that
the modal µ-calculus is a temporal logic enriched with fixed-point operators.
The syntax of µ-calculus formulae is the following:

f ::= A | X | 3f | 2f | ¬f | f1 ∨ f2 | f1 ∧ f2 | µX.f | νX.f

where A ∈ A are atomic propositions and X ∈ X are proposition variables. The
formulae are evaluated over a transition system T = (Q,→), with respect to
an interpretation I : A → P(Q), associating to any atomic proposition A ∈ A
the set of states I(A) where it holds. A formula 3f / 2f holds in a state q if
some / any single step leads to a state where f holds. The connectives ¬,∨, ∧
are interpreted in the usual way. The formulae µX.f and νX.f represent the
least and greatest fixed point, respectively. We write q |=I f to mean that the
(closed) formula f holds in the state q, under the interpretation I. We say that
a transition system T satisfies a (closed) formula f under an interpretation I,
written T |=I f , if q0 |=

I f where q0 is the initial state of T .
The fragment of the modal µ-calculus without negation and box operator is

denoted by 3Lµ. By dropping negation and the diamond operator we obtain
the fragment 2Lµ. Some typical liveness properties of the form “eventually
A” (i.e., µX.(A ∨ 3X)) can be expressed in the fragment 3Lµ, whereas some
typical safety properties of the form “always A” (i.e., νX.(A ∧ 2X)) can be
expressed in the fragment 2Lµ. However, while for linear time there exists a
syntactic characterization of liveness and safety properties [Pra94], in the case
of branching time there is not yet any established definition of liveness and
safety [MT01].

Let us come back to graph transformation systems, where atomic proposi-
tions stand for graph properties, i.e., for sets of graphs. Let (P, ι) be a Petri
graph and let f be a µ-calculus formula over a set of atomic propositions A.
Assume that Im and Ig are interpretations of A over M(P,ι) and G(P,ι), respec-
tively, such that, for any A ∈ A, any marking m and graph G(m) generated by
m

m ∈ Im(A) iff G(m) ∈ Ig(A). (13.5)

Then it is immediate to see that M(P,ι) |=
Im f if and only if G(P,ι) |=

Ig f . Fur-
thermore, given a graph grammar G, seen as a transition system in the obvious
way, by Proposition 13.3.6 it follows that G |=Ig f if and only if GU(G) |=

Im f .
Using the above observations and exploiting the preservation and reflection

properties in [LGS+95] we can obtain the following result. We say that a set
Gr of hypergraphs is preserved by graph morphisms whenever the existence of
a morphism ϕ : G → G′ with G ∈ Gr implies G′ ∈ Gr . Symmetrically, Gr is
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reflected by graph morphisms whenever the existence of a morphism ϕ : G→ G′

with G′ ∈ Gr implies G ∈ Gr .

Corollary 13.5.4 Let G = (R, GR), let f be a µ-calculus formula over a set
of atomic propositions A. Let Im and Ig be interpretations satisfying (13.5).
Then

• If f ∈ 3Lµ, MT k(G) |=
Im f and every set Ig(A) is preserved by hypergraph

morphisms, then G |=Ig f .

• If f ∈ 2Lµ, MCk(G) |=
Im f and every set Ig(A) is reflected by hypergraph

morphisms, then G |=Ig f .

We have shown how to reduce the analysis of the full transition system of
a graph grammar to the analysis of simpler transition systems, generated by
Petri nets (underlying Petri graphs). These transition systems might still have
infinitely many states, but there are several decidability results for the modal
µ-calculus and other forms of temporal logics [Esp97, HRY91, Jan90].

Example. Let us consider the simple graph grammar S in Fig. 13.1, where
edge labels have the following meaning: C (connections), Spub (public servers),
Sprv (private servers), Pint (internal processes) and Pext (external processes).
Internal processes can wander around the network and public servers can extend
the network by creating new connections. Our aim is to show that the external
process is never connected to a private server and thus has access to classified
data. That is, we want to show that the following logical formula is satisfied
by the graph transformation system: f = νX.(A ∧ 2X) where the atomic
proposition A holds for all the graphs in GrA = {G | ∀e1, e2 ∈ EG.(lG(e1) =
Sprv ∧ lG(e2) = Pext ⇒ cG(e1) 6= cG(e2))} (it always holds that whenever
a private server and an external process appear in a graph, then they are not
connected to the same node). One can easily show that GrA is reflected by
hypergraph morphisms.

C
Pint

Sprv Spub

Pext

Start graph:

Spub

1

2

Pint

1

C

C Spub

1

1

C
2

Pint

Rules of the grammar:

Figure 13.1: The example graph grammar S.

Applying the algorithm in Definition 13.4.2 to the graph grammar S to
compute the 0-covering C0(S), we obtain the left-hand Petri graph in Fig. 13.2.
Observe that the formula f is not satisfied by this covering, since A is invalid
already for the initial marking. Hence this gives us no indication whether or
not the formula holds for S. Therefore we try and compute the 1-covering and
get the Petri graph on the right-hand side of Fig. 13.2. Now we can establish
that f holds just by looking at the graph structure of the 1-covering C1(S):
edges of the form Sprv and of the form Pext do not share a common node.
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Pint

Sprv

C

Spub

Pext

C

PintPint

Sprv

C

C

C

C

Pint

SpubPext Spub

Figure 13.2: The 0-covering C0(S) and the 1-covering C1(S) of grammar S in
Fig. 13.1.

It would also be possible to extend the example by adding rules that allow
movement of external processes and verify the same property. However, in this
case the 1-covering would get larger and harder to draw. In [BCK02] we have
shown how to analyse a more complex gts.

13.6 Conclusion

We have presented a technique for computing under- and over-approximations
of the behaviour of graph transformation systems and we have identified suitable
classes of properties of a gts which can be inferred by analysing its approxima-
tions. We envision a scenario where a property of a given gts can be checked
by computing better and better approximations and verifying the property for
each of them. Because of undecidability issues, this process might never ter-
minate and it could also be costly from a complexity point of view, but with
appropriate heuristics and fine-tuning of the technique, it is conceivable that
several interesting properties for non-trivial gtss can be verified in such a way.

In order to test the applicability of our theory we plan to implement the
presented algorithm and to apply it to practical examples.

On the theoretical side, there are still several open problems. First, it would
be interesting to classify logical formulae on graphs which are preserved and
reflected by graph morphisms, via a kind of type system. This would enable us
to extend the results of Section 13.5 to a logic in which one is able to reason
specifically about graph transition systems (see also [Cou97]). Additionally it
would be necessary to detail how the verification of these formulae on Petri
graphs can be reduced to the existing model-checking techniques for Petri nets.

Another relevant issue is the extension of the developed theory to gtss
having more general forms of rules. Particularly promising, in order to decrease
the size of the approximations, is the case of gtss where rules might have a
non-discrete left-hand side. This extension would require to resort to contextual
nets in order to represent the Petri net structure underlying a Petri graph.

An open and, as it seems, highly non-trivial question is the treatment of
finite-state gtss. It would be quite interesting to understand if for a given gts
with only finitely many reachable graphs (up to isomorphism), there is a way to
construct—using folding and unfolding steps—a finite Petri graph which gives
an exact representation of the original gts, without any proper approximation.
This would allow to reduce the analysis of finite-state gtss to that of Petri nets.
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Chapter 14

A Logic for Analyzing
Abstractions of Graph
Transformation Systems
(Joint work with Paolo Baldan and Bernhard König)

Abstract

A technique for approximating the behaviour of graph trans-
formation systems (GTSs) by means of Petri net-like structures
has been recently defined in the literature. In this paper we
introduce a monadic second-order logic over graphs expressive
enough to characterise typical graph properties, and we show
how its formulae can be effectively verified. More specifically,
we provide an encoding of such graph formulae into quantifier-
free formulae over Petri net markings and we characterise, via a
type assignment system, a subclass of formulae F such that the
validity of F over a GTS G is implied by the validity of the en-
coding of F over the Petri net approximation of G. This allows
us to reuse existing verification techniques, originally developed
for Petri nets, to model-check the logic, suitably enriched with
temporal operators.

14.1 Introduction

Distributed and mobile systems can often be specified by graph transformation
systems (GTSs) in a very natural way. However, work on static analysis and
verification of GTSs is scarce. The fact that GTSs can be seen as a proper
extension of Petri nets suggests the possibility of relying on techniques already
developed in the literature for this related formalism. However, unlike Petri
nets, graph transformation systems are usually Turing-complete so that many
problems decidable for general P/T-nets become undecidable for GTSs.

A technique proposed in [1, 2] is based on the approximation of GTSs by
means of Petri net-like structures in the spirit of abstract interpretation of reac-
tive systems [LGS+95]. More precisely, an approximated unfolding construction
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maps any given GTS G to a finite structure U(G), called covering (or approx-
imated unfolding) of G. The covering U(G) is a so-called Petri graph, i.e. a
structure consisting of a Petri net with a graphical structure over places. It
provides an over-approximation of the behaviour of G, in the sense that any
graph reachable in G can be mapped homomorphically to the graph underlying
U(G) and its image is a reachable marking of U(G). (Note that, since G is possi-
bly infinite-state, while U(G) is finite, it would not be possible to have in U(G)
isomorphic images of all graphs reachable in G.) Therefore, given a property
over graphs reflected by graph morphisms, if it holds for all states reachable in
the abstraction U(G) then it also holds for all reachable graphs in G. In other
words, if T is a temporal logic formula containing only universal quantifiers
(e.g. a formula in ACTL∗ or in a suitable fragment of the modal µ-calculus)
and where state predicates are reflected by graph morphisms, then the validity
of T over the covering U(G) allows us to infer the validity of T for the original
system [CGL99].

However, several relevant questions remain to be answered. First of all,
which logic should we use to specify state predicates (i.e., graph properties)?
How can we identify a subclass of such predicates which is reflected by graph
morphisms and which can thus be safely checked over the approximation? And
finally, given the approximation U(G), is there a way of encoding formulae
expressing graph properties into “equivalent” formulae over Petri net markings?

As for the first point, we propose to describe state predicates, i.e., the
graph properties of interest, by means of a monadic second-order logic L2 on
graphs, where quantification is allowed over (sets of) edges. (Similar logics are
considered in [Cou97].) Relevant graph properties can be expressed in L2, e.g.,
the non-existence and non-adjacency of edges with specific labels, the absence
of certain paths (related to security properties) or cycles (related to deadlock-
freedom).

Regarding the second question, we introduce a type inference system char-
acterising a subclass of formulae in the logic L2 which are reflected by graph
morphisms. Hence, given any formula F in such a class, if F can be proved
for any reachable state of the approximation U(G) then we can deduce that F
holds for any reachable graph of the original GTS G.

Finally, given the approximation U(G), we define a constructive translation
of graph formulae in L2 into formulae over markings of the Petri net underlying
the abstraction U(G). More precisely, any graph formula F is mapped to a
formula F̂ over markings such that a marking satisfies F̂ if and only if the
graph it represents satisfies F . Since the graph underlying U(G) is finite and
fixed after computing the abstraction, we can perform quantifier elimination
on graph formulae and, surprisingly, encode even monadic second-order logic
formulae into propositional formulae on markings, containing only predicates
of the form #s ≤ c (the number of tokens in place s is smaller than or equal to
c). We remark that the encoding for the first-order fragment of L2 is simpler
and can be defined inductively.

Altogether these results allow us to verify behavioural properties of a GTS
by reusing existing model-checking techniques for Petri nets. In fact, given a
formula T of a suitable temporal logic (e.g. a formula of ACTL∗ or of a fragment
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of the modal µ-calculus without � and negation), where state predicates are re-
flected by graph morphisms, then, by the construction mentioned above and
using general results from abstract interpretation [LGS+95], T can be trans-
lated into a formula which can be checked over the Petri net underlying U(G).
We recall that general temporal state-based logics over Petri nets, i.e., logics
where basic predicates have the form #s ≤ c, are not decidable in general, but
important fragments of such logics are [HRY91, HR89, Jan90].

For the sake of simplicity, although the approximation method of [1, 2] was
originally designed for hypergraphs, in this paper we concentrate on directed
graphs. The extension to general hypergraphs requires some changes to the
graph logic L2. This rises some technical difficulties which are, while not being
insurmountable, a hindrance to the clear and easy presentation of our results.

In the rest of the paper we will first summarise the approximation technique
for GTSs in [1], shortly mentioning some results from [2]. Then, we will define
the monadic second-order logic L2 over graphs and we will introduce the type
system characterising a subclass of formulae in L2 which are reflected by graph
morphisms, and which can thus be checked on the covering. Finally we will
show how to encode these formulae into quantifier-free state-based formulae on
the markings of Petri nets, starting from the simpler case of first-order formulae.

14.2 Approximated Unfolding Construction

In this section we sketch the algorithm, introduced in [1], for the construction
of a finite approximation of the unfolding of a graph transformation system.
We first define graphs and structure-preserving morphisms on graphs. We will
assume that Λ denotes a fixed and finite set of labels. Note that multiple edges
between nodes are allowed.

Definition 14.2.1 (Graph, graph morphism) A graph G = (VG, EG, sG,
tG, lG) consists of a set VG of nodes, a set EG of edges, a source and a target
function sG, tG : EG → VG and a function lG : EG → Λ labelling the edges.

A graph morphism ϕ : G1 → G2 is a pair of mappings ϕV : VG1
→ VG2

and ϕE : EG1
→ EG2

such that ϕV ◦ sG1
= sG2

◦ ϕE, ϕV ◦ tG1
= tG2

◦ ϕE and
lG1

= lG2
◦ϕE for each edge e ∈ EG1

. A morphism ϕ will be called edge-bijective
if ϕE is a bijection. The subscripts in ϕE and ϕV will be usually omitted.

We next define the notion of a graph transformation system and the corre-
sponding rewriting relation.

