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basis of the behaviour of its omponents. This allows for modular analysis of thesystems and it helps in de�ning system reon�gurations (replaing a omponentby another) whih keep the observable behaviour unhanged [2, 4℄.In partiular, as non-sequential proesses of a Petri net an be fruitfully usedas a representation of possible senarios in the exeution of a system (see, e.g.,the work on workows and the enodings of web-servie desription languageslike OWL or BPEL as Petri nets [16, 17, 4, 18℄), it an be interesting to relate theproesses of a Petri net with those of its omponents. Spei�ally, one shouldunderstand under whih onditions proesses of the subomponent nets an beombined into a onsistent proess of their omposition and vie versa, howproesses of the full system an be deomposed into proesses of the omponents.Results in this diretion have been provided for open nets in [1℄, by showingompositionality for a semantis based on deterministi proesses �a la Goltz-Reisig. Unfortunately, as notied in the same paper, the result does not extendto non-deterministi proesses. To get a rough intuition of what fails, onsiderthe open nets in the Fig. 3(b) (ignoring, for the moment, the labels 2 and !attahed to dangling ars). The representation of the nets is standard; only openplaes have ingoing and/or outgoing dangling ars, meaning that transitions ofthe environment ould be attahed and thus put and/or remove tokens in theseplaes. The nets Zi are simple enough to be onsidered proesses themselves. Forinstane, Z1 represents a proess in whih a token an be onsumed either by t1or by the environment. When joining Z1 and Z2 along the net Z0, in the resultZ3 plae s is still open, the intuition being that eah open plae allows for anunbounded number of onnetions, hene adding one onnetion does not a�etits openness. There is no way of speifying that, as a result of the omposition,the open port of eah of the two omponents is oupied by the other omponent,thus produing a net where plae s is losed. This is problemati sine a netidential to Z3, but where plae s is losed, is a valid proess of Z3 (speifyinga omputation having no interations with the environment). However there isno way to obtain it as the omposition of two proesses of Z1 and Z2.In order to overome this problem, we introdue ranked open nets, a re�nedmodel of open nets where besides speifying the open plaes, whih an be usedfor omposition with other nets, we also speify the maximum number of allowed(input and output) onnetions. This provides a more expressive model, properlysubsuming basi open nets (whih an be seen as speial ranked open nets, whereopen plaes always allow for an unbounded number of onnetions).A mehanism for omposing ranked open nets is de�ned whih generalisesthe one for basi open nets. In this ase the omposition operation annot beharaterised as a olimit. Instead, it an be seen as an abstration of a pushoutin a more onrete ategory where ports are made expliit.The omposition operation is extended to non-deterministi proesses andwe prove the desired ompositionality result: if a net Z3 is the omposition of Z1and Z2, then any proess of Z3 an be obtained as the omposition of proessesof the omponent nets and vie versa, the omposition of proesses of Z1 andZ2, whih agree on the ommon interfae, always provides a proess of Z3.2



The paper is organised as follows. In x 1 we introdue the ategories of rankedopen nets, and an operation of omposition for suh nets is de�ned in x 2. In x 3we introdue non-deterministi proesses for ranked open nets. In x 4 we provethe main result, i.e., ompositionality for non-deterministi proesses. Finally,in x 5 we draw some onlusions and diretions of future investigation.1 Ranked Open NetsAn open net, as introdued in [1℄, is an ordinary P/T Petri net with a distin-guished set of plaes. These plaes are intended to represent the interfae of thenet towards the environment, whih, interating with the net, an \freely" addor remove some tokens in the open plaes. Rather than simply distinguishingbetween input and output plaes, here, for every plae we speify the largestnumber of allowed inoming and outgoing new onnetions. A plae is losed ifit does not allow for any new onnetion.Given a set X we will denote by X� the free ommutative monoid generatedby X , with identity 0, and by 2X its powerset. Furthermore given a funtionh : X ! Y we denote by h� : X� ! Y � its monoidal extension, while the samesymbol h : 2X ! 