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soure and target are instanes of the same metamodel. Software refatoringis a modern software development ativity, aimed at improving system qualitywith internal modi�ations of soure ode whih do not hange the observablebehavior. In objet-oriented programming usually the observable behavior of anobjet is given by a list of publi (visible) properties and methods, while itsinternal behavior is given by its internal (non-visible) properties and methods.Graph transformation systems (GTS) are well-suited to model refatoringand, more generally, model transformation (see [2℄ for the orrespondene be-tween refatoring and GTS). Model refatorings based on GTS an be foundin [3{6℄. The left part of Fig. 1 desribes shematially model refatoring viagraph transformations. For a graph-based metamodel M , desribing, e.g., deter-ministi �nite automata or stateharts, the set RefatoringM of graph produ-tions desribes how to transform models whih are instanes of the metamodelM . A start graph GM , whih is an instane of the metamodelM , is transformedaording to the produtions in RefatoringM (using regular DPO transforma-tions), thus produing a graph HM whih is the refatored version of GM .
Fig. 1. Model refatoring via graph transformations and behavior preservation.A ruial question that must be asked always is whether a given refatoringis behavior-preserving, whih means that soure and target models have thesame observable behavior. In pratie, proving behavior-preservation is not aneasy task and therefore one normally relies on test suite exeutions and informalarguments in order to improve on�dene that the behavior is preserved. On theother hand, formal approahes [7{10℄ have been also employed. A ommon issueis that behavior preservation is heked only for a ertain number of models andtheir refatored versions. It is diÆult though to foresee whih refatoring stepsare behavior-preserving for all possible instanes of the metamodel. Additionally,these approahes are usually tailored to spei� metamodels and the transfer toother metamodels would require reonsidering several details. A more generaltehnique is proposed in [11℄ for analyzing the behavior of a graph produtionin terms of CSP proesses and trae semantis whih guarantees that the traesof a model are a subset of the traes of its refatored version.In [3℄ we employed the general framework of borrowed ontexts [12℄ to showthat models are bisimilar to their refatored ounterparts, whih implies behav-ior preservation. The general idea is illustrated in the right-hand side of Fig. 1.



We de�ne a set OpSemM of graph produtions desribing the operational se-mantis of the metamodel M and use the borrowed ontext tehnique to hekwhether the models GM and HM have the same behavior w.r.t. OpSemM . In [3℄we also tailored Hirshko�'s up-to bisimulation heking algorithm [13℄ to theborrowed ontext setting and thus equivalene heking an in priniple be ar-ried out automatially. The main advantage of this approah is that for everymetamodel whose operational semantis an be spei�ed in terms of �nite graphtransformation produtions, the bisimulation heking algorithm an be used toshow bisimilarity between models whih are instanes of this metamodel. How-ever, this tehnique is also limited to showing behavior preservation only for a�xed number of instanes of a metamodel.In this paper we go a step further and employ the borrowed ontext frame-work in order to hek refatoring produtions for behavior preservation aord-ing to the operational semantis of the metamodel. We all a rule behavior-preserving when its left- and right-hand sides are bisimilar. Thanks to the fatthat bisimilarity is a ongruene, whenever all refatoring produtions preservebehavior, so does every transformation via these rules. In this ase, all modelinstanes of the metamodel and their refatored versions exhibit the same be-havior. However, refatorings very often involve non-behavior-preserving rulesdesribing intermediate steps of the whole transformation. Given a transfor-mation G p1) H via a non-behavior-preserving rule p1, the basi idea is thento hek for the existene of a larger transformation G )� H 0 via a sequeneseq = p1; p2; : : : ; pi of rule appliations suh that the onurrent prodution [14,15℄ indued by seq is behavior-preserving. Sine the onurrent prodution pperforms exatly the