Definition 14.2.2 (Graph transformation system) A graph transforma-
tion system (GTS) (G0,R) consists of an initial graph G0 and a set R of
rewriting rules of the form r = (L,R, α), where L, R are graphs, called left-
hand side and right-hand side, respectively, and α : VL → VR is an injective
function.

A match of a rewriting rule r in a graph G is a morphism ϕ : L→ G which
is injective on edges. We can apply r to a match in G obtaining a new graph
H, written G

r
⇒ H. The target graph H is defined as follows

184



VH = VG ] (VR − α(VL)) EH = (EG − ϕ(EL)) ] ER

and, defining ϕ : VR → VH by ϕ(α(v)) = ϕ(v) if v ∈ VL and ϕ(v) = v otherwise,
the source, target and labelling functions are given by

e ∈ EG − ϕ(EL) ⇒ sH(e) = sG(e), tH(e) = tG(e), lH(e) = lG(e)

e ∈ ER ⇒ sH(e) = ϕ(sR(e)), tH(e) = ϕ(tR(e)), lH(e) = lR(e)

Intuitively, the application of r to G at the match ϕ first removes from G the
image of the edges of L. Then the graph G is extended by adding the new
nodes in R (i.e., the nodes in VR − α(VL)) and the edges of R. Observe that
the (images of) the nodes in L are preserved, i.e., not affected by the rewriting
step.

Example 14.2.3 Consider a system where processes compete for resources R1

and R2. A process needs both resources in order to perform some task. The
system is represented as a GTS Sys as follows. We consider edges labelled by
R1, R2, R

f
1 , R

f
2 standing for assigned and free resources, respectively, and P1,

P2 and P3 denoting a process waiting for resource R1, a process waiting for
resource R2 and a process holding both resources, respectively. Furthermore,
edges labelled by D1 and D2 connect the target node of a process and the
source node of a resource when the process is asking for the resource. When
the target node of a resource coincides with the source node of a process, this
means that the resource is assigned to the process. The initial scenario for Sys
is represented in Fig. 14.1, with a single process P1 asking for both resources.

P1

R
f
2

R
f
1

D1

D2

Figure 14.1: Start graph of Sys with a process and resources.

The rewriting rules of Sys are defined with the aim of avoiding deadlocks in
the form of vicious cycles. There are three kind of rules, depicted in Fig. 14.2:
(1) a process Pi can acquire a free resource Rfj whenever i = j and become
Pi+1, (2) P3 can release its resources and (3) processes of the form P1 can fork
creating more processes of the same kind with demand for the same resources.
The natural numbers 1, 2, 3, . . . which decorate nodes in the left-hand side and
right-hand side of rules implicitly represent the mapping α.

Observe that an additional rule, analogous to rule 1, but with i = 1 and
j = 2, would possibly lead to a vicious cycle with circular demand for resources,
in two steps (see Fig. 14.3).

Some basic notation concerning multisets is needed to deal with Petri nets.
Given a set A we will denote by A⊕ the free commutative monoid over A, whose
elements will be called multisets over A. In the sequel we will sometime identify
A⊕ with the set of functions m : A→ N such that the set {a ∈ A | m(a) 6= 0} is
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Figure 14.2: Rewriting rules of the GTS Sys.
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Figure 14.3: Vicious cycle representing a deadlock.
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finite. E.g., in particular, m(a) denotes the multiplicity of an element a in the
multiset m. Sometimes a multiset will be also identified with the underlying
set, writing, e.g., a ∈ m for m(a) 6= 0. Given a function f : A → B, by
f⊕ : A⊕ → B⊕ we denote its monoidal extension, i.e., f⊕(m)(b) =

∑
f(a)=bm(a)

for every b ∈ B.
In order to approximate graph transformation systems we use Petri graphs,

introduced in [1], which are basically Petri nets, specifying the operational
behaviour, with added graph structure.

Definition 14.2.4 (Petri graphs) Let G = (G0,R) be a GTS. A Petri graph
P (over G) is a tuple (G,N,m0) where

• G is a graph;

• N = (EG, TN ,
•(), ()•, pN ) is a Petri net, where the set of places EG is

the edge set, TN is the set of transitions, •(), ()• : TN → E⊕G specify the
post-set and pre-set of each transition and pN : TN → R is the labelling
function;

• m0 ∈ (EG)⊕ is the initial marking of the Petri graph, satisfying m0 =
ι⊕(EG0

) for a suitable graph morphism ι : G0 → G (i.e., m0 must properly
correspond to the initial state of the GTS G).

A marking m ∈ E⊕G will be called reachable (coverable) in P if it is reachable
(coverable) from the initial marking in the Petri net underlying P .

Remark. The definition of Petri graph is slightly different from the original
one in [1], in that we omit some graph morphisms associated to transitions
(the µ-component) and to the initial marking, and the so-called irredundancy
condition. Both are needed for the actual construction of the Petri graph from
a GTS, but they play no role in the results of this paper.

A marking m of a Petri graph can be seen as an abstract representation of
a graph in the following sense.

Definition 14.2.5 Let (G,N,m0) be a Petri graph and let m ∈ E⊕G be a mark-
ing of N . The graph generated by m, denoted by graph(m), is the graph H
defined as follows: VH = {v ∈ VG | ∃e ∈ m : (sG(e) = v ∨ tG(e) = v)},
EH = {(e, i) | e ∈ m∧ 1 ≤ i ≤ m(e)}, sH((e, i)) = sG(e), tH((e, i)) = tG(e) and
lH((e, i)) = lG(e).

Alternatively the graph graph(m) can be defined as the unique graph H, up to
isomorphism, such that there exists a morphism ψ : H → G injective on nodes
with ψ⊕(EH) = m. An example of a Petri net marking with the corresponding
generated graph can be found in Fig. 14.4.

Given a GTS (G0,R), with some minor constraints on the format of rewrit-
ing rules (see [1, 2]), we can construct a Petri graph approximation of (G0,R),
called covering and denoted by U(G0,R). The covering is produced by the
last step of the following (terminating) algorithm which generates a sequence
Pi = (Gi, Ni,mi) of Petri graphs.
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Figure 14.4: A pair (G′,m′) contained in a simulation.

1. P0 = (G0, N0,m0), where the net N0 contains no transitions and m0 =
EG0

.

2. As long as one of the following steps is applicable, transform Pi into Pi+1,
giving precedence to folding steps.

Unfolding. Find a rule r = (L,R, α) ∈ R and a match ϕ : L → Gi

such that ϕ(E⊕L ) is coverable in Pi. Then extend Pi by “attaching” R to
Gi according to α and add a transition t, labelled by r, describing the
application of rule r.

Folding. Find a rule r = (L,R, α) ∈ R and two matches ϕ,ϕ′ : L→ Gi
such that ϕ⊕(EL) and ϕ′⊕(EL) are coverable in Ni and the second match
is causally dependent on the transition unfolding the first match. Then
merge the two matches by setting ϕ(e) ≡ ϕ′(e) for each e ∈ EL and
factoring through the resulting equivalence relation ≡.
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Figure 14.5: An unfolding and two folding steps.

For instance an unfolding step involving rule 3 is depicted in Fig. 14.5.
Transitions are represented as black rectangles and the Petri net structure is

188



rendered by connecting edges (places) to transitions with dashed lines. The
label k for dashed lines represents the weight with which the target/source
place occurs in the post-set (pre-set); when the weight is 1, the label is omitted.
In the resulting Petri graph we can find three occurrences of the left-hand side
of rule 3. The latter two are causally dependent on the first, which means that
they can be merged in two folding steps. The algorithm, starting from the start
graph in Fig. 14.1, terminates producing the Petri graph U(Sys) in Fig. 14.6,
where the initial marking is represented by tokens.

2
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R2

R
f
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R
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P2
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P3

D1

D2

Figure 14.6: The Petri graph U(Sys) computed as covering of Sys.

The covering U(G0,R) is an abstraction of the original GTS (G0,R) in the
following sense.

Proposition 14.2.6 (Abstraction) Let G = (G0,R) be a graph transforma-
tion system and let U(G) = (G,N,m0) be its covering. Furthermore let G be
the set of graphs reachable from G0 in G and let M be the set of reachable mark-
ings in U(G). Then there exists a simulation S ⊆ G ×M with the following
properties:

• (G0,m0) ∈ S;

• whenever (G′,m′) ∈ S and G′
r
⇒ G′′, then there exists a marking m′′ with

m′
r
→ m′′ and (G′′,m′′) ∈ S;

• for every (G′,m′) ∈ S there is an edge-bijective morphism ϕ : G′ →
graph(m′).

The above result will allow us to use existing results concerning abstractions
of reactive systems [CGL99, LGS+95]. Consider the system Sys in our running
example. We would like to verify that, according to the design intentions,
Sys is deadlock-free. This is formalised by the requirement that all reachable
graphs do not contain a vicious cycle, i.e., a cycle of edges where P2-labelled
edges (processes holding a resource and waiting for a second resource) occur
twice. This graph property is reflected by graph morphisms, hence, by using
Proposition 14.2.6, if we can prove it on the covering U(Sys), we could deduce
that it holds for the original system Sys as well. Observe that actually, in this
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case, even the stronger property #e ≤ 1, where e is the edge labelled P2, holds
for all reachable markings as it can be easily verified by drawing the coverability
graph of the Petri net. This is an ad hoc proof of the property, which instead,
by the results in this paper, will follow as an instance of a general theory.

The idea that will be concretized by the results in the paper, is the following.
Let G be a GTS and let U(G) be its covering. By Proposition 14.2.6, U(G) =
(G,N,m0) “approximates” G via a simulation consisting of pairs (G′,m′) such
that G′ can be mapped to graph(m′) (see, e.g., Fig. 14.4) via an edge-bijective
morphism. Given a formula on graphs F , expressing a state property in G, a
corresponding formula M(F ) on the markings of U(G) is constructed such that,
for any pair in the simulation,

m′ |= M(F ) ⇒ G′ |= F.

This will be obtained in two steps. First, we will identify formulae F which
are reflected by edge-bijective morphisms, ensuring that graph(m′) |= F implies
G′ |= F . Then, we will encode F into a propositional formulaM(F ) on multisets
such that m′ |= M(F ) ⇐⇒ graph(m′) |= F .

Call F the above mentioned class of graph formulae. Now, one can consider
a temporal logic over GTSs, where basic predicates are taken from F . For
suitable fragments of such logics, e.g., the modal µ-calculus without negation
and the “possibility operator” 3, by Proposition 14.2.6 and exploiting general
results in [LGS+95], any temporal formula T over graphs can be translated to a
formula M(T ) over markings (translating the basic predicates as above), such
that, if N |= M(T ) then G |= T , i.e., T is valid for the original GTS.

14.3 A Second-Order Monadic Logic for Graphs

We introduce the monadic second-order logic L2 for specifying graph properties.
Quantification is allowed over edges, but not over nodes (as, e.g., in [Cou97]).

Definition 14.3.1 (Graph formula) Let X1 = {x, y, z, . . .} be a set of (first-
order) edge variables and let X2 = {X,Y, Z, . . .} be a set of (second-order)
variables representing edge sets. The set of graph formulae of the logic L2 is
defined as follows, where ` ∈ Λ

F ::= x = y | s(x) = s(y) | s(x) = t(y) | t(x) = t(y) |

lab(x) = ` | x ∈ X (Predicates)

F ∨ F | F ∧ F | F ⇒ F | ¬F (Connectives)

∀x.F | ∃x.F | ∀X.F | ∃X.F (Quantifiers)

We denote by free(F ) and Free(F ) the sets of first-order and second-order vari-
ables, respectively, occurring free in F , defined in the obvious way.

Note that, even if quantification over nodes is disallowed, formulae express-
ing properties of classes of nodes can be easily stated, e.g., the property “for
all non-isolated nodes v it holds that P (v)” is formalised as “∀x.(P (s(x)) ∧
P (t(x)))”.
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Definition 14.3.2 (Quantifier depth) The first-order and second-order quan-
tifier depth (qd1(F ) and qd2(F ), respectively) of a graph formula F in L2
is inductively defined as follows, where A is a predicate, op ∈ {∧,∨,⇒} and
i ∈ {1, 2}.

qdi(A) = 0 qdi(¬F1) = qdi(F1) qdi(F1 opF2) = max{qdi(F1), qdi(F2)}

qd
1
(∀x.F1) = qd

1
(∃x.F1) = qd

1
(F1) + 1 qd

2
(∀x.F1) = qd

2
(∃x.F1) = qd

2
(F1)

qd
1
(∀X.F1) = qd

1
(∃X.F1) = qd

1
(F1) qd

2
(∀X.F1) = qd

2
(∃X.F1) = qd

2
(F1) + 1

The notion of satisfaction is defined in a straightforward way.

Definition 14.3.3 (Satisfaction) Let G be a graph, let F be a graph formula
in L2, let σ : free(F ) → EG and Σ : Free(F ) → P(EG) be valuations for
the free first- and second-order variables of F , respectively. The satisfaction
relation G |=σ,Σ F is defined inductively, in the usual way; for instance:

G |=σ,Σ x = y ⇐⇒ σ(x) = σ(y)

G |=σ,Σ s(x) = s(y) ⇐⇒ sG(σ(x)) = sG(σ(y))

G |=σ,Σ lab(x) = ` ⇐⇒ lG(σ(x)) = `

G |=σ,Σ x ∈ X ⇐⇒ σ(x) ∈ Σ(X)

Example 14.3.4 The formula NC ` below states that a graph does not contain
a cycle including two distinct edges labelled `, a property that will be used to
express the absence of vicious cycles in our system Sys. It is based on the
formula NP(x, y), which says that there is no path connecting the edges x and
y, stating that a set that contains at least all successors of x does not always
contain y.