2Y denotes the extension of h to sets.A P/T Petri net is a tuple N = (S; T; �; �) where S is the set of plaes,T is the set of transitions (S \ T = ;) and �; � : T ! S� assign soure andtarget to eah transition. In this paper we will onsider only �nite Petri nets.We will denote by �(�) and (�)� the monoidal extensions of the funtions � and� to funtions from T� to S�. Furthermore, given a plae s 2 S, the pre- andpost-set of s are de�ned by �s = ft 2 T j s 2 t�g and s� = ft 2 T j s 2 �tg.Let N0 and N1 be Petri nets. A Petri net morphism f : N0 ! N1 is a pair oftotal funtions f = hfT ; fSi with fT : T0 ! T1 and fS : S0 ! S1, suh that forall t0 2 T0, �fT (t0) = fS�( �t0) and fT (t0)� = fS�(t0�). The ategory of P/TPetri nets and Petri net morphisms will be denoted by Net.We use N for the set of natural numbers and N! for the same set extendedwith in�nity, i.e., N [ f!g. Operations and relations on N! are de�ned in theexpeted way, i.e., n � ! for eah n 2 N, ! � n = ! + n = ! + ! = ! for eahn 2 N, while ! � ! is unde�ned. The same operators will be applied, pointwise,to funtions over natural numbers. E.g., given f; g : X ! N! we denote byf + g : X ! N! the funtion de�ned by (f + g)(x) = f(x)+ g(x) for any x 2 X .De�nition 1 (ranked open net). A (ranked) open net is a pair Z = (NZ ; oZ),where NZ = (SZ ; TZ ; �Z ; �Z) is an ordinary P/T Petri net (alled the underlyingnet) and oZ = (o+Z ; o�Z ) : SZ ! N! . We de�ne OxZ = fs 2 SZ : oxZ(s) > 0g, forx 2 f+;�g and all them the sets of input and output open plaes of the net.As mentioned above, the funtions o+Z and o�Z intuitively speify for eahplae in SZ the maximum number of allowed new ingoing/outgoing onnetions,also referred to as the ranks of s. In [1℄ whenever a plae was open, intuitivelythere was no limit to the number of new onnetions. Hene the open nets of [1℄an be seen as speial ranked open nets, where oxZ(s) 2 f0; !g for any plae s.3



Fig. 1. Composing ranked open nets.As an example of ranked open nets, onsider net Z3 in Fig. 1, intuitivelymodelling the booking of a tiket in a travel ageny. In the graphial representa-tion an input (resp. output) open plae s has a dangling ingoing (resp. outgoing)ar, marked by the orresponding rank. When the rank is 1 it is omitted.Coneptually, we an think that every plae of an open net has a set ofattahing points, whih an either be used by an existing transition onnetedto the plae, or an be free and thus usable for onneting new transitions.Sometimes, as in the de�nition of onrete morphisms below (De�nition 6), weneed to onsider an expliit identity of suh attahing points, that we all ports.A port used by a transition is identi�ed with the transition itself, while freeports are identi�ed by a progressive number. Most often, however, we will beinterested only in their number, i.e., in the degree of a plae. Given n 2 N, let [n℄denote the set f0 : : : ; n� 1g. For all onsidered Z we assume that T \ N! = ;.De�nition 2 (input and ouput ports and degree). Let Z be an open net.For any plae s 2 S we de�ne the sets of input and output ports of s as follows:p+(s) = [o+Z (s)℄ [ �s and p�(s) = [o�Z (s)℄ [ s�The ports in [o+Z (s)℄ and [o�Z (s)℄ are alled open ports.Furthermore, we de�ne the input degree of s as deg+(s) = jp+(s)j, and,similarly, the output degree of s as deg�(s) = jp�(s)j.The token game of open nets. The notion of enabledness for transitions isthe usual one, but, besides the hanges produed by the �ring of the transitions ofthe net, we onsider also the interation with the environment whih is modelledby events, denoted by +s and �s, whih produe or onsume a token in an openplae s. For an open net Z, the set of extended events, denoted �TZ , is de�ned as4



�TZ = TZ [ f+s : s 2 O+Z g [ f�s : s 2 O�Z g.Pre- and post-set funtions are extended by de�ning �+s = 0 and +s� = s, andsymmetrially, ��s = s and �s� = 0.De�nition 3 (�ring). Let Z be an open net. A �ring in Z onsists of theexeution of an extended event � 2 �TZ , i.e., u� �� [�i u� ��.A �ring an be (i) the exeution of a transition u � �t [ti u� t�, with t 2 TZ ;(ii) the reation of a token by the environment u [+si u�s, with s 2 O+Z ; (iii) thedeletion of a token by the environment u� s [�si u, with s 2 O�Z .Morphisms of open nets. Morphisms of open nets will be de�ned as standardnet morphisms satisfying suitable onditions on the plae ranks. Intuitively, amorphism f : Z1 ! Z2 \inserts" net Z1 into a larger net Z2, allowing a plae sof Z1 to be onneted