same transformation G p) H 0 we an infer that G and H 0have the same behavior.This paper is strutured as follows. Setion 2 briey reviews how the DPOapproah with borrowed ontexts an be used to de�ne the operational seman-tis of a metamodel. Setion 3 de�nes the model refatorings we deal with. Anexample in the setting of �nite automata is given in Setion 4. In Setion 5 wede�ne a tehnique to hek refatoring rules for behavior preservation and anextension to handle non-behavior-preserving rules in model refatoring. Finally,these tehniques are applied to the automata example. The proofs of the resultsin this paper, whih are omitted here beause of spae limitations, an be foundin [16℄.2 Operational Semantis via Borrowed ContextsIn this setion we reall the DPO approah with borrowed ontexts [12, 17℄ andshow how it an be used to de�ne the operational semantis of a metamodelM . In this paper we onsider the ategory of labeled graphs, but the resultswould also hold for the ategory of typed graphs or, more generally, for adhesiveategories. In standard DPO [18℄, produtions rewrite graphs with no interationwith any other entity than the graph itself. In the DPO approah with borrowedontexts [17℄ graphs have interfaes and may borrow missing parts of left-hand



sides from the environment via the interfae. This leads to open systems whihtake into aount interation with the outside world.De�nition 1 (Graphs with Interfaes and Graph Contexts). A graph Gwith interfae J is a morphism J ! G and a ontext onsists of two morphismsJ ! E  J . The embedding of a graph with interfae J ! G into a ontextJ ! E  J is a graph with interfae J ! G whih is obtained by onstrutingG as the pushout of J ! G and J ! E.J //�� PO E�� Joo��G // GObserve that the embedding is de�ned up to isomorphism sine the pushoutobjet is unique up to isomorphism.De�nition 2 (Metamodel M and Model). A metamodel M spei�es a setof graphs with interfae of the form J ! G (as in De�nition 1). An element ofthis set is alled an instane of the metamodel M , or simply model.For example, the metamodel DFA, introdued in Setion 4, desribes de-terministi �nite automata. A model is an automaton J ! G, where G is theautomaton and J spei�es whih parts of G may interat with the environment.De�nition 3 (Set of Operational Semantis Rules). Given a metamodelM as in De�nition 2, its operational semantis is de�ned by a set OpSemM ofgraph produtions L l I r! R, where l; r are injetive morphisms.De�nition 4 (Rewriting with Borrowed Contexts). Let OpSemM be asin De�nition 3. Given a model J ! G and a prodution p : L  I ! R (p 2OpSemM ), we say that J ! G redues to K ! H with transition label J ! F  K if there are graphs D, G+, C and additional morphisms suh that the diagrambelow ommutes and the squares are either pushouts (PO) or pullbaks (PB) withinjetive morphisms. In this ase a rewriting step with borrowed ontext (BCstep) is alled feasible: (J ! G) J!F K������! (K ! H).D //�� PO L�� PO Ioo //�� PO R��G //POG+ PB Coo // HJOO // FOO Koo OO >>In the diagram above the upper left-hand square merges L and the graph Gto be rewritten aording to a partial math G  D ! L. The resulting graphG+ ontains a total math of L and an be rewritten as in the standard DPOapproah, produing the two remaining squares in the upper row. The pushoutin the lower row gives us the borrowed (or minimal) ontext F , along with amorphism J ! F indiating how F should be pasted to G. Finally, we need an



interfae for the resulting graph H , whih an be obtained by \interseting" theborrowed ontext F and the graph C via a pullbak. Note that the two pushoutomplements that are needed in De�nition 4, namely C and F , may not exist.In this ase, the rewriting step is not feasible. Furthermore, observe that for agiven partial math G D ! L the graphs G+ and C are uniquely determined.A bisimulation is an equivalene relation between states of transition systems,assoiating states whih an simulate eah other.De�nition 5 (Bisimulation and Bisimilarity). Let OpSemM be as in Def-inition 3 and let R be a symmetri relation ontaining pairs of models (J !G; J ! G0). The relation R is alled a bisimulation if, whenever we have(J ! G)R (J ! G0) and a transition (J ! G) J!F K������! (K ! H), thenthere exists a model K ! H 0 and a transition (J ! G0) J!F K������! (K ! H 0)suh that (K ! H)R (K ! H 0).We write (J ! G) �OpSemM (J ! G0) (or (J ! G) � (J ! G0) ifthe operational semantis is obvious from the ontext) whenever there exists abisimulation R that relates the two instanes of the metamodel M . The relation�OpSemM is alled bisimilarity.When de�ning the operational semantis using the borrowed ontext frame-work, it should be kept in mind that rewriting is based on interations with theenvironment, i.e., the environment should provide some information via F tothe graph G in order to trigger the rewriting step. For instane, in our �niteautomata example in Setion 4 the environment provides a letter to trigger theorresponding transition of the automaton.An advantage of the borrowed ontext tehnique is that the derived bisimi-larity is automatially a ongruene, whih means that whenever a graph withinterfae is bisimilar to another, one an exhange them in a larger graph with-out e�et on the observable behavior. This is very useful for model refatoringsine we an replae one part of the model by another bisimilar one, withoutaltering its observable behavior.Theorem 1 (Bisimilarity is a Congruene [12℄). Bisimilarity � is a on-gruene, i.e., it is preserved by embedding into ontexts as given in De�nition 1.In [17℄ a tehnique is de�ned to speed up bisimulation heking, whih allowsus to take into aount only ertain labels. A label is onsidered superuous andalled independent if we an add two morphisms D ! J and D ! I to the dia-gram in De�nition 4 suh thatD ! I ! L = D ! L andD ! J ! G = D ! G.That is, intuitively, the graph G to be rewritten and the left-hand side L overlaponly in their interfaes. Transitions with independent labels an be ignored inthe bisimulation game, sine a mathing transition always exists.3 Refatoring TransformationsHere we de�ne refatoring transformations using DPO rules with negative ap-pliation onditions (NAC).



De�nition 6 (NAC, Rule with NAC and Transformation). A negativeappliation ondition NAC (n) on L is an injetive morphism n : L ! NAC.An injetive math m : L! G satis�es NAC (n) on L if and only if there is noinjetive morphism q : NAC ! G with q Æ n = m.NACq ##GGGGG Lm��noo = G NAC Loo m �� IPO POoo //�� R��G0 C0oo // G1A negative appliation ondition NAC (n) is alled satis�able if n is not anisomorphism.A rule L l I r! R (l; r injetive) with NACs is equipped with a �nite set ofnegative appliation onditions NACL = fNAC (ni) j i 2 Ig. A diret transfor-mation G0 p;m=) G1 via a rule p with NACs and an injetive math m : L ! G0onsists of the double pushout diagram above, where m satis�es all NACs of p.Note that if NAC (n) is satis�able then the identity math id : L ! L satis�esNAC (n). We will assume that for any rule with NACs, the orresponding nega-tive appliation onditions are all satis�able, so that the rule is appliable to atleast one math (the identity math on its left-hand side).De�nition 7 (Layered Refatoring System and Refatoring Rule). Letmetamodel M be as in De�nition 2. A refatoring rule is a graph rule as inDe�nition 6. A layered refatoring system RefatoringM for the metamodel Monsists of k sets RefatoringMi (0 � i � k � 1) of refatoring rules. Eah setRefatoringMi de�nes a transformation layer.De�nition 8 (Refatoring Transformation). Let RefatoringM be as in Def-inition 7. A refatoring transformation t : (J ! G0))� (J ! Gn) is a sequene(J ! G0) p1) (J ! G1) p2) � � � pn) (J ! Gn) of diret transformations (asin De�nition 6) suh that pi 2 RefatoringM and t preserves the interfae J ,i.e., for eah i (0 � i < n) there exists an injetive morphism J ! Ci withJ ! Gi = J ! Ci ! Gi (see diagram below). Moreover, in t eah layer ap-plies its rules as long as possible before the rules of the next layer ome into play.NAC Loo �� Ioo //��PO PO R��Gi Cioo // Gi+1JOO JJ BB=Note that refatoring transformations operate only on the internal strutureof Gi while keeping the original interfae J .4 Example: Deleting Unreahable States in DFAIn this setion we present an example of refatoring in the setting of deter-ministi �nite automata (DFA). The metamodel DFA desribes �nite automata



represented as graphs with interfae as J! DFA1 and J! DFA2 in Fig. 2, whereunlabeled nodes are states and direted labeled edges are transitions. An FS-loopmarks a state as �nal. A W-node has an edge pointing to the urrent state andthis edge points initially to the start state. The W-node is the interfae, i.e., theonly onnetion to the environment.