NP(x, y) = ¬∀X.(∀z.(t(x) = s(z) ∨ ∃w.(w ∈ X ∧ t(w) = s(z)))⇒ z ∈ X)

⇒ y ∈ X)

NC ` = ∀x.∀y.(lab(x) = ` ∧ lab(y) = ` ∧ ¬(x = y)

⇒ NP(x, y) ∨NP(y, x))

The following standard argument shows that this property can not be stated
in first-order logic, a fact which motivates our choice of considering a second-
order logic: it is easy to find sentences ψn in first-order logic stating that ‘there
is no cycle of length ≤ n through two distinct edges labelled `’. Every finite
subset of the theory T = {¬NC `} ∪ {ψn}n∈N is satisfiable but T itself is not
satisfiable. The compactness theorem rules this out for first-order theories, so
NC ` cannot be first-order.

14.4 Preservation and Reflection of Graph Formulae

In this section we introduce a type system over graph formulae in L2 which
allows us to single out subclasses of formulae preserved or reflected by edge-
bijective morphisms. By Proposition 14.2.6, given a GTS G every graph reach-
able in G can be mapped homomorphically via an edge-bijective morphism to
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Typing predicates:

s(x) = s(y), s(x) = t(y), t(x) = t(y) : → x = y, lab(x) = `, x ∈ X : ↔

Typing connectives and quantifiers:

F : d

¬F : d−1

F1, F2 : d

F1 ∨ F2, F1 ∧ F2 : d

F1 : d−1, F2 : d

F1 ⇒ F2 : d

F : d

∀x.F : d

F : d

∃x.F : d

F : d

∀X.F : d

F : d

∃X.F : d

Figure 14.7: The type system for preservation and reflection.

the graph generated by a marking reachable in the covering U(G) of G. Hence a
formula reflected by all edge-bijective morphisms can be safely checked over the
approximation U(G), in the sense that if it holds in U(G), then we can deduce
that it holds also in G.

To define the notions of reflection (and preservation) of general graph formu-
lae, possibly with free variables, observe that valuations are naturally “trans-
formed” under graph morphisms. Let F be formula, let ϕ : G1 → G2 be a
graph morphism, and let σ1 : free(F ) → EG1

and Σ1 : Free(F ) → P(EG1
)

be valuations. A valuation for the first-order variables of F in G2 is naturally
given by ϕ ◦ σ1, while a valuation Σ2 for second-order variables can be defined
by Σ2(X) = ϕ(Σ1(X)) for any variable X. Abusing the notation, Σ2 will be
denoted by ϕ ◦ Σ1.

Definition 14.4.1 (Reflection and Preservation) Let F be a formula in
L2 and let ϕ : G1 → G2 be a graph morphism. We say that F is preserved by
ϕ if for all valuations σ1 : free(F )→ EG1

and Σ1 : Free(F )→ P(EG1
)

G1 |=σ1,Σ1
F ⇒ G2 |=ϕ◦σ,ϕ◦Σ1

F.

Symmetrically, F is reflected by ϕ if the above holds where ⇒ is replaced by ⇐.

Observe that, in particular, a closed formula F is preserved by a graph mor-
phism ϕ : G1 → G2 if G1 |=∅,∅ F implies G2 |=∅,∅ F .

As mentioned above we are interested in syntactic criteria characterising
classes of graph formulae reflected, respectively preserved, by all edge-bijective
graph morphisms. For first-order predicate logic, criteria for arbitrary mor-
phisms can be found in [Hod93]. Here we provide a technique which works for
general second-order monadic formulae, based on a type system assigning to
every formula F either →, meaning that F is preserved, or ←, meaning that F
is reflected by edge-bijective morphisms. The type rules are given in Fig. 14.7
where it is intended that →−1=← and ←−1=→. Moreover F :↔ is a shortcut
for F :→ and F :←, while F1, F2 : d stands for F1 : d and F2 : d.

The type system can be shown to be correct.
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Proposition 14.4.2 (Correctness) Let F be a graph formula. If F : → is
provable then F is preserved by all edge-bijective morphisms. Similarly, if F : ←
is provable then F is reflected by all edge-bijective graph morphisms.

Proof: The proof goes by induction on the rules needed to prove F : d. We only
prove two cases, the other cases can be shown similarly.

• We assume that F has the form x ∈ X. Hence F is typed by the axiom
x ∈ X : ←. Now let ϕ : G1 → G2 be an edge-bijective morphism and
let σ1 and Σ1 be valuations. Assume that G2 |=ϕ◦σ1,ϕ◦Σ1

x ∈ X. This
implies that ϕ(σ1(x)) ∈ ϕ(Σ1(X)). Since ϕ is an edge-bijective morphism
it follows that σ(x) ∈ Σ1(X) and we conclude that G1 |=σ1,Σ1

x ∈ X.

• We assume that F has the form ∀X.F ′. Then F is typed in the following
way:

F ′ : →
∀X.F ′ : →

Let ϕ : G1 → G2 be an edge-bijective morphism and let σ1 and Σ1 be
valuations. Assume that G1 |=σ1,Σ1

∀X.F ′. This implies that for all
E1 ⊆ EG1

it holds that G1 |=σ1,Σ1∪{X 7→E1} F
′. For any E2 ⊆ EG2

we can
infer

G1 |=σ,Σ1∪{X 7→ϕ−1(E2)} F
′.

By induction hypothesis we have that G2 |=ϕ◦σ1,ϕ◦Σ1∪{X 7→E2} F
′ for all

E2 ⊆ EG2
and we obtain G2 |=ϕ◦σ1,ϕ◦Σ1

F ′.

2

Example 14.4.3 It holds that NP(x, y) : ← and NC ` : ←, i.e., absence of
paths and of vicious cycles is reflected by edge-bijective morphisms.

Not all formulae that are preserved respectively reflected are recognised by
the above type system. The following result shows that this incompleteness is a
fundamental problem, due to the undecidability of reflection and preservation.

Proposition 14.4.4 (Undecidability of the Reflection (Preservation)
Problem for formulae) The following two sets are undecidable:

ReflFO = {F | F closed first-order formula, reflected by edge-bijective

graph morphisms}

PresFO = {F | F closed first-order formula, preserved by edge-bijective

graph morphisms}

Proof: We show that ReflFO is undecidable, the proof for PresFO is provided
by the fact that a formula F is preserved if and only if ¬F is reflected.

Let Λ′ be a multi-set over elements of Λ. By G(Λ′) we denote the graph
with exactly one node v and |Λ′| edges, where each edge e satisfies sG(Λ′)(e) =
v = tG(Λ′)(e) and for every ` ∈ Λ there are exactly Λ′(`) edges. Since every
graph can be mapped edge-bijectively to one of the G(Λ′), it is fairly easy to
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see that a formula F is a tautology if and only if it is contained in ReflFO and
it holds for each of the G(Λ′). Because of Corollary 14.7.3 it is not necessary to
check infinitely many graphs of the form G(Λ′), but it is possible to compute an
upper bound for the number of edges from the quantifier depth of F . If ReflFO

were decidable, this would give us a procedure to decide the first-order theory
on the class of graphs, a contradiction to a result of Trakhtenbrot [Tra50]. 2

14.5 A Propositional Logic on Multisets

In order to characterise markings of Petri nets we use the following logic on
multisets. We consider a fixed universe A over which all multisets are formed.

Definition 14.5.1 (Multiset formula) The set of multiset formulae, ranged
over by M , is defined as follows, where a ∈ A and c ∈ N

M ::= #a ≤ c | ¬M | M ∨M ′ | M ∧M ′.

Let m be a multiset with elements from A. The satisfaction relation m |= M
is defined, on basic predicates, as m |= (#a ≤ c) ⇐⇒ m(a) ≤ c. Logical
connectives are dealt with as usual.

We will consider also derived predicates of the form #a ≥ c and #a = c where

(#a ≥ c) =

{
¬(#e ≤ c− 1) if c > 0
true otherwise

(#e = c) = (#e ≤ c) ∧ (#e ≥ c).

14.6 Encoding First-Order Graph Logic

In this section we show how first-order graph formulae can be encoded into
“equivalent” multiset formulae. More precisely, given the fixed Petri graph
P = (G,N,m0) the aim is to find an encoding M1 of first-order graph formulae
into multiset formulae such that graph(m) |= F ⇐⇒ m |= M1(F ) for every
marking m of P and every closed first order graph formula F .

The encoding M1 is based on the following observation: every graph
graph(m) for some marking m of P can be generated from the finite “tem-
plate graph” G in the following way: some edges of G might be removed and
some edges might be multiplied, generating several parallel copies of the same
template edge. Whenever a formula has two free variables x, y and graph(m)
has n parallel copies e1, . . . , en of the same edge, it is not necessary to associate
x and y with all edges, but it is sufficient to assign e1 to x and e2 to y (first
alternative) or e1 to both x and y (second alternative). Thus, whenever we
encode a formula F , we have to keep track of the following information: a par-
tition P on the free variables free(F ), telling us which variables are mapped to
the same edge, and a mapping ρ from free(F ) to the edges of G, with ρ(x) = e
meaning that x will be instantiated with a copy of the template edge e. Since
there might be several different copies of the same template edge, two variables

194



x and y in different sets of P can be mapped by ρ to the same edge of G.
Whenever we encode an existential quantifier ∃x, we have to form a disjunction
over all the possibilities we have in choosing such an x: either x is instantiated
with the same edge as another free variable y, in this case x and y should be
in the same set of the partition P . Or x is instantiated with a new copy of an
edge in G. In this case, a new set {x} is added to P and we have to make sure
that enough edges are available by adding a suitable predicate.

We need the following notation. We will describe an equivalence relation on
a set A by a partition P ⊆ P(A) of A, where every element of P represents an
equivalence class. We will write xP y whenever x, y are in the same equivalence
class. Furthermore we assume that each equivalence P is associated with a func-
tion rep : P → A which assigns a representative to every equivalence class. The
encoding given below is independent of any specific choice of representatives.

Given a function f : A → B such that f(a) = f(a′) for all a, a′ ∈ A with
aPa′ and a fixed b ∈ B we define nP,f (b) = |{k ∈ P | f(rep(k)) = b}|, i.e.,
nP,f (b) is the number of sets in the partition P that are mapped to b.

Definition 14.6.1 Let G be a directed graph, let F be graph formula in the
first-order fragment of L2, let ρ : free(F ) → EG and let P ⊆ P(free(F )) be an
equivalence relation such that xP y implies ρ(x) = ρ(y) for all x, y ∈ free(F ).
The encoding M1 is defined as follows:

M1[¬F, ρ, P ] = ¬M1[F, ρ, P ]

M1[F1 ∨ F2, ρ, P ] = M1[F1, ρ, P ] ∨M1[F1, ρ, P ]

M1[F1 ∧ F2, ρ, P ] = M1[F1, ρ, P ] ∧M1[F1, ρ, P ]

M1[x = y, ρ, P ] =

{
true if xP y
false otherwise

M1[lab(x) = `, ρ, P ] =

{
true if lG(ρ(x)) = `
false otherwise

M1[s(x) = s(y), ρ, P ] =

{
true if sG(ρ(x)) = sG(ρ(y))
false otherwise

the formulae t(x) = t(y) and s(x) = t(y)

are treated analogously

M1[∃x.F, ρ, P ] =
∨

k∈P

(M1[F, ρ ∪ {x 7→ ρ(rep(k))}, P\{k} ∪ {k ∪ {x}}]) ∨

∨

e∈EG

(M1[F, ρ ∪ {x 7→ e}, P ∪ {{x}}] ∧ (#e ≥ nP,ρ(e) + 1))

M1[∀x.F, ρ, P ] =
∧

k∈P

(M1[F, ρ ∪ {x 7→ ρ(rep(k))}, P\{k} ∪ {k ∪ {x}}]) ∧

∧

e∈EG

((#e ≥ nP,ρ(e) + 1)⇒M1[F, ρ ∪ {x 7→ e}, P ∪ {{x}}])

If F is a closed formula (i.e., without free variables), we define M1(F ) =
M1[F, ∅, ∅].

It is worth remarking that such an approach is similar to the model-theoretic
method of quantifier elimination, defined by Tarski in the 1950’s to show decid-
ability and completeness for theories like dense linear orderings or algebraically
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closed fields (see [Rob63]). We remark that here finiteness of graphs is essential.
We can now show that the encoding is correct in the sense explained above.

We will omit the index Σ in |=σ,Σ when talking about first-order formulae only.

Proposition 14.6.2 Let (G,N,m0) be a Petri graph, F a first-order formula
in L2 and m a marking of N . Then it holds that

graph(m) |=σ F ⇐⇒ m |= M1[F, ρ, P ],

when

• ρ : free(F )→ EG;

• P is an equivalence on free(F ) such that xP y implies ρ(x) = ρ(y) for
any x, y ∈ free(F );

• σ : free(F ) → Egraph(m) satisfies xP y ⇐⇒ σ(x) = σ(y) and ϕ ◦ σ = ρ,
where ϕ : graph(m)→ G denotes the projection of graph(m) over G, i.e.,
a graph morphism such that ϕ((e, i)) = e ∈ EG.

Proof: We assume that we have a fixed marking m and a logical formula F
on graphs. We first show the direction from left to right and afterwards the
direction from right to left.

⇒: We proceed by induction on the structure of F .

F = (x = y): since it holds that graph(m) |=σ x = y we can conclude
that σ(x) = σ(y) which implies xP y and therefore ρ(x) = ρ(y).

Furthermore we can conclude that M1[x = y, ρ, P ] = true and there-
fore m |= M1[x = y, ρ, P ].

F = (lab(x) = `): since it holds that graph(m) |=σ lab(x) = `, it fol-
lows that lG(ρ(x)) = lG(ϕ(σ(x))) = lgraph(m)(σ(x)) = `. There-
fore we know that M1[lab(x) = `, ρ, P ] = true and it holds that
m |= M1[lab(x) = `, ρ, P ].

F = (s(x) = s(y)): we assume that graph(m) |=σ s(x) = s(y). So we have
sgraph(m)(σ(x)) = sgraph(m)(σ(y)) and since ϕ is a graph morphism it
holds that sG(ρ(x)) = sG(ϕ(σ(x))) = sG(ϕ(σ(y))) = sG(ρ(y)).