to \new" transitions, i.e., transitions in Z2 n f(Z1). Theondition we impose guarantees that eah new onnetion of s and eah openport of f(s) an be mapped to an open port of s.For reasons disussed in x 2, we de�ne two kinds of morphisms. In the moreabstrat ones, we impose only a ardinality onstraint, while in the more onreteones we require an expliit mapping relating, for eah plae s of Z1, the ports ofs to those of f(s). We next formalise the idea of \new onnetions" of a plae.De�nition 4 (in-set and out-set of a plae along a morphism). Givenopen nets Z1 and Z2 and a Petri net morphism f : NZ1 ! NZ2 , for eah plaes1 2 S1 the in-set of s1 along f is de�ned as in(f)(s1) = f �fS(s1) � fT ( �s1)g,and similarly the out-set is out(f)(s1) = ffS(s1)� � fT (s1�)g. This de�nes thefuntions in(f); out(f) : S1 ! 2T2 .The funtions #in(f);#out(f) : S1 ! N are de�ned, respetively, as#in(f)(s1) = jin(f)(s1)j and #out(f)(s1) = jout(f)(s1)j.De�nition 5 (open net morphisms). An open net morphism f : Z1 ! Z2is a Petri net morphism f : NZ1 ! NZ2 suh that(i) #in(f) + o+2 Æ fs � o+1 and (ii) #out(f) + o�2 Æ fs � o�1 .A morphism f is alled an open net embedding if both fT and fS are injetive.Intuitively, ondition (i) requires that the number of new inoming transitionsadded to s 2 S1 in the target net Z2 plus the input onnetions whih are stillallowed for fS(s) in Z2 must be bounded by the maximum number of allowedinput onnetions for s. Examples of open net embeddings an be found in Fig. 1.The mappings are those suggested by the labelling of the nets.De�nition 6 (onrete morphisms). Let Z1 and Z2 be open nets. A onreteopen net morphism f : Z1 ! Z2 is a pair f = hf; ffs1gs12S1i, where f : NZ1 !NZ2 is a Petri net morphism and for any s1 2 S1, fs1 onsists of a pair ofpartial surjetions fxs1 : px(s1) ! px(f(s1)) for x 2 f+;�g, onsistent with f ,i.e., satisfying, for any t 2 �s1, f+s1(t) = f(t) and for any t 2 s1�, f�s1(t) = f(t).A morphism f is alled an open net embedding if all omponents are injetive.5



As antiipated, onrete morphisms expliitly relate, for eah plae s 2 S1,the ports of f(s) and of s, using the omponent fs. In the sequel, instead of f+sand f�s , when plae s is lear from the ontext, we will often write f+ and f�.Moreover, when de�ning fxs we will only speify its values on the open ports[oxZ1(s)℄, whih, as fxs must be onsistent with f , ompletely determines fxs .As expeted, the two notions of morphism just introdued determine twoategories related by an obvious forgetful funtor. In fat, given a onrete mor-phism f = hf; ffs1gs12S1i : Z1 ! Z2 it is straightforward to hek that the Petrinet morphism f satis�es onditions (i) and (ii) of De�nition 5.De�nition 7 (open nets ategories). We denote by ONetr the ategory ofranked open nets and open net morphisms, and by ONet the ategory havingthe same objets and onrete open net morphisms as arrows.Furthermore, we denote by U : ONet ! ONetr the forgetful funtor whihis the identity on objets, and ats on an arrow f = hf; ffsgi as U(f) = f .Sometimes, ategories ONet and ONetr will be referred to as the onreteand the abstrat ategory of (ranked) open nets, respetively.The ategory of basi open nets introdued in [1℄ is (isomorphi to) the fullsubategory of ONetr inluding all the nets Z suh that for any plae s we haveoxZ(s) 2 f0; !g, i.e., either s is losed or it allows for an unbounded number ofonnetions. In the following this subategory will be referred to as ONet.2 Composing Open NetsIntuitively, two open nets Z1 and Z2 are omposed by speifying a ommonsubnet Z0, and then by joining the two nets along Z0. Composition will be har-aterised as a pushout in the onrete ategory of open nets ONet. But sinefor spei�ation purposes the abstrat ategory ONetr is often more appropri-ate and easier to deal with, next we will fous on the notion of ompositionindued on suh ategory by the olimit based omposition in ONet.Composition is possible if it respets the interfae of the involved nets. Thisis formalised by the notion of omposability of a span of embeddings in ONet.De�nition 8 (omposable span in ONet). A span of embeddings f1 : Z0 !Z1 and f2 : Z0 ! Z2 in ONet is alled omposable if, for any s0 2 S01. for all i 2 [o+Z0(s0)℄, if f+1 (i) 2 in(f1)(s0) then f+2 (i) 2 [o+Z2(f2(s0))℄2. for all i 2 [o�Z0(s0)℄, if f�1 (i) 2 out(f1)(s0) then f�2 (i) 2 [o�Z2(f2(s0))℄plus the analogous onditions, exhanging the roles of Z1 and Z2.Intuitively, ondition (1) says that, given a plae s0 and an open input porti 2 [o+Z1(s0)℄, if aording to f1 the transition f+1 (i) 2 in(f1)(s0) is going tobe attahed to this port, then the orresponding port in Z2 must be open, i.e.,f+2 (i) 2 [o+Z2(f2(s0))℄. The other onditions are analogous.6