Fig. 2. Examples of DFA as graphs with interfae.The operational semantis for DFA is given by a set OpSemDFA of rules on-taining Jump(a), Loop(a) and Aept depited in Fig. 3. The rules Jump(a),Loop(a) must be de�ned for eah symbol a 2 �, where � is a �xed alphabet.Aording to OpSemDFA a DFA may hange its state. The W-node reeives asymbol (e.g. `b') from the environment in form of a b-labeled edge onnetingW-nodes, e.g., the string `b' is ?>=<89:;w ?>=<89:;wboo ?>=<89:;woo . An apt-edge between W-nodes marks the end of a string. When suh an edge is onsumed by a DFA, thestring previously proessed is aepted.A layered refatoring system for the deletion of unreahable states of anautomaton is given in Fig. 3 on the right. To the left of eah rule we depit theNAC (if it exists). The rules are spread over three layers. Rule1 marks the initialstate as reahable with an R-loop. Rule2(a) identi�es all other states that anbe reahed from the start state via a-transitions. Layer 1 deletes the loops andthe edges of the unreahable states and �nally the unreahable states. Layer 2removes the R-loops.Applying the refatoring rules above to the automaton J! DFA1 we obtainJ! DFA2, where the rightmost state was deleted. By using the bisimulationheking algorithm of [3℄ we onlude that J! DFA1 and J! DFA2 are bisimilarw.r.t. OpSemDFA. In our setting bisimilarity via the borrowed ontext tehniqueorresponds to bisimilarity on automata seen as transition systems, whih inturn implies language equivalene.5 Behavior Preservation in Model RefatoringHere we introdue a notion of behavior preservation for refatoring rules and,building on this, we provide some tehniques for ensuring behavior preservationin model refatoring.5.1 Refatoring via Behavior-Preserving RulesFor a metamodelM as in De�nition 2 we de�ne behavior preservation as follows.



Fig. 3. Operational semantis and a refatoring for DFA.De�nition 9 (Behavior-Preserving Transformation). Let OpSemM be asin De�nition 3. A refatoring transformation t : (J ! G) )� (J ! H) (as inDe�nition 8) is alled behavior-preserving when (J ! G) �OpSemM (J ! H).In order to hek t for behavior preservation we an use De�nition 4 to derivetransition labels from J ! G and J ! H w.r.t. the rules in OpSemM .Observe that behavior preservation in the sense of De�nition 9 is limited toheking spei� models. This proess is fairly ineÆient and an never be ex-haustive as behavior-preservation must be heked for eah spei� transforma-tion. A more eÆient strategy onsists in foussing on the behavior-preservationproperty at the level of refatoring rules. The general idea is to hek for everyp 2 RefatoringM whether its left and right-hand sides, seen as graphs with inter-faes, are bisimilar, i.e., (I ! L) � (I ! R) w.r.t. OpSemM . Whenever this hap-pens, sine bisimilarity is a ongruene, any transformation (J ! G) p) (J ! H)via p will preserve the behavior, i.e., J ! G and J ! H have the same behavior.De�nition 10 (Behavior-Preserving Refatoring Rule). Let OpSemM beas in De�nition 3. A refatoring prodution p : L  I ! R with NACL isbehavior-preserving whenever (I ! L) � (I ! R) w.r.t. OpSemM .Now we an show a simple but important result that says that a rule isbehavior-preserving if and only if every refatoring transformation generated bythis rule is behavior-preserving.