So M1[s(x) = s(y), ρ, P ] = true and m |= M1[s(x) = s(y), ρ, P ]
holds.

F = ¬F ′: we assume that graph(m) |=σ ¬F
′ holds. Now graph(m) 6|=σ F

′

and from the induction hypothesis it follows that m 6|= M1[F ′, ρ, P ].
Therefore m |= ¬M1[F ′, ρ, P ].

F = F1 ∨ F2: we assume that graph(m) |=σ F1 ∨ F2 holds. This implies
that graph(m) |=σ F1 or graph(m) |=σ F2. We assume that the first
condition holds, the other case can be handled analogously.

From the induction hypothesis it follows that m |= M1[F1, ρ, P ].
Therefore m |= M1[F1, ρ, P ] ∨M1[F2, ρ, P ].

F = F1 ∧ F2: analogous to the case of ∨.
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F = ∃x.F ′: we assume that graph(m) |=σ ∃x.F ′ holds. This implies that
there exists an edge e ∈ Egraph(m) such that graph(m) |=σ∪{x7→e} F

′

holds (see Definition 14.3.3).

We distinguish the following two cases:

• there is no w ∈ free(F ) such that σ(w) = e. We define ρ′, σ′, P ′

as follows: 1

– ρ′ : free(F ′) = free(F )∪{x} → EG with ρ′ = ρ∪{x 7→ ϕ(e)}.

– σ′ : free(F ′) = free(F )∪{x} → Egraph(m) with σ′ = σ∪{x 7→
e}.

– P ′ is an equivalence on free(F ′) with P ′ = P ∪ {{x}}.

We show that ρ′, σ′ and P ′ satisfy the conditions stated in the
proposition. First, it obviously holds that ϕ ◦ σ′ = ρ′.
Now let y P ′ z for y, z ∈ free(F ′). It might either be the case that
y, z ∈ free(F ) which implies that y P z and therefore σ(y) = σ(z)
and σ′(y) = σ′(z). Or it might be the case that y = x = z and
it immediately follows that σ′(y) = σ′(z).
Now let σ′(y) = σ′(z). Because of the construction of σ and
because of the fact that no element of free(F ) maps to e, it
follows that either y, z ∈ free(F ) and σ(y) = σ(z) and therefore
y P z and y P ′ z, or y = x = z, σ′(y) = e = σ′(z) and therefore
also y P ′ z.
From this it follows immediately that y P ′ z implies ρ′(y) = ρ′(z).
Since graph(m) |=σ′ F ′ holds we can infer from the induction
hypothesis that m |= M1[F ′, ρ′, P ′] is true.
Furthermore it holds that

m(ϕ(e))

= |{e′ ∈ Egraph(m) | ϕ(e′) = ϕ(e)}|

≥ |{e′ ∈ Egraph(m) | ϕ(e′) = ϕ(e) ∧ ∃y ∈ free(F ) : (σ(y) = e′)}|

+1

= |{k ∈ P | ϕ(σ(rep(k))) = ϕ(e)}|+ 1 = nP,ρ(ϕ(e)) + 1

This implies that m |= (#ϕ(e) ≥ nP,ρ(ϕ(e)) + 1).
Since ϕ(e) is an element of EG it follows from the considerations
above that at least one element of the second part of the dis-
junction in the formula M1[∃x.F ′, ρ, σ] is true. And this implies
m |= M1[∃x.F ′, ρ, σ].

• there exists a variable w ∈ free(F ) such that σ(w) = e. Let k
be the equivalence class of P that contains w. We define ρ′ and
σ′ as above and P ′ = P\{k} ∪ {k ∪ {x}}.
As before it holds that ϕ ◦ σ′ = ρ′.
Now let y P ′ z. If y, z ∈ free(F ), then it follows that y P z, that
furthermore σ(y) = σ(z) and therefore σ′(y) = σ′(z). If y = x

1We assume that in a formula of the form ∃x.F ′ respectively ∀x.F ′ the variable x occurs
free in F ′. Otherwise we could just remove the quantifier.

197



and z ∈ free(F ), then it holds that z is in the equivalence class
of w wrt. P and we can conclude that σ′(y) = ϕ(e) = σ′(w) =
σ′(z). If y = x = z, then σ′(y) = σ′(z) follows immediately.
We assume that σ′(y) = σ′(z). If y, z ∈ free(F ) then it follows
that σ(y) = σ(z) and therefore y P z, which implies y P ′ z. If,
however, y = x and z ∈ free(F ), then it follows that σ(z) =
σ′(z) = ϕ(e) = σ(w). This implies that z P w P ′ y and therefore
y P ′ z. If y = x = z, then it follows immediately that y P ′ z.
From the fact that ϕ ◦ σ′ = ρ′ and the considerations above, it
follows that y P ′ z implies ρ′(y) = ρ′(z).
Since graph(m) |=σ′ F ′ holds, it follows from the induction hy-
pothesis that m |= M1[F ′, ρ′, P ′] is true. Since furthermore
ρ(rep(k)) = ρ(w) = ϕ(σ(w)) = ϕ(e), it follows that at least one
of the elements of the first disjunction in the formulaM1[∃x.F ′, ρ,
P ] is true and therefore m |= M1[∃x.F, ρ, P ] holds.

⇐: Again we proceed by induction on the structure of F .

F = (x = y): we assume that m |= M1[x = y, ρ, P ]. Therefore we can
conclude that xP y, since otherwise M1[x = y, ρ, P ] = false. This
implies that σ(x) = σ(y) and we can conclude that graph(m) |=σ

x = y.

F = lab(x) = `): we assume that m |= M1[lab(x) = `, ρ, P ]. This implies
that labG(ρ(x)) = `, since otherwise M1[lab(x,A), ρ, P ] = false.

So it holds that labgraph(m)(σ(x)) = labG(ϕ(σ(x))) = labG(ρ(x)) = `
and we can infer that graph(m) |=σ lab(x) = `.

F = (s(x) = s(y)): since m |= M1[s(x) = s(y), ρ, P ], it holds that s(ρ(x))
= s(ρ(y)), since otherwise M1[s(x) = s(y), ρ, P ] = false.

We can infer that ϕ(s(σ(x))) = ϕ(s(σ(y))) and since ϕ is injective on
nodes this implies that s(σ(x)) = s(σ(y)). Therefore graph(m) |=σ

s(x) = s(y).

F = ¬F ′: we assume that m |= M1[¬F ′, ρ, P ] = ¬M1[F ′, ρ, P ], which
implies that m 6|= M1[F ′, ρ, P ]. From the induction hypothesis it
follows that graph(m) 6|=σ F

′ and therefore also graph(m) |=σ ¬F
′.

F = F1 ∨ F2: we assume that m |= M1[F1 ∨ F2, ρ, P ] = M1[F1, ρ, P ] ∨
M1[F2, ρ, P ], which implies that m |= M1[F1, ρ, P ] or m |= M1[F2, ρ,
P ]. We assume that the first condition holds, the other case can be
handled analogously.

From the induction hypothesis it follows that graph(m) |=σ F1 and
therefore also graph(m) |=σ F1 ∨ F2.

F = ∃x.F ′: we assume that m |= M1[∃x.F ′, ρ, P ] which means that at
least one of the elements in the disjunction is true. We consider the
following two (overlapping) cases:

• it holds that m |= M1[F ′, ρ∪{x 7→ ρ(rep(k))}, P\{k}∪{k∪{x}}].
We set ρ′ = ρ ∪ {x 7→ ρ(rep(k))}, P ′ = P\{k} ∪ {k ∪ {x}} and
σ′ = σ ∪ {x 7→ σ(rep(k))}.
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It is immediately clear that ϕ ◦ σ′ = ρ′.
Now let y P ′ z. It might either be the case that y, z ∈ free(F )
and therefore y P z which implies σ(y) = σ(z) and also σ′(y) =
σ′(z). Or it holds that y = x and z ∈ free(F ) which means that
z is an element of the equivalence class k, which implies that
σ′(y) = σ(rep(k)) = σ(z) = σ′(z). If, however y = x = z, then
it follows immediately that σ′(y) = σ′(z).
Now let σ′(y) = σ′(z). If y, z ∈ free(F ), then it follows that
σ(y) = σ(z), which implies that y P z and also y P ′ z. If y = x
and z ∈ free(F ), then it holds σ(z) = σ′(z) = σ′(y) = σ(rep(k)),
which implies that z is in the equivalence class k and therefore
y P ′ z. If, however, y = x = z, then it follows immediately that
y P ′ z.
Induction hypothesis implies that graph(m) |=σ∪{x 7→σ(rep(k))} F

′,
which in turn implies that graph(m) |=σ ∃x.F .

• if holds that m |= M1[F, ρ∪{x 7→ e}, P∪{{x}}]∧(#e ≥ nP,ρ(e)+
1).
We set ρ′ = ρ∪{x 7→ e}, P ′ = P ∪{{x}} and define σ′ as follows:
since m |= (#e ≥ nP,ρ(e) + 1), it holds that

|{e′ ∈ Egraph(m) | ϕ(e′) = e}|

= m(e) > nP,ρ(e) = |{k ∈ P | ρ(rep(k)) = e}|

= |{ê ∈ Egraph(m) | ϕ(e′) = e ∧ ∃y ∈ free(F ).(σ(y) = ê)}|

This implies that there exists at least one edge e′ ∈ Egraph(m)

such that ϕ(e′) = e and for any y ∈ free(F ) it holds that σ(y) 6=
e′.
We can now define σ′ = σ ∪ {x 7→ e′} and it is immediate to see
that ϕ ◦ σ′ = ρ′.
Now let y P ′ z. We first assume that y, z ∈ free(F ), which im-
plies that y P z and therefore σ(y) = σ(z) and also σ′(y) = σ′(z).
If y = x = z, then it follows immediately that σ′(y) = σ′(z).
We now assume that σ′(y) = σ′(z). If y, z ∈ free(F ), then it
holds that σ(y) = σ(z), which implies that y P z and therefore
y P ′ z. If y = x then also z = x, since otherwise σ′(y) = e′ 6=
σ(z) which is a contradiction. So if y = x = z it trivially holds
that y P ′ z.
From the fact that ϕ ◦ σ′ = ρ′ and the considerations above it
follows immediately that y P ′ z implies ρ(y) = ρ(z).
Since m |= M1[F, ρ′, P ′] it follows from the induction hypothesis
that graph(m) |=σ∪{x7→e′} F

′ which implies that graph(m) |=σ

∃x.F ′.

The cases F = F1 ∧ F2 and F = ∀x.F ′ can be treated analogously to cases
shown above or can be shown by using deMorgan laws. 2

Whenever F is closed the proposition above trivially gives us the expected
result. i.e., graph(m) |= F iff m |= M1(F ).
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Example 14.6.3 Consider the formula F = ∃x.(lab(x) = A ∧

F2︷ ︸︸ ︷
∀y.¬(t(x) = s(y))︸ ︷︷ ︸
F1

).

The graph under consideration is the graph G on the right in Fig. 14.4
(containing a looping B-edge e1 and an A-edge e2). The encoding goes as
follows (with some simplifications of the formula along the way):

M1[F, ∅, ∅]

= (M1[F1, {x 7→ e1}, {{x}}] ∧ (#e1 ≥ 1)) ∨ (M1[F1, {x 7→ e2}, {{x}}] ∧ (#e2 ≥ 1))

= (M1[lab(x) = A, {x 7→ e1}, {{x}}]
| {z }

=false

∧M1[F2, {x 7→ e1}, {{x}}] ∧ (#e1 ≥ 1)) ∨

(M1[lab(x) = A, {x 7→ e2}, {{x}}]
| {z }

=true

∧M1[F2, {x 7→ e2}, {{x}}] ∧ (#e2 ≥ 1))

≡ M1[¬(t(x) = s(y)), {x, y 7→ e2}, {{x, y}}]
| {z }

=true

∧

(#e1 ≥ 1 ⇒ M1[¬(t(x) = s(y)), {x 7→ e2, y 7→ e1}, {{x}, {y}}]
| {z }

=false

) ∧

(#e2 ≥ 2 ⇒ M1[¬(t(x) = s(y)), {x, y 7→ e2}, {{x}, {y}}]
| {z }

=true

) ∧ (#e2 ≥ 1)

≡ ¬(#e1 ≥ 1) ∧ (#e2 ≥ 1)

14.7 Encoding Monadic Second-Order Graph Logic

In this section we show that also general monadic second-order graph formulae
in L2 can be encoded into multiset formulae. Differently from the first-order
case, the encoding is not defined inductively, but, still, quantifier elimination is
possible. We start with an easy but useful lemma.

Lemma 14.7.1 (Edge Permutations) Let σ,Σ be valuations such that
G |=σ,Σ F . Furthermore let π : G → G be an automorphism such that
sG(e) = sG(π(e)) and tG(e) = tG(π(e)). Then G |=π◦σ,π◦Σ F .

The encoding uses the fact that multiple copies of an edge are distinguished
only by their identity, but have the same source and target nodes and the same
label. Hence whenever we want to encode a first-order quantifier, we only have
to check all the edges that have already appeared so far and a fresh copy of
every edge in G. From this, as we will see, one can infer that for checking the
validity of a formula F it is sufficient to consider only up to qd1(F ) · 2qd2(F )

copies of every edge in the template graph G.

The following proposition basically states that if there are enough parallel
edges which belong to the same sets of the form Σ(X), where Σ is a second-
order valuation and X a second-order variable, then one of these edges can
be removed—provided that it is not in the range of the first-order valuation
σ—without changing the validity of a formula F .
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Proposition 14.7.2 Let G be a graph, F a graph formula in L2, let σ,Σ be
valuations for the free variables in F and let e ∈ EG be a fixed edge. Assume
that

(1) the edge e is not in the range of σ and

(2) |EG
Σ (e)| > (qd1(F ) + |dom(σ)|) · 2qd2(F ) where

EGΣ (e) = {e′ ∈ EG | sG(e) = sG(e′), tG(e) = tG(e′), lG(e) = lG(e′),

∀X ∈ dom(Σ).(e ∈ Σ(X) ⇐⇒ e′ ∈ Σ(X))}

Then G |=σ,Σ F ⇐⇒ G \ {e} |=σ,Σe F , where G \ {e} is obtained by removing
the edge e from graph G and Σe(X) = Σ(X)− {e}.