Z0 f2f1Z1 g1 Z2g2Z3Fig. 2. Composition of ranked open nets.Given a onrete omposable span Z1 f1 Z0 f2! Z2, the omposition of Z1and Z2 along Z0 is the open net Z3 (see Fig. 2) obtained as the pushout of f1and f2, whih exists by the next result.Proposition 9 (pushout in ONet). A span of embeddings f1 : Z0 ! Z1, f2 :Z0 ! Z2 in ONet is omposable if and only if it has a pushout Z1 g1! Z3 g2 Z2in ONet, whose underlying diagram is a pushout in Net.The onstrution of the pushout of a omposable span in ONet turns outto be quite omplex and it is not reported for spae limitations, but the intuitionis simple. Firstly, the underlying net NZ3 is obtained as the pushout of NZ1 andNZ2 along NZ0 in Net. Next, if a plae is not in Z0, then in the pushout itmaintains exatly its ports. Instead, for a plae s in Z0, in the pushout the portsof the image of s are obtained by taking the pushout of the ports of the imagesof s in Z1 and Z2. Sine mappings between ports an be partial, open ports andisappear. A port is open only if it is open in both nets Z1 and Z2.The notions of omposability of spans and of omposition between nets anbe transferred to the abstrat ategory via the forgetful funtor U : ONet !ONetr. More interestingly, these notions an be de�ned also diretly at the ab-strat level, by referring only to the ranks of plaes of the involved nets. Thanksto this fat, in the rest of the paper we will be able to work in the abstratategory only, whih provides a simpler and natural framework to be used forspei�ation purposes. Still, we stress here that we de�ned the omposition ofnets in the onrete ategory �rst, beause the orresponding notion in the ab-strat ategory annot be haraterized by a universal property as a pushout.Given a pair of embeddings f1 : Z0 ! Z1 and f2 : Z0 ! Z2 in ONetr, wesay that they are omposable if there exists a omposable span of embeddingsf1 : Z0 ! Z1 and f2 : Z0 ! Z2 in ONet suh that U(f1) = f1 and U(f2) = f2.Fat 10 (omposable span in ONetr). A span of embeddings f1 : Z0 ! Z1and f2 : Z0 ! Z2 in ONetr is omposable if and only if1. #in(f1) � o+Z2 Æ f2 and #out(f1) � o�Z2 Æ f2;2. #in(f2) � o+Z1 Æ f1 and #out(f2) � o�Z1 Æ f1.Intuitively, the �rst half of ondition (1) requires that the number of inputonnetions whih are added to eah plae s of Z0 by f1, namely #in(f1)(s), isbounded by the number of additional input onnetions allowed for f2(s) in Z2,i.e., o+Z2(f2(s)). The remaining onditions are similar.7



Now, given a omposable span of embeddings f1 : Z0 ! Z1 and f2 : Z0 ! Z2in ONetr, let hf1; f2i be any pair of omposable embeddings in ONet suhthat U(f1) = f1 and U(f2) = f2. Then the omposition of Z1 and Z2 along Z0in ONetr is de�ned exatly as their omposition in ONet, i.e., as the pushoutobjet of f1 and f2 in ONet. It an be shown that this de�nition is well given,and that it an be haraterized as follows.Fat 11 (omposition in ONetr). Let f1 : Z0 ! Z1 and f2 : Z0 ! Z2 bea span of embeddings in ONetr. Compute the pushout of the orrespondingdiagram in the ategory Net obtaining the net NZ3 and the morphisms g1 andg2. For i 2 f1; 2g, de�ne res+i (s3) = oxZi(si)�#in(gi)(si) if there is some si 2 Sisuh that gi(si) = s3 and res+i (s3) = !, otherwise.5 The funtion res�i is de�nedin a dual way. Then take, for x 2 f+;�goxZ3 = minfresx1 ; resx2gThen Z3 (with morphisms g1 and g2) is the omposition along Z0 of f1 and f2.Intuitively, for a plae s3 = gi(si), the value res+i (si) is obtained by subtrat-ing from the number of onnetions allowed for si, i.e., o+Zi(si), the number of on-netions whih have been added as an e�et of the omposition, i.e., #in(gi)(si).In other words res+i (si) is the residual number of allowed onnetions. Whenjoining two plaes, the number of allowed onnetions for the resulting plae willbe the minimum among the residuals of the two original plaes.Two simple examples of omposition an be found in Fig. 3. It is worthexplaining why, for example, diagram (a) is not a pushout in ONetr. In fat,sine Z1 and Z2 are isomorphi, we an lose the span Z1 f1 Z0 f2! Z2 witharrows Z1 id! Z1 �= Z2 obtaining a ommutative square in ONetr, but there isno mediating morphism Z3 ! Z1 beause the ounter-image of an open plaeannot be losed. For a more omplex example see Fig. 1, where two nets Z1 andZ2 representing