Proposition 1. Let OpSemM be as in De�nition 3. Then it holds: p : L  I ! R (with NACL) is behavior-preserving w.r.t. OpSemM if and only if anyrefatoring transformation (J ! G) p) (J ! H) (as in De�nition 8) is behavior-preserving, i.e., (J ! G) �OpSemM (J ! H).Remark 1. The fat that the previous proposition also holds for rules withNACs, even though De�nition 10 does not take NACs into aount for behavior-preservation purposes, does of ourse not imply that negative appliation on-ditions for refatoring rules are unneessary in general. They are needed in or-der to onstrain the appliability of rules, espeially of those rules that are notbehavior-preserving, or rather, are only behavior-preserving when applied in er-tain ontexts. As a diretion of future work, we plan to study ongruene resultsfor restrited lasses of ontexts. This will help to better handle refatoring ruleswith NACs.Theorem 2 (Refatoring via Behavior-Preserving Rules). Let OpSemMand RefatoringM be as in De�nitions 3 and 7. If eah rule in RefatoringM isbehavior-preserving w.r.t. OpSemM then any refatoring transformation (J !G0))� (J ! Gn) via these rules is behavior-preserving.Example 1. We hek the rules in RefatoringDFAi (i = 0; 1; 2) from Setion 4for behavior preservation. We begin with RefatoringDFA0 (Layer 0). For RULE1 :NAC L I! R we derive the transition labels from I! L and I! R w.r.t.OpSemDFA. On the left-hand side of Fig. 4 we shematially depit the �rst stepsin their respetive labeled transition systems (LTS), where eah partner has threehoies. Independent labels exist in both LTSs but are not illustrated below.The derivation of label L1 for I! R is shown on the right. Sine I! L andI! R (and their suessors) an properly mimi eah other via a bisimulationwe an onlude that (I! L) �OpSemDFA (I! R). The intuitive reason for this isthat the R-loop, whih is added by this rule, does not have any meaning in theoperational semantis and is hene \ignored" by OpSemDFA.Analogously, RULE2(a) and the rule in Layer 2 are behavior-preserving aswell. Hene, we an infer that every transformation via the rules of Layer 0and Layer 2 preserves the behavior. On the other hand, all rules in Layer 1, ex-ept for RULE6, are not behavior-preserving. Note that RULE6 is only behavior-preserving beause of the dangling ondition. Thus, when a transformation is ar-ried out via non-behavior-preserving rules of Layer 1 we annot be sure whetherthe behavior has been preserved.5.2 Handling Non-Behavior-Preserving RulesFor refatoring transformations based on non-behavior-preserving rules the teh-nique of Setion 5.1 does not allow to establish if the behavior is preserved.Very often there are refatoring rules representing intermediate transforma-tions that indeed are not behavior-preserving. Still, when onsidered togetherwith neighboring rules, they ould indue a onurrent prodution [14, 15℄ p,



Fig. 4. Labeled transition systems for rule1 and a label derivation.orresponding to a larger transformation, whih preserves the behavior. For atransformation t : (J ! G) )� (J ! H 0) via a sequene seq = p1; p2; : : : ; pithe onurrent prodution p : L  I ! R with onurrent NACL induedby t performs exatly the same transformation (J ! G) p) (J ! H 0) in onestep. Moreover, p an only be applied to (J ! G) if the onurrent NACL issatis�ed. This is the ase if and only if every NAC of the rules in t is satis�ed.The basi idea is now to hek for a transformation (J ! G) p1) (J ! H) basedon a non-behavior-preserving rule p1 whether there exists suh a larger trans-formation t : (J ! G) )� (J ! H 0) via a sequene seq = p1; p2; : : : ; pi of rulessuh that the onurrent prodution indued by t is behavior preserving. Thenwe an infer that J ! G and J ! H 0 have the same behavior.This is made formal by the notion of safe transformation and the theorembelow.De�nition 11 (Safe Transformation). Let OpSemM be as in De�nition 3. Arefatoring