Proof: We go by structural induction on F .

F = (x = y): It holds that

G |=σ,Σ x = y ⇐⇒ σ(x) = σ(y) ⇐⇒ G\{e} |=σ,Σ\{e} x = y,

since e is not in the range of σ.

F = (s(x) = t(y)): It holds that

G |=σ,Σ s(x) = t(y) ⇐⇒ sG(σ(x)) = tG(σ(y))

⇐⇒ sG\{e}(σ(x)) = tG\{e}(σ(y)) ⇐⇒ G\{e} |=σ,Σ\{e} s(x) = t(y).

F = lab(x ,A): It holds that

G |=σ,Σ lab(x,A) ⇐⇒ lG(σ(x)) = A ⇐⇒ lG\{e}(σ(x)) = A

⇐⇒ G\{e} |=σ,Σ\{e} lab(x,A).

F = x ∈ X: It holds that

G |=σ,Σ x ∈ X ⇐⇒ σ(x) ∈ Σ(X) ⇐⇒ σ(x) ∈ Σ(X)\{e}

⇐⇒ σ(x) ∈ (Σ\{e})(X) ⇐⇒ G\{e} |=σ,Σ\{e} x ∈ X.

F = ¬F1: It holds that

G |=σ,Σ ¬F1 ⇐⇒ G 6|=σ,Σ F1 ⇐⇒ G\{e} 6|=σ,Σ\{e} F1

⇐⇒ G\{e} |=σ,Σ\{e} ¬F1

with the induction hypothesis and with the fact that F and F1 have the
same quantifier depth.

F = F1 ∧ F2: It holds that

G |=σ,Σ F1 ∧ F2 ⇐⇒ G |=σ,Σ F1 and G |=σ,Σ F2 ⇐⇒

G\{e} |=σ,Σ\{e} F1 and G\{e} |=σ,Σ\{e} F2 ⇐⇒ G |=σ,Σ\{e} F1 ∧ F2

with induction hypothesis and the fact that qd1(F1) ≤ qd1(F ), qd1(F2) ≤
qd1(F ), qd2(F1) ≤ qd2(F ) and qd2(F2) ≤ qd2(F ).
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F = ∀x.F1: G |=σ,Σ ∀x.F1 holds if and only if for all e′ ∈ EG we have that
G |=σ∪{x7→e′},Σ F1 (Condition (A)).

Let us first observe that Condition (2) is satisfied for the formula F1: i.e.
for all e′ ∈ EG we have

|EGΣ (e)| > (qd1(F ) + |dom(σ)|) · 2qd2(F ) =

(qd1(F1) + |dom(σ ∪ {x 7→ e′})|) · 2qd2(F1).

We have to show that (A) is equivalent to G\{e} |=σ∪{x7→e′},Σ\{e} F1 for
all e′ ∈ EG\{e} (Condition (B)).

• We first assume that (A) holds and we show thatG\{e} |=σ∪{x7→ē},Σ\{e}

F1 for a fixed ē ∈ EG\{e}.

From (A) it follows that G |=σ∪{x7→ē},Σ F1 is satisfied and since e is
not in the range of σ and Condition (2) is also satisfied, it follows
from the induction hypothesis that G\{e} |=σ∪{x7→ē},Σ\{e} F1.

• We now assume that (B) holds and we show that G |=σ∪{x7→ē},Σ F1

for a fixed ē ∈ EG.

We distinguish the following two cases:

– If ē 6= e, Condition (B) implies that G\{e} |=σ∪{x7→ē},Σ\{e} F1.
Then it follows with the induction hypothesis that G |=σ∪{x7→ē},Σ

F1.

– Now let ē = e and we assume that G 6|=σ∪{x7→ē},Σ F1. Since

|EGΣ (e)| > (qd1(F1) + |dom(σ ∪ {x 7→ e})|) · 2qd2(F1)

and therefore |EG
Σ (e)| > |dom(σ∪{x 7→ ē})|, it follows that there

is an edge ê ∈ EG
Σ (e), which is not in the range of σ ∪ {x 7→ e},

i.e. ê is not in the range of σ and e 6= ê.
Let π be a permutation on EG that exchanges e and ê and is
the identity otherwise. Lemma 14.7.1 implies that

G 6|=π◦(σ∪{x7→e}),π◦Σ F1.

And since π ◦ (σ ∪ {x 7→ e}) = σ ∪ {x 7→ ê} and π ◦Σ = Σ2, this
implies G 6|=σ∪{x7→ê},Σ F1.
Since now e is not in the range of σ∪{x 7→ ê} and Condition (2)
is also satisfied, it follows with the induction hypothesis that

G\{e} 6|=σ∪{x7→ê},Σ\{e} F1,

which is a contradiction to Condition (B).

F = ∀X.F1: G |=σ,Σ ∀X.F1 holds if and only if for all E ⊆ EG we have that
G |=σ,Σ∪{X 7→E} F1 (Condition (A)).

We have to show that (A) is equivalent to G\{e} |=σ,Σ\{e}∪{X 7→E} F1 for
all E ⊆ EG\{e} (Condition (B)).

2sloppy for {π(d) | d ∈ Σ(X)} = Σ(X). This is true because ê was chosen from the set
EG

Σ (e).
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• First assume that (A) holds and show G\{e} |=σ,Σ\{e}∪{X 7→Ē} F1 for

a fixed Ē ⊆ EG\{e}.

We distinguish the following two cases:

– It holds that |EG
Σ∪{X 7→Ē}

(e)| > (qd1(F1) + |dom(σ)|) · 2qd2(F1).

We know that G |=σ,Σ∪{X 7→Ē} F1 and we can apply the induction
hypothesis and obtain G\{e} |=σ,Σ\{e}∪{X 7→Ē\{e}} F1. And since

e 6∈ Ē, it follows that G\{e} |=σ,Σ\{e}∪{X 7→Ē} F1.

– It holds that |EG
Σ∪{X 7→Ē}

(e)| ≤ (qd1(F1) + |dom(σ)|) · 2qd2(F1).

Notice the following:

EGΣ (e) > (qd1(F ) + |dom(σ)|) · 2qd2(F ) =

(qd1(F1) + |dom(σ)|) · 2qd2(F1) · 2,

so we are given that

|EGΣ (e)\EG
Σ∪{X 7→Ē}(e)| > (qd1(F1) + |dom(σ)|) · 2qd2(F1).

Since e 6∈ Ē, it holds that

EGΣ∪{X 7→Ē∪{e}}(e) = [EG
Σ (e)\EG

Σ∪{X 7→Ē}(e)] ∪ {e}.

Hence

|EGΣ∪{X 7→Ē∪{e}}(e)| > (qd1(F1) + |dom(σ)|) · 2qd2(F1).

Since Condition (A) implies that G |=σ,Σ∪{X 7→Ē∪{e}} F1 and
Condition (2) is satisfied, the induction hypothesis implies

G\{e} |=σ,Σ\{e}∪{X 7→Ē} F1.

• We now assume that (B) holds and we show that G |=σ,Σ∪{X 7→Ē} F1

for a fixed Ē ⊆ EG.

We distinguish the following two cases:

– It holds that |EG
Σ∪{X 7→Ē}

(e)| > (qd1(F1) + |dom(σ)|) · 2qd2(F1).

We know that G\{e} |=σ,Σ\{e}∪{X 7→Ē\{e}} F1 and we can apply
the induction hypothesis and obtain G |=σ,Σ∪{X 7→Ē} F1.

– It holds that |EG
Σ∪{X 7→Ē}

(e)| ≤ (qd1(F1) + |dom(σ)|) · 2qd2(F1)

and we assume that G 6|=σ,Σ∪{X 7→Ē} F1.
Since

EGΣ (e) > (qd1(F ) + |dom(σ)|) · 2qd2(F )

= (qd1(F1) + |dom(σ)|) · 2qd2(F1) · 2,

it holds that

|EGΣ (e)\EG
Σ∪{X 7→Ē}(e)| > (qd1(F1) + |dom(σ)|) · 2qd2(F1)

> |dom(σ)|.
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Therefore, there is an edge ê ∈ EG
Σ (e)\EG

Σ∪{X 7→Ē}
(e), which is

not in the range of σ. We pick a permutation π which exchanges
e and ê and is the identity otherwise.
Since π ◦ σ = σ and π ◦ (Σ ∪ {X 7→ Ē}) = Σ ∪ {X 7→ π(Ē)}, it
follows from Lemma 14.7.1 that G 6|=σ,Σ∪{X 7→π(Ē)} F1.
Furthermore

EGΣ∪{X 7→π(Ē)}(e) = [EG
Σ (e)\EG

Σ∪{X 7→Ē}(e)]\{ê} ∪ {e}

and therefore

|EGΣ∪{X 7→π(Ē)}(e)| > (qd1(F1) + |dom(σ)|) · 2qd2(F1),

so Condition (2) is satisfied and we can apply the induction
hypothesis. It follows that

G\{e} 6|=σ,Σ\{e}∪{X 7→π(Ē)\{e}} F1,

which is a contradiction to Condition (B).

2

From Proposition 14.7.2 we infer the following corollary.

Corollary 14.7.3 Let F be a closed graph formula in L2. Let furthermore
G be a graph and m ∈ E⊕G be a multiset over (the set of edges of) G. Then
graph(m) |= F if and only if graph(m′) |= F , where m′ ∈ E⊕G is defined by
m′(e) = min{m(e), qd1(F ) · 2qd2(F )}.

Proof: If F has no free variables then E
graph(m)
Σ (e) = {(e, i) | 1 ≤ i ≤ m(e)}.

Using Proposition 14.7.2, we can thus reduce the number of copies for every
edge to the number qd1(F ) · 2qd2(F ), without changing the truth value of F . 2

The following corollary shows that every graph-statement of full monadic
second-order logic can be encoded into a multiset formula.

Corollary 14.7.4 Let G be a fixed template graph. A closed graph formula F
in L2 can be encoded into a logical formula M2(F ) on multisets as follows. For
any multiset k ∈ E⊕G , let Ck be the conjunction over the following formulae:

• #e = k(e) for every e ∈ EG satisfying k(e) < qd1(F ) · 2qd2(F ) and

• #e ≥ k(e) for every e ∈ EG satisfying k(e) = qd1(F ) · 2qd2(F ).

Define M2(F ) to be the disjunction of all Ck such that k ∈ E⊕G , graph(k) |= F
and k(e) ≤ qd1(F ) · 2qd2(F ) for every e ∈ EG.

Then graph(m) |= F ⇐⇒ m |= M2(F ) for every m ∈ E⊕G .

Proof: Let m ∈ E⊕G be an arbitrary multiset and let m′ be a multiset defined
as in Corollary 14.7.3, i.e. m′(e) = min{m(e), qd1(F ) · 2qd2(F )}. for e ∈ EG.
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If graph(m) |= F then, by Corollary 14.7.3, graph(m′) |= F . Hence, by
definition of M2, Cm′ appears as a disjunct in M2(F ). Since, clearly, m |= Cm′ ,
we conclude that m |= M2(F ).

Vice versa, let m |= M2(F ). Then m |= Ck for some k ∈ E⊕G and graph(k) |=
F . By the shape of Ck, it is immediate to see that this implies k = m′. Therefore
graph(m′) |= F , and thus, by Corollary 14.7.3, graph(m) |= F . 2

Proof: Fix an arbitrary m ∈ E⊕G . Let m′ be a multiset defined as in Corol-
lary 14.7.3, i.e.

m′(e) = min{m(e), qd1(F ) · 2qd2(F )}.

First we note that graph(m) |= Cm′ by the definition of Cm′ . But if the marking
k ∈ E⊕G is below the bound given by m′ and k 6= m′ then Ck is false in graph(m).

Now look at the definition of M2(F ), we throw Ck into the disjunction
M2(F ) only if graph(k) |= F . So the disjunction M2(F ) holds in graph(m) if and
only if F holds in graph(m′). But graph(m′) |= F if and only if graph(m) |= F
by Corollary 14.7.3. Hence M2(F ) is a correct encoding of the formula F . 2

To conclude let us show how the general schema outlined at the end of
Section 14.2 applies to our running example. We want to verify that Sys satisfies
a safety property, i.e., the absence of vicious cycles, including two distinct P2

processes, in all reachable graphs. Let 2Lµ be a fragment of the µ-calculus
without negation and “possibility operator” 3 (see [LGS+95]), where basic
predicates are formulae F taken from our graph logic L2, which can be typed
as “reflected by graph morphisms”, i.e., such that F :← is provable. The
property of interest can be expressed in 2Lµ as:

TNC = µϕ.(NC P2
∧2ϕ )

where NC` is the formula considered in a previous example. Then TNC can
be translated into a formula over markings, by translating its graph formula
components according to the techniques described in Sections 14.6 and 14.7.
This will lead to the formula M2(TNC) = µϕ.(M2(NCP2

)∧2ϕ ). By the results
in this paper and by the results in [2], for T in 2Lµ, if U(Sys) |= M2(T ) then
Sys |= T . Therefore the formula TNC can be checked by verifying M2(TNC)
on the Petri net component of the approximated unfolding. In this case it can
be easily verified that M2(TNC) actually holds in U(Sys) and thus we conclude
that Sys satisfies the desired property.

14.8 Conclusion

We have presented a logic for specifying graph properties, useful for the veri-
fication of graph transformation systems. A type system allows us to identify
formulae of this logic reflected by edge-bijective morphisms, which can therefore
be verified on the covering, i.e., on the finite Petri graph approximation of a
GTS. Furthermore we have shown how, given a fixed approximation of the orig-
inal system, we can perform quantifier-elimination and encode these formulae
into boolean combination of atomic predicates on multisets. Combined with
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the approximated unfolding algorithm of [1], this gives a method for the verifi-
cation and analysis of graph transformation systems. This form of abstraction
is different from the usual forms of abstract interpretation since it abstracts the
structure of a system rather than its data. Maybe the closest relation is shape
analysis, abstracting the data structures of a program [NNH99, SRW96].

We would like to add some remarks concerning the practicability of this
approach: we are currently developing an implementation of the approximated
unfolding algorithm, which inputs and outputs graphs in the Graph Exchange
Language (GXL) format, based on XML. It remains to be seen up to which size
of a GTS the computation of the approximation is still feasible.

Furthermore encoding a formula into multiset logic may result in a blowup
of the size of the formula which is at least exponential. However, provided that
formulae are rather small if compared to the size of the system or its approxi-
mation, this blowup should be manageable. It is also conceivable to simplify a
formula during its encoding (see the example at the end of Section 14.6). The
encoding itself is not yet implemented, but we plan to do so in the future.

Finally the Petri net produced by the approximated unfolding algorithm
and the formula itself have to be analysed by a model checker or a similar tool,
based on the procedures described in [HRY91, HR89, Jan90]. Note that formu-
lae on multisets can not be combined with the temporal operators of CTL∗ in
an arbitrary way. First, we have to make sure that the resulting formula is still
reflected, with respect to the simulation, hence no existential path quantifica-
tion is allowed. Furthermore, arbitrary combinations of the temporal operators
“eventually” and “generally” might make the model-checking problem undecid-
able. However, important fragments are still decidable, for example a property
like “all reachable graphs satisfy F”, where F is a multiset formula, can be
checked. As far as we know, there is not much tool support for model-checking
unbounded Petri nets, but these algorithms usually rely on the computation of
the coverability graph of a Petri net, which is a well-studied problem [Rei85].

Currently we are mainly interested in proving safety properties, liveness
properties require some more care (see [PXZ02]). Another interesting line of
future research is to adopt techniques used for the analysis of transition systems
specified by integer constraints [Del00].

Acknowledgements: We are very grateful to Andrea Corradini for his con-
tribution to the development of the approximated unfolding technique on which
this paper is based. We would also like to thank Ingo Walther who is currently
working on an implementation. We are also grateful to the anonymous referees
for their valuable comments.
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Chapter 15

Verifying Finite-State Graph
Grammars: an
Unfolding-Based Approach
(Joint work with Paolo Baldan and Andrea Corradini)

Abstract

We propose a framework where behavioural properties of finite-
state systems modelled as graph transformation systems can
be expressed and verified. The technique is based on the un-
folding semantics and it generalises McMillan’s complete prefix
approach, originally developed for Petri nets, to graph trans-
formation systems. It allows to check properties of the graphs
reachable in the system, expressed in a monadic second order
logic.

15.1 Introduction

Graph transformation systems (GTSs) are recognised as an expressive spec-
ification formalism, properly generalising Petri nets and especially suited for
concurrent and distributed systems [EKMR99]: the (topo)logical distribution
of a system can be naturally represented by using a graphical structure and
the dynamics of the system, e.g., the reconfigurations of its topology, can be
modelled by means of graph rewriting rules.

The concurrent behaviour of GTSs has been thoroughly studied and a con-
solidated theory of concurrency for GTSs is available, including the generali-
sation of several semantics of Petri nets, like process and unfolding semantics
(see, e.g., [CMR96, Rib96, BCM99]). However, only recently, building on these
semantical foundations, some efforts have been devoted to the development of
frameworks where behavioural properties of GTSs can be expressed and verified
(see [GHK98, Kön00b, Hec98, Var02, Ren03, 1]).

As witnessed, e.g., by the approaches in [McM93, Esp94] for Petri Nets,
truly concurrent semantics are potentially useful in the verification of finite-
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state systems, in that they help to avoid the combinatorial explosion arising
when one explores all possible interleavings of events. Still, to the best of our
knowledge, no technique based on partial order (process or unfolding) semantics
has been proposed for the verification of finite-state GTSs.

In this paper we contribute to this topic by proposing a verification frame-
work for finite-state graph transformation systems based on their unfolding
semantics. Our technique is inspired by the approach originally developed by
McMillan for Petri nets [McM93] and further developed by many authors (see,
e.g., [Esp94, ERV66, VSY98]). More precisely, our technique applies to any
graph grammar, i.e., any set of graph rewriting rules with a fixed start graph
(the initial state of the system), which is finite-state in a liberal sense: the set
of graphs which can be reached from the start graph, considered not only up
to isomorphism, but also up to isolated nodes, is finite. Hence in a finite-state
graph grammar in our sense there is not actually a bound to the number of
nodes generated in a computation, but only to the nodes which are connected
to some edge at each stage of the computation. Existing model-checking tools,
such as SPIN [Hol97], usually do not directly support the creation of an ar-
bitrary number of objects while still maintaining a finite state space, making
entirely non-trivial their use for checking finite-state GTSs (similar problems
arise for process calculi agents with name creation).

As a first step we face the problem of identifying a finite, still useful frag-
ment of the unfolding of a GTS. In fact, the unfolding construction for GTSs
produces a structure which fully describes the concurrent behaviour of the sys-
tem, including all possible steps and their mutual dependencies, as well as all
reachable states. However, the unfolding is infinite for non-trivial systems, and
cannot be used directly for model-checking purposes.

Following McMillan’s approach, we show that given any finite-state graph
grammar G a finite fragment of its unfolding which is complete, i.e., which
provides full information about the system as far as reachability (and other)
properties are concerned, can be characterised as the maximal prefix of the
unfolding not including cut-off events. The greater expressiveness of GTSs,
and specifically, the possibility of performing “contextual” rewritings (i.e., of
preserving part of the state in a rewriting step), a feature which leads to multiple
local histories for a single event (see, e.g., the work on contextual nets [PP95,
Vog97, BCM01, VSY98]), imposes a generalisation of the original notion of
cut-off.

Unfortunately the characterisation of the finite complete prefix is not con-
structive. Hence, while leaving as an open problem the definition of a general
algorithm for constructing such a prefix, we identify a significant subclass of
graph grammars where an adaptation of the existing algorithms for Petri nets
is feasible. These are called read-persistent graph grammars by analogy with
the terminology used in the work on contextual nets [VSY98].

In the second part we consider a logic L2 where graph properties of inter-
est can be expressed, like the non-existence and non-adjacency of edges with
specific labels, the absence of certain paths (related to security properties) or
cycles (related to deadlock-freedom). This is a monadic second-order logic over
graphs where quantification is allowed over (sets of) edges. (Similar logics are
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considered in [Cou97] and, in the field of verification, in [Ren03, 3].) Then
we show how a complete finite prefix of a grammar G can be used to verify
properties, expressed in L2, of the graphs reachable in G. This is done by ex-
ploiting both the graphical structure underlying the prefix and the concurrency
information it provides.

The rest of the paper is organised as follows. Section 15.2 introduces graph
transformation systems and their unfolding semantics. Section 15.3 studies fi-
nite complete prefixes for finite-state GTSs. Section 15.4 introduces a logic
for GTSs, showing how it can be checked over a finite complete prefix. Fi-
nally, Section 15.5 draws some conclusions and indicates directions of further
research. A more detailed presentation of the material in this paper can be
found in [BCK04a].

15.2 Unfolding semantics of graph grammars

This section presents the notion of graph rewriting used in the paper. Rewriting
takes place on so-called typed graphs, namely graphs labelled over a structure
that is itself a graph [CMR96]. It can be seen as a set-theoretical presen-
tation of an instance of algebraic (single- or double-pushout) rewriting (see,
e.g., [CMR+97]). Next we review the notion of occurrence grammar, which is
instrumental in defining the unfolding of a graph grammar [BCM99, Rib96].

15.2.1 Graph Transformation Systems

In the following, given a set A we denote by A∗ the set of finite strings of
elements of A. Given u ∈ A∗ we write |u| to indicate the length of u. If
u = a0 . . . an and 0 ≤ i ≤ n, by [u]i we denote the i-th element ai of u.
Furthermore, if f : A → B is a function then we denote by f ∗ : A∗ → B∗ its
extension to strings.

A (hyper)graph G is a tuple (VG, EG, cG), where VG is a set of nodes, EG
is a set of edges and cG : EG → VG

∗ is a connection function. A node v ∈ VG
is called isolated if it is not connected to any edge. Given two graphs G,G′, a
graph morphism ϕ : G→ G′ is a pair 〈ϕV : VG → VG′ , ϕE : EG → EG′〉 of total
functions such that for all e ∈ EG, ϕV

∗(cG(e)) = cG′(ϕE(e)). When obvious
from the context, the subscripts V and E will be omitted.

Definition 15.2.1 (typed graph) Given a graph (of types) T , a typed graph
G over T is a graph |G|, together with a morphism typeG : |G| → T . A
morphism between T -typed graphs f : G1 → G2 is a graph morphism f : |G1| →
|G2| consistent with the typing, i.e., such that typeG1

= typeG2
◦ f .

A typed graph G is called injective if the typing morphism typeG is injective.
More generally, given n ∈ N, the graph is called n-injective if for any item x
in T , |type−1

G (x)| ≤ n, namely if the number of “instances of resources” of any
type x is bounded by n. Given two (typed) graphs G and G′ we will write
G ' G′ to mean that G and G′ are isomorphic, and G

...
'G′ when G and G′
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are isomorphic up to isolated nodes, i.e., once their isolated nodes have been
removed.

In the sequel we extensively use the fact that given a graph G, any subgraph
of G without isolated nodes is identified by the set of its edges. Precisely, given
a subset of edges X ⊆ EG, we denote by graph(X) the least subgraph of G
(actually the unique subgraph, up to isolated nodes) having X as set of edges.

We will use some set-theoretical operations on (typed) graphs with “com-
ponentwise” meaning. Let G and G′ be T -typed graphs. We say that G and G′

are consistent if G∪G′ defined as (V|G| ∪ V|G′|, E|G| ∪E|G′|, cG ∪ cG′), typed by
typeG∪typeG′ , is a well-defined T -typed graph. In this case also the intersection
G ∩ G′, constructed in a similar way, is well-defined. Given a graph G and a
set (of edges) E we denote by G − E the graph obtained from G by removing
the edges in E. Sometimes we will also refer to the items (nodes and edges)
in G−G′, where G and G′ are graphs, although the structure resulting as the
componentwise set-difference of G and G′ might not be a well-defined graph.

Definition 15.2.2 (production) Given a graph of types T , a T -typed pro-
duction is a pair of finite consistent T -typed graphs q = (L,R), often written
L→ R, such that 1) L∪R and L do not include isolated nodes; 2) V|L| ⊆ V|R|;
and 3) E|L| − E|R| and E|R| − E|L| are non-empty.

A rule L → R specifies that, once an occurrence of L is found in a graph G,
then G can be rewritten by removing (the images in G of) the items in L−R
and adding those in R−L. The (images in G of the) items in L∩R instead are
left unchanged: they are, in a sense, preserved or read by the rewriting step.

This informal explanation should also motivate Conditions 1–3 above. Con-
dition 1 essentially states that we are interested only in rewriting up to isolated
nodes: by the requirement on L ∪R, no node is isolated when created and, by
the requirement on L, nodes that become isolated have no influence on further
reductions. Thus one can safely assume that isolated nodes are removed by
some kind of garbage collection. Consistently with this view, by Condition 2
productions cannot delete nodes (deletion can be simulated by leaving that node
isolated). Condition 3 ensures that every production consumes and produces
at least one edge: a requirement corresponding to T -restrictedness in Petri net
theory.

Definition 15.2.3 (graph rewriting) Let q = L → R be a T -typed pro-
duction. A match of q in a T -typed graph G is a morphism ϕ : L → G,
satisfying the identification condition, i.e., for e, e′ ∈ E|L|, if ϕ(e) = ϕ(e′)
then e, e′ ∈ E|R|. In this case G rewrites to the graph H, obtained as H =
((G− ϕ(E|L| − E|R|)) ]R)/≡, where ≡ is the least equivalence on the items of
the graph such that x ≡ ϕ(x). We write G⇒q,ϕ H or simply G⇒q H.

A rewriting step is schematically represented in Fig. 15.1. Intuitively, in the
graph H ′ = G− ϕ(E|L| − E|R|) the images of all the edges in L−R have been
removed. Then in order to get the resulting graph, merge R to H ′ along the
image through ϕ of the preserved subgraph L∩R. Formally the resulting graph
H is obtained by first taking H ′]R and then by identifying, via the equivalence
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Figure 15.1: A rewriting step, schematically.

≡, the image through ϕ of each item in L ∩ R with the corresponding item in
R.

Definition 15.2.4 (graph transformation system and graph grammar)
A graph transformation system (GTS) is a triple R = 〈T, P, π〉, where T is a
graph of types, P is a set of production names and π is a function mapping
each production name q ∈ P to a T -typed production π(q) = Lq → Rq. A graph
grammar is a tuple G = 〈T,Gs, P, π〉 where 〈T, P, π〉 is a GTS and Gs is a
finite T -typed graph, without isolated nodes, called the start graph. We denote
by Elem(G) the (disjoint) union ET ] P , i.e., the set of edges in the graph of
types and the production names. We call G finite if the set Elem(G) is finite.

A T -typed graph G is reachable in G if Gs ⇒
∗
G G

′ for some G′ ' G, where ⇒∗G
is the transitive closure of the rewriting relation induced by productions in G.

We remark that Place/Transition Petri nets can be viewed as a special
subclass of typed graph grammars. Say that a graph G is edge-discrete if its set
of nodes is empty (and thus edges have no connections). Given a P/T net P ,
let TP be the edge-discrete graph having the set of places of P as edges. Then
any finite edge-discrete graph typed over TP can be seen as a marking of P :
an edge typed over s represents a token in place s. Using this correspondence,
a production Lt → Rt faithfully represents a transition t of P if Lt encodes
the marking pre-set(t), Rt encodes post-set(t), and Lt ∩ Rt = ∅. The graph
grammar corresponding to a Petri net is finite iff the original net has finitely
many places and transitions. Observe that the generalisation from edge-discrete
to proper graphs radically changes the expressive power of the formalism. For
instance, unlike P/T Petri nets, the class of grammars in this paper is Turing
complete.