transformation t : (J ! G))� (J ! H) (as in De�nition 8) is alledsafe if it indues a behavior-preserving onurrent prodution w.r.t. OpSemM .Theorem 3 (Safe Transformations preserve Behavior). Let OpSemMand RefatoringM be as in De�nitions 3 and 7, and let t : (J ! G))� (J ! H)be a refatoring transformation. If t is safe, then t is behavior-preserving, i.e.,(J ! G) � (J ! H).In order to prove that a refatoring transformation t : (J ! G))� (J ! H)is safe (and thus behavior-preserving), we an look for a split tsp : G)� H1 )�� � � )� Hn )� H (interfaes are omitted) of t where eah step ()�) indues abehavior-preserving onurrent prodution (see De�nition 12). In fat, as shownbelow, if and only if suh split exists we an guarantee that t preserves behavior(Theorem 4).De�nition 12 (Safe Transformation Split). Let OpSemM be as in De�ni-tion 3 and let t : (J ! G) )� (J ! H) be a refatoring transformation (as in



De�nition 8). A split of t is obtained by utting t into a sequene of non-emptysubtransformations tsp : (J ! G) )� (J ! H1) )� � � � )� (J ! Hn))� (J !H). A transformation split tsp is safe if eah step ()�) is safe.In Setion 5.3 we present a simple searh strategy for safe splits. More elab-orate ones are part of future work.Theorem 4. Let t : (J ! G) )� (J ! H) be a refatoring transformation.Then t is safe if and only if it admits a safe split.Observe that, instead, the following does not hold in general: if t : (J !G))� (J ! H) and (J ! G) �OpSemM (J ! H) then t is safe. Consider for in-stane RULE5(a) in Fig. 3. As remarked, it is in general not behavior-preserving,but when, by oinidene, it removes a transition that is unreahable from thestart state, the original automaton and its refatored version are behaviorallyequivalent.5.3 Ensuring Behavior PreservationIn this setion we desribe how the theory presented in this paper an be applied.Note that our results would allow us to automatially prove behavior preserva-tion only in speial ases, while, in general, suh mehanized proofs will be verydiÆult. Hene here we will suggest a \mixed strategy", whih ombines ele-ments of automati veri�ation and the searh for behavior-preserving rules, inorder to properly guide refatorings.More spei�ally, a given model J ! G an be refatored by applying therules in RefatoringM in an automati way, where the mahine hooses non-deterministially the rules to be applied, or in a user-driven way, where foreah transformation the mahine provides the user with a list of all appliablerules together with their respetive mathes and ultimately the user piks one ofthem. The main goal is then to tell the user whether the refatoring is behavior-preserving.The straightforward strategy to aomplish the goal above is to transformJ ! G applying only behavior-preserving rules. This obviously guarantees thatthe refatoring preserves behavior. However if a non-behavior-preserving rule pis applied we an no longer guarantee behavior preservation. Still, by proeedingwith the refatoring, namely by performing further transformations, we an dothe following: for eah new transformation added to the refatoring we omputethe indued onurrent prodution for the transformation whih involves the�rst non-behavior-preserving rule p and the subsequent ones. If this onurrentprodution is behavior-preserving we an again guarantee behavior preservationfor the refatoring sine the refatoring admits a safe split (see Theorem 4).The strategy above is not omplete sine behaviour preservation ould beensured by the existene of omplex safe splits whih the illustrated proedureis not able to �nd. We already have preliminary ideas for more sophistiatedsearh strategies, but they are part of future work. Note however, that this