Example 15.2.5 Consider the graph grammar CP, modeling a system where
three processes of type P are connected to a communication manager of type CM
(see the start graph in Fig. 15.2, where edges are represented as rectangles
and nodes as small circles). Two processes may establish a new connection
with each other via the communication manager, becoming processes engaged
in communication (typed PE , the only edge with more than one connection).
This transformation is modelled by the production [engage] in Fig. 15.2: ob-
serve that a new node connecting the two processes is created. The second
production [release] terminates the communication between two partners. A
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Figure 15.2: The finite-state graph grammar CP.

typed graph G over TCP is drawn by labeling each edge or node x of G with
“: typeG(x)”. Only when the same graphical item x belongs to both the left-
and the right-hand side of a production we include its identity in the label
(which becomes “x : typeG(e)”): in this case we also shade the item, to stress
that it is preserved by the production.

The notion of safety for graph grammars [CMR96] generalises the one for
P/T nets which requires that each place contains at most one token in any
reachable marking. More generally, we extend to graph grammars the notion
of n-boundedness.

Definition 15.2.6 (bounded/safe grammar) For a fixed n ∈ N, we say
that a graph grammar G is n-bounded if for all graphs H reachable in G there is
an n-injective graph H ′ such that H ′

...
'H. A 1-bounded grammar will be called

safe.

The definition can be understood by thinking of edges of the graph of types T as
a generalisation of places in Petri nets. In this view the number of different edges
of a graph which are typed on the same item of T corresponds to the number
of tokens contained in a place. Observe that for finite graph grammars, n-
boundedness amounts to the property of being finite-state (up to isomorphism
and up to isolated nodes). In the sequel when considering a finite-state graph
grammar we will (often implicitly) assume that it is also finite.

For instance, the graph grammar CP in Fig. 15.2 is clearly 3-bounded and
thus finite-state (but only up to isolated nodes).

15.2.2 Nondeterministic Occurrence Grammars

When a graph grammar G is safe, and thus reachable graphs are injectively
typed, at every step, for any item t in the type graph every production can con-
sume, preserve and produce a single item typed t. Hence we can safely think
that a production, according to its typing, consumes, preserves and produces
items of the graph of types. Using a net-like language, we speak of pre-set •q,
context q and post-set q• of a production q. Since we work with graphs consid-
ered up to isolated nodes, we will record in these sets only edges. Formally, for

212



any production q of a graph grammar G = 〈T,Gs, P, π〉, we define

•q = typeLq
(E|Lq | −E|Rq |) q = typeLq

(E|Lq∩Rq |) q• = typeRq
(E|Rq | −E|Lq |)

Furthermore, for any edge e in T we define •e = {q ∈ P : e ∈ q•}, e = {q ∈ P :
e ∈ q}, e• = {q ∈ P : e ∈ •q}. This notation is extended also to nodes in the
obvious way, e.g., for v ∈ VT we define •v = {q ∈ P : v ∈ typeRq

(V|Rq |−V|Lq |)}.
An example of safe grammar can be found in Fig. 15.3 (for the moment

ignore its relation to grammar CP in Fig. 15.2). For this grammar, •engage1 =
{2: P, 3: P}, engage1 = {1: CM} and engage1• = {5: PE, 6: PE}, while
•1: CM = ∅, 1 : CM = {engage1, engage2, engage3} and 3: P • = {engage1,
engage3}.

Definition 15.2.7 (causal relation) The causal relation of a safe grammar
G is the least transitive relation < over Elem(G) satisfying, for any edge e in
the graph of types T , and for productions q, q′ ∈ P :

1. e ∈ •q ⇒ e < q; 2. e ∈ q• ⇒ q < e; 3. q• ∩ q′ 6= ∅ ⇒ q < q′.

As usual ≤ is the reflexive closure of <. Moreover, for x ∈ Elem(G) we denote
by bxc the set of causes of x in P , namely bxc = {q ∈ P : q ≤ x}.

Note that the fact that an item is preserved by q and consumed by q′, i.e.,
q ∩ •q′ 6= ∅ does not imply q < q′. In this case, the dependency between the
two productions is a kind of asymmetric conflict (see [BCM01, PP95, Lan92,
VSY98]): The application of q′ prevents q from being applied, so that q can
never follow q′ in a derivation (or, equivalently, if both q and q′ occur in a
derivation then q must precede q′).

Definition 15.2.8 (asymmetric conflict) The asymmetric conflict ↗ of a
safe grammar G is the relation over the set of productions P , defined by q ↗ q ′

if:

1. q ∩ •q′ 6= ∅; 2. •q ∩ •q′ 6= ∅ and q 6= q′; 3. q < q′.

Condition 1 is justified by the discussion above. Condition 2 essentially ex-
presses the fact that the ordinary symmetric conflict is encoded, in this setting,
as an asymmetric conflict in both directions. More generally, we will write q#q ′

and say that q and q′ are in conflict when the causes of q and q′, i.e., bqc∪ bq′c,
includes a cycle of asymmetric conflict. Finally, since < represents a global
order of execution, while ↗ determines an order of execution only locally to
each computation, it is natural to impose↗ to be an extension of < (Condition
3).

Definition 15.2.9 ((nondeterministic) occurrence grammar) A (nonde-
terministic) occurrence grammar is a safe grammar O = 〈T,Gs, P, π〉 such that

1. ≤ is a partial order; for any q ∈ P , bqc is finite and ↗ is acyclic on bqc;

2. Gs is the graph graph(Min(O)) generated by the set Min(O) of minimal
elements of 〈Elem(O),≤〉, typed over T by the inclusion;
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3. any item x in T is created by at most one production in P , i.e., | •x |≤ 1;

4. for each q ∈ P , the typing typeLq
is injective on the “consumed” items in

|Lq|− |Rq|, and typeRq
is injective on the “produced” items in |Rq|− |Lq|.

Since the start graph of an occurrence grammar O is determined by Min(O),
we often do not mention it explicitly.

Intuitively, Conditions 1–3 recast in the framework of graph grammars the
conditions of occurrence nets (actually of occurrence contextual nets [BCM01,
VSY98]). In particular, in Condition 1, the acyclicity of asymmetric conflict
on bqc corresponds to the requirement of irreflexivity for the conflict relation in
occurrence nets. Condition 4, instead, is closely related to safety and requires
that each production consumes and produces items with multiplicity one. An
example of an occurrence grammar is given in Fig. 15.3.

15.2.3 Concurrent Subgraphs, Configurations and Histories

The finite computations of an occurrence grammar are characterised by special
subsets of productions closed under causal dependencies and with no conflicts
(i.e., cycles of asymmetric conflict), suitably ordered.

Definition 15.2.10 (configuration) Let O = 〈T, P, π〉 be an occurrence gram-
mar. A configuration of O is a finite subset of productions C ⊆ P such that
↗C (the asymmetric conflict restricted to C) is acyclic, and for any q ∈ C,
bqc ⊆ C. Given two configurations C1, C2 we write C1 v C2 if C1 ⊆ C2 and
for any q1 ∈ C1, q2 ∈ C2, if q2 ↗ q1 then q2 ∈ C1.

The set of all configurations of O, ordered by v, is denoted by Conf (O).

Proposition 15.2.11 (reachability of graphs generated by configura-
tions) Let O be an occurrence grammar, C ∈ Conf (O) be a configuration and

G(C) = graph((Min(O) ∪
⋃
q∈C q

•)−
⋃
q∈C

•q).

Then a graph G such that G
...
'G(C) can be obtained from the start graph of O,

by applying all the productions in C in any order compatible with ↗.

Due to the presence of asymmetric conflicts, given a production q, the his-
tory of q, i.e., the set of events which must precede q in a computation is not
uniquely determined by q, but it depends also on the particular computation:
the history of q can or can not include the productions in asymmetric conflict
with q.

Definition 15.2.12 (history) Let O be an occurrence grammar, let C ∈
Conf (O) be a configuration and let q ∈ C. The history of q in C is the set of
events C[[q]] = {q′ ∈ C : q′ ↗∗C q}. We denote by Hist(q) the set of histories of
q, i.e., Hist(q) = {C[[q]] : C ∈ Conf (O)}.

Reachable states can be characterised in terms of a concurrency relation.
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Definition 15.2.13 (concurrent graph) Let O = 〈T, P, π〉 be an occurrence
grammar. A finite subset of edges E ⊆ ET is called concurrent, written co(E),
if

1. ↗E, the asymmetric conflict restricted to
⋃
x∈Ebxc, is acyclic;

2. ¬(x < y) for all x, y ∈ E.

A subgraph G of T is called concurrent, written co(G), if co(EG).

It can be shown that the maximal concurrent subgraphs G of T correspond
exactly (up to isolated nodes) to the graphs reachable from the start graph.

15.2.4 Unfolding of graph grammars

The unfolding construction, when applied to a grammar G, produces a nondeter-
ministic occurrence grammar U(G) describing the behaviour of G. A construc-
tion for the double-pushout algebraic approach to graph rewriting has been
proposed in [BCM99]: the one sketched here is simpler because productions
cannot delete nodes and thus the dangling edge condition does not play a role.

The construction begins from the start graph of G, and then applies in
all possible ways its productions to concurrent subgraphs, recording in the
unfolding each occurrence of production and each new graph item generated
in the rewriting process.

Definition 15.2.14 (unfolding - sketch) Let G = 〈T,Gs, P, π〉 be a graph
grammar. The unfolding U(G) = 〈T ′, G′s, P

′, π′〉 is the “componentwise” union

of the following inductively defined sequence of occurrence grammars U(G)[n].

(n = 0) U(G)[0] consists of the start graph |Gs|, with no productions.

(n→ n + 1) Take q ∈ P and let m be a match of q in the graph of types of

U(G)[n], satisfying the identification condition, such that m(|Lq|) is concurrent.

Then the occurrence grammar U(G)[n+1] is obtained by “recording” in U(G)[n]

the application of q at the match m. More precisely, a new production q ′ =
〈q,m〉 is added and the graph of types T [n] is extended by adding to it a copy of
each item generated by the application q, without deleting any item.

The unfolding is mapped over the original grammar by the so-called folding
morphism χ = 〈χT , χP 〉 : U(G) → G. The first component χT : T ′ → T is a
graph morphism mapping each graph item in the (graph of types of) the unfold-
ing to the corresponding item in the (graph of types of) the original grammar
G. The second component χP : P ′ → P maps any production occurrence 〈q,m〉
in the unfolding to the corresponding production q of G.

The occurrence grammar in Fig. 15.3 is an initial part of the (infinite)
unfolding of the grammar CP in Fig. 15.2. For instance, production engage1 is
an occurrence of production engage in CP, applied at the match consisting of
the edges 1: CM , 2 : P , 3 : P . Unfolding such a match, three new graph items,
two edges 5: PE, 6 : PE and a node, are added to the graph of types of the
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unfolding. Note that the graph of types of the (partial) unfolding (call it TT )
is typed over the graph of types TCP of the original grammar (via the folding
morphism χT : TT → TCP). This explains why the edges of the graphs in the
productions of the unfolding, which are typed over TT , are marked with names
including two colons.

The unfolding provides a compact representation of the behaviour of G, and
in particular it represents all the graphs reachable in G, in the following sense.

Theorem 15.2.15 (completeness of the unfolding) Let G = 〈T,Gs, P, π〉
be a graph grammar. A T -typed graph G is reachable in G iff there exists
a maximal concurrent subgraph X ′ of the graph of types of U(G) such that
G ' 〈X ′, χT |X′〉.

15.3 Finite Prefix for Graph Grammars

Let G = 〈T,Gs, P, π〉 denote a graph grammar, fixed throughout the section,
and let U(G) = 〈T ′, P ′, π′〉 be its unfolding with χ : U(G) → G the folding
morphism, as in Definition 15.2.14. Given a configuration C of U(G), recall
from Proposition 15.2.11 that G(C) denotes the subgraph of T ′ reached after
the execution of the productions in C (up to isolated nodes). We shall denote
by Reach(C) the same graph, seen as a graph typed over T by the restriction
of the folding morphism, i.e., Reach(C) = 〈G(C), χT |G(C)〉.

To identify a finite prefix of the unfolding the idea consists of avoiding to
keep in the unfolding useless productions, i.e., productions which do not con-
tribute to generating new graphs. The definition of “cut-off event” introduced
by McMillan for Petri nets in order to formalise such a notion has to be adapted
to this context, since for graph grammars a production may have different his-
tories.

Definition 15.3.1 (cut-off) A production q ∈ P ′ of the unfolding U(G) is a
cut-off if there exists q′ ∈ P ′ such that Reach(bqc) ' Reach(bq′c) and |bq′c| <
|bqc|.

A production q is a strong cut-off if for all Cq ∈ Hist(q) there exist q′ ∈ P ′

and Cq′ ∈ Hist(q′) such that Reach(Cq) ' Reach(Cq′) and |Cq′ | < |Cq|. The
truncation of G is the greatest prefix T (G) of U(G) not including strong cut-offs.

Theorem 15.3.2 (completeness and finiteness of the truncation) The
truncation T (G) is a complete prefix of the unfolding, i.e., for any reachable
graph G of G there is a configuration C in Conf (T (G)) such that Reach(C)

...
'G.

Furthermore, if G is n-bounded then the truncation T (G) is finite.

Unfortunately, the proof of the above theorem does not suggest a way of
constructing the truncation for finite-state graph grammars. The problem es-
sentially resides in the fact that the notion of strong cut-off refers to the set
of histories of a production, which is, in general, infinite. While leaving the
solution for the general case as an open problem, we next discuss how a finite
complete prefix can be derived for a class of grammars for which this problem
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disappears. This still interesting class of graph grammars is characterised by a
property that we call “read-persistence”, since it appears as the graph grammar
theoretical version of read-persistence as defined for contextual nets [VSY98].