strategy an redue the proof obligations, sine we do not have to show behaviorpreservation between the start and end graph of the refatoring sequene (whihmay be huge), but we only have to investigate loal updates of the model.Example 2. Consider the automaton J! DFA1 of Setion 4. By applying thebehavior-preserving rules of RefatoringDFA0 (Layer 0) we obtain J! DFA01 de-pited in Fig. 5 (the interfae J is omitted). Sine RefatoringDFA0 ontains onlybehavior-preserving rules by Theorem 2 it holds that (J! DFA1))� (J! DFA01)preserves the behavior. No more rules in RefatoringDFA0 an be applied, i.e., theomputation of Layer 0 terminates.Now the rules of RefatoringDFA1 (Layer 1) ome into play. Reall that all rulesin RefatoringDFA1 are non-behavior-preserving, exept for RULE6. This set on-tains RULE4(0) and RULE4(1) whih are appropriate instantiations of RULE4(a).After the transformation (J! DFA01) RULE4(0)=) (J! DFA11) we an no longer guar-antee behavior-preservation sine RULE4(0) has been applied. From now on wefollow the strategy previously desribed to look for a behavior-preserving on-urrent prodution. We perform the step (J! DFA11) RULE4(1)=) (J! DFA21), builda onurrent prodution p indued by (J! DFA01) RULE4(0)=) (J! DFA11) RULE4(1)=)(J! DFA21) and, by heking p for behavior-preservation, we �nd out that it isnot behavior-preserving. We then ontinue with (J! DFA21) RULE6=) (J! DFA31),build p0 (Fig. 6), indued by the transformation beginning at J! DFA01 andhek it for behavior-preservation. Now p0 is behavior-preserving and so we anone again guarantee behavior preservation (Theorem 3).
Fig. 5. Refatoring transformation.Finally, no more rules of RefatoringDFA1 are appliable to J! DFA31. Thebehavior-preserving rule in RefatoringDFA2 (Layer 2) omes into play and per-forms a transformation (J! DFA31) RULE6=)2 (J! DFA2), where the �nal automa-ton is depited in Setion 4 (DFA2). Conluding, sine we have found a safesplit for the transformation via non-behavior-preserving rules we an infer thatJ! DFA1 and J! DFA2 have the same behavior.Intuitively, the onurrent prodution is behavior-preserving, sine it deletesan entire onneted omponent that is not linked to the rest of the automaton.Note that due to the size of the omponents involved it an be muh simpler tohek suh transformation units rather than the entire refatoring sequene.In addition, it would be useful if the proedure above ould store the in-dued onurrent produtions whih are behavior-preserving into RefatoringM



Fig. 6. Indued onurrent prodution p0.for later use. By doing so the user knows whih ombination of rules leads tobehavior-preserving onurrent produtions. Similarly, the user ould also wantto know whih ombination of rules leads to non-behavior-preserving onur-rent produtions. Of ourse, in the latter ase the onurrent produtions arejust stored but do not engage in any refatoring transformation. It is importantto observe that we store into RefatoringM only onurrent produtions whihare built with rules within the same layer (as in Example 2). For more om-plex refatorings, suh as the attening of hierarhial stateharts (see [19℄), abehavior-preserving onurrent prodution p exists only when it is built from atransformation involving several layers. In this latter ase, p is built and hekedfor behavior preservation but not stored for later use.For the ases where a layer RefatoringMi of RefatoringM is terminating andonuent it is then important to guarantee that adding onurrent produtionsto the refatoring layer does not a�et these properties.Theorem 5. Let RefatoringMi be as in De�nition 7 and Rpi be a set ontainingonurrent produtions p built from p; q 2 RefatoringMi [Rpi . Then wheneverRefatoringMi is onuent and terminating it holds that RefatoringMi [ Rpi isalso terminating and onuent.For the ase where layer RefatoringMi is terminating and onuent anotherinteresting and useful fat holds: assume that we �x a start graph G0 and wean show that some (terminating) transformation, beginning with G0 allows abehavior-preserving split. Then learly all transformations starting from G0 arebehavior-preserving sine they result in the same �nal graph H .6 Conlusions and Future WorkWe have shown how the borrowed ontext tehnique an be used to reason aboutbehavior-preservation of refatoring rules and refatoring transformations. Inthis way we shift the perspetive from heking spei� models to the investiga-tion of the properties of the refatoring rules.The formal tehniques in related work [7{10℄ address behavior preservationin model refatoring, but are in general tailored to a spei� metamodel andlimited to heking the behavior of a �xed number of models. Therefore, thetransfer to di�erent metamodels is, in general, quite diÆult.Hene, with this paper we propose to use the borrowed ontext tehniquein order to onsider any metamodel whose operational semantis an be givenby graph produtions. Furthermore, the bisimulation heking algorithm [3℄ for



borrowed ontexts provides the means for automatially heking models forbehavior preservation. This an be done not only for a spei� model and itsrefatored version, but also for the left-hand and right-hand sides of refator-ing rules. One we have shown that a given rule is behavior-preserving, i.e., itsleft- and right-hand sides are equivalent, we know that its appliation will al-ways preserve the behavior, due to the ongruene result. When rules are notbehavior-preserving, they still an be ombined into behavior-preserving onur-rent produtions. We believe that suh a method will help the user to gain abetter understanding of the refatoring rules sine he or she an be told exatlywhih rules may modify the behavior during a transformation. An advantage ofour tehnique over the one in [11℄ is that we work diretly with graph transforma-tions and do not need any auxiliary enoding. Furthermore, with our tehniquewe an guarantee that a model and its refatored version have exatly the sameobservable behavior, while in [11℄ the refatored model \ontains" the originalmodel but may add extra behavior.This work opens up several possible diretions for future investigations. First,in some refatorings when non-behavior-preserving rules are applied, the searhstrategies for safe splits an beome very omplex. Here we de�ned only a simplesearh strategy, but it should be possible to ome up with more elaborate ones.Seond, although we are working with refatoring rules with negative appli-ation onditions, these NACs do not play a prominent role in our automativeri�ation tehniques, but of ourse they are a key to limiting the number ofonurrent produtions whih an be built. In [20℄ the borrowed ontext frame-work and the ongruene result has been extended to handle rules with NACs.However, this applies only to negative appliation onditions in the operationalsemantis. It is, nevertheless, also important to have similar results for refator-ing rules with NACs, whih would lead to a \restrited" ongruene result, wherebisimilarity would only be preserved by ertain ontexts (see also the disussionin Remark 1). Sine model refatorings often use graphs with attributes it isuseful to hek whether the ongruene results in [12, 20℄ also hold for adhesiveHLR ategories (the ategory of attributed graphs is an instane thereof).Aknowledgements: We would like to thank Gabi Taentzer and ReikoHekel for helpful disussions on this topi.Referenes1. Mens, T., Gorp, P.V.: A taxonomy of model transformation. ENTCS 152 (2006)125{1422. Mens, T., Tourwe, T.: A survey of software refatoring. IEEE Transations onSoftware Engineering 30(2) (2004) pp. 126{1393. Rangel, G., K�onig, B., Ehrig, H.: Bisimulation veri�ation for the DPO approahwith borrowed ontexts. In: Pro. of GT-VMT '07. Volume 6 of Eletroni Com-muniations of the EASST. (2007)4. Biermann, E., Ehrig, K., K�ohler, C., Kuhns, G., Taentzer, G., Weiss, E.: EMFmodel refatoring based on graph transformation onepts. In: SeTra'06. Vol-ume 3., Eletroni Communiations of EASST (2006)
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