Definition 15.3.3 (read-persistence) An occurrence grammar O = 〈T, P, π〉
is called read-persistent if for any q1, q2 ∈ P , if q1 ↗ q2 then q1 ≤ q2 or
q1#q2. A graph grammar G is called read-persistent if its unfolding U(G) is
read-persistent.

It can be shown that an adaptation of the algorithm originally proposed
in [McM93] for ordinary nets and extended in [VSY98] to read-persistent con-
textual nets, works for read-persistent graph grammars. In particular, the no-
tion of strong cut-off can be safely replaced by the weaker notion of (ordinary)
cut-off. An obvious class of read-persistent graph grammars consists of all the
grammars G where any edge preserved by productions is never consumed.

For instance, the grammar CP in our running example is read-persistent,
since the communication manager CM , the only edge preserved by productions,
is never consumed. Its truncation is the graph grammar T (CP) depicted in
Fig. 15.3. Denote by TT its type graph. Note that applying the production
[release] to any subgraph of TT matching its left-hand side would result in a cut-
off: this is the reason why T (CP) does not include any instance of production
[release]. The start graph of the truncation is isomorphic to the start graph
of grammar CP and it is mapped injectively to the graph of types TT in the
obvious way.

1: CM

: 2 : P

: 3 : P

: 2 : P

: 4 : P

: 3 : P

: 4 : P

: 5 : PE

: 6 : PE

: 8 : PE

: 9 : PE

: 10 : PE

1: 1 : CM

1: 1 : CM

1: 1 : CM 1: 1 : CM

[engage 1]

[engage 2]

[engage 3]

2: 11 : v

2: 11 : v

Type graph

2: P

3: P

4: P

5: PE

6: PE

7: PE

8: PE

10: PE

9: PE

11: v

1: 1 : CM

1: 1 : CM

12: w

13: w

14: w

2: 11 : v

2: 11 : v

: 12 : w

2: 11 : v

2: 11 : v

: 13 : w

: 14 : w

: 7 : PE

Figure 15.3: The truncation T (CP) of the graph grammar in Fig. 15.2.

In general, the truncation of a grammar such as CP where n processes are
connected to CM in the start graph, will contain n(n−1)

2 productions. Consid-
ering instead all possible interleavings, we would end up with an exponential
number of productions.
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15.4 Exploiting the prefix

In this section we propose a monadic second-order logic L2 where some graph
properties of interest can be expressed. Then we show how the validity of a
property in L2 over all the reachable graphs of a finite-state grammar G can be
verified by exploiting a complete finite prefix.

15.4.1 A logic on graphs

We first introduce the monadic second order logic L2 for specifying graph prop-
erties. Quantification is allowed over edges, but not over nodes (as, e.g., in
[Cou97]).

Definition 15.4.1 (Graph formulae) Let X1 = {x, y, . . .} be a set of (first-
order) edge variables and let X2 = {X,Y, . . .} be a set of (second-order) variables
representing edge sets. The set of graph formulae of the logic L2 is defined as
follows, where ` ∈ Λ, i, j ∈ lN:

F ::= x = y | ci(x) = cj(y) | type(x) = ` | x ∈ X (Predicates)

F ∨ F | ¬F | ∃x.F | ∃X.F (Connectives / Quantifiers)

We denote by free(F ) and Free(F ) the sets of first-order and second-order vari-
ables, respectively, occurring free in F , defined in the obvious way.

Given a T -typed graph G, a formula F in L2, and two valuations σ : free(F )→
E|G| and Σ : Free(F ) → P(E|G|) for the free first- and second-order variables
of F , respectively, the satisfaction relation G |=σ,Σ F is defined inductively, in
the usual way; for instance G |=σ,Σ x = y iff σ(x) = σ(y) and G |=σ,Σ x ∈ X iff
σ(x) ∈ Σ(X).

A simple, but fundamental observation is that, while for n-bounded graph
grammars the graphical nature of the state plays a basic role, for any occurrence
grammar O we can can forget about it and view O as an occurrence contextual
net (i.e., a Petri net with read arcs, see, e.g., [BCM01, VSY98]).

Definition 15.4.2 (Petri net underlying a graph grammar) The contex-
tual Petri net underlying an occurrence grammar O = 〈T ′, P ′, π′〉, denoted by
Net(O), is the Petri net having the set of edges ET ′ as places and a transition
for every production q ∈ P ′, with pre-set •q, post-set q• and context q.

For instance, the Petri net Net(T (CP)) underlying the truncation of CP
(see Fig. 15.3) is depicted in Fig. 15.4. Read arcs are represented as dotted
undirected lines.

Let G = 〈T,Gs, P, π〉 be a fixed finite-state graph grammar and consider the
truncation T (G) = 〈T ′, P ′, π′〉 (actually, all the results hold for any complete
finite prefix of the unfolding). Notice that, by completeness of T (G), any graph
reachable in G is (up to isolated nodes) a subgraph of the graph of types T ′ of
T (G), typed over T by the restriction of the folding morphism χ : U(G) → G.
Also observe that a safe marking m of Net(T (G)) can be seen as a graph typed
over the type graph T of the original grammar G: take the least subgraph of T ′
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4 : P

3 : P

2 : P

engage2 engage3engage1

1 : CM

5 : PE 6 : PE 7 : PE 8 : PE 9 : PE 10 : PE

Figure 15.4: The Petri net underlying the truncation T (CP) in Fig. 15.3

having m as set of edges, i.e., graph(m), and type it over T by the restriction
of the folding morphism. With a slight abuse of notation this typed graph will
be denoted simply as graph(m).

We show how any formula ϕ in L2 can be translated to a formula M(ϕ)
over the safe markings of Net(T (G)) such that, for any marking m reachable in
Net(T (G))

graph(m) |= ϕ iff m |= M(ϕ).

The syntax of the formulae over markings is

ϕ ::= e | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ,

where the basic formulae e are place (edge) names, meaning that the place is
marked, i.e., m |= e if e ∈ m. Logical connectives are treated as usual.

Definition 15.4.3 (Encoding graph into multiset formulae) Let T (G) be
the truncation of a graph grammar G, as above. Let F be graph formula in L2,
let σ : free(F ) → ET ′ and Σ : Free(F ) → P(ET ′). The encoding M is defined
as:

M [x = y, σ,Σ] = true if σ(x) = σ(y) and false otherwise

M [ci(x) = cj(y), σ,Σ] =





true if |cT ′(σ(x))| ≥ i ∧ |cT ′(σ(y))| ≥ j
∧ [cT ′(σ(x))]i = [cT ′(σ(y))]j

false otherwise
M [type(x) = `, σ,Σ] = true if χT (σ(x)) = ` and false otherwise

M [x ∈ X,σ,Σ] = true if σ(x) ∈ Σ(X) and false otherwise
M [F1 ∨ F2, σ,Σ] = M [F1, σ,Σ] ∨M [F2, σ,Σ]

M [¬F, σ,Σ] = ¬M [F, σ,Σ]
M [∃x.F, σ,Σ] =

∨
e∈ET ′

(e ∧ M [F, σ ∪ {x 7→ e},Σ])

M [∃X.F, σ,Σ] =
∨
E⊆ET ′ ,co(E) (

∧
E ∧ M [F, σ,Σ ∪ {X 7→ E}])

where, for E = {e1, . . . , en}, the symbol
∧
E stands for e1 ∧ . . . ∧ en. If F is

closed formula (i.e., without free variables), we define M [F ] = M [F, ∅, ∅].

Note that, since every reachable graph in G is isomorphic to a subgraph of T ′,
typed by the restriction of χT , the encoding resolves the basic predicates by
exploiting the structural information of T ′. When a first-order variable x in a
formula is mapped to an edge e, we take care that the edge is marked, and,
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similarly, when a second-order variable X in a formula is mapped to a set of
edges E, such a set must be covered. Observe that in this case E is limited to
range only over concurrent subsets of edges. In fact, if E is a non-concurrent
set, then no reachable marking m will include E, i.e., m 6|=

∧
E.

It is possible to show that the above encoding is correct, i.e., for any formula
ϕ ∈ L2, for any pair of valuations σ : X1 → ET ′ and Σ : X2 → P(ET ′), and for
any safe marking m over ET ′ , we have graph(m) |=σ,Σ ϕ iff m |= M [ϕ, σ,Σ].

15.4.2 Checking properties of reachable graphs

Let G = 〈Gs, T, P, π〉 be a finite-state graph grammar. We next show how
a complete finite prefix of G can be used to check whether, given a formula
F ∈ L2, there exists some reachable graph which satisfies F . In this case we
will write G |= 3F . The same algorithm allows to check “invariants” of a graph
grammars, i.e., to verify whether a property F ∈ L2 is satisfied by all graphs
reachable in G, written G |= 2F . In fact, it trivially holds that G |= 2F iff
G 6|= 3¬F .

Let T (G) = 〈T ′, P ′, π′〉 be the truncation of G (or any complete prefix of the
unfolding) and let Net(T (G)) be the underlying Petri net. The formula produced
by the encoding in Definition 15.4.3 can be simplified by exploiting the mutual
relationships between items as expressed by the causality, (asymmetric) conflict
and concurrency relation.

Proposition 15.4.4 (simplification) Let F be any formula in L2, let σ :
free(F ) → ET ′ and Σ : Free(F ) → P(ET ′) be valuations. If m is a marking
reachable in Net(T (G)) and η is a marking formula obtained by simplifying
M [F, σ,Σ] with the Simplification Rule below:

If S ⊆ ET ′ and ¬co(S) then replace the subformula
∧
S by false.

then graph(m) |=σ,Σ F iff m |= η.

Algorithm. The question “G |= 3F?” is answered by working over Net(T (G)):

• Consider the formula over markings M [F ] (see Definition 15.4.3);

• Express M [F ] in disjunctive normal form as below, where ai,j can be e or
¬e for e ∈ ET ′ :

η =
n∨

i=1

ki∧

j=1

ai,j

• Apply the Simplification Rule in Proposition 15.4.4, as far as possible,
thus obtaining a formula η′;

• For any conjunct in η′ of the kind e1 ∧ . . . ∧ eh ∧ ¬e
′
1 ∧ . . . ∧ ¬e

′
l:

– Take the configuration C = b{e1, . . . , eh}c.
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– Consider the safe marking reached after C, i.e., mC = (m0∪
⋃
t∈C t

•)−⋃
t∈C

•t, where m0 is the initial marking of Net(T (G)) (consisting
of all minimal places). Surely mC includes {e1, . . . , eh}. Hence, the
only reason why the conjunct may not be true is that mC includes
some of the {e′1, . . . , e

′
l}. In this case look for a configuration C ′ ⊇ C,

which enriches C with transitions which consume the e′j but not the
ei.

• The formula 3F holds iff this check succeeds for at least one conjunct.

For instance, suppose that we want to check that our sample graph grammar
CP satisfies 2F , where F is a L2 formula specifying that every engaged process
is connected through connection c2 to exactly one other engaged process, i.e.,

F = ∀x.(type(x) = PE ⇒ ∃y.(x 6= y ∧ type(y) = PE ∧ c2(x) = c2(y)

∧ ∀z.(type(z) = PE ∧ x 6= z ∧ c2(x) = c2(z) ⇒ y = z))).

The encoding ϕ = M [F ] simplifies to

ϕ ≡ (5 : PE ⇐⇒ 6: PE ) ∧ (7 : PE ⇐⇒ 8: PE ) ∧ (9 : PE ⇐⇒ 10: PE )

and we have to check that the truncation does not satisfy

3¬ϕ = 3[(5 : PE ∧ ¬6: PE ) ∨ (¬5: PE ∧ 6: PE ) ∨ (7 : PE ∧ ¬8: PE )

∨ (¬7: PE ∧ 8: PE ) ∨ (9 : PE ∧ ¬10: PE ) ∨ (¬9: PE ∧ 10: PE )],

which can be done by using the described verification procedure.

15.5 Conclusions

We have discussed how the finite prefix approach, originally introduced by
McMillan for Petri nets, can be generalised to graph transformation systems. A
complete finite prefix can be constructed for some classes of graph grammars,
but the problem of constructing it for general, possibly non-read-persistent
grammars remains open and represents an interesting direction of further re-
search. Also, it would be interesting to try to determine an upper bound on
the size of the prefix, with respect to the number of reachable graphs.

We have shown how the complete finite prefix can be used to model-check
some properties of interest for graph transformation systems. We plan to gen-
eralise the verification technique proposed here to allow the model-checking of
more expressive logics, like the one studied in [Esp94] for Petri nets, where
temporal modalities can be arbitrarily nested. We intend to implement the
model-checking procedure described in the paper and, as in the case of Petri
nets, we expect that its efficiency could be improved by refined cut-off condi-
tions (see, e.g., [ERV66]) which help to decrease the size of the prefix.

As mentioned in the introduction, some efforts have been devoted recently
to the development of suitable verification techniques for GTSs. A general
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theory of verification is presented in [GHK98, Hec98], but without provid-
ing directly applicable techniques. In [Kön00b, 1, 3] one can find techniques
which are applicable to infinite-state systems: the first defines a general frame-
work based on types for graph rewriting, while the second is based on the
construction of suitable approximations of the behaviour of a GTS. Instead,
the papers [Var02, Ren03] concentrate on finite-state GTSs. They both gen-
erate a suitable labelled transition system out of a given finite-state GTS and
then [Var02] resorts to model-checkers like SPIN, while [Ren03] discusses the
decidability of the model-checking problem for a logic, based on regular path
expressions, allowing to talk about the history of nodes along computations.
The main difference with respect to our work is that they do not exploit a par-
tial order semantics, with an explicit representation of concurrency, and thus
considering the possible interleavings of concurrent events these techniques may
suffer of the state-explosion problem.

Acknowledgements: We would like to thank the anonymous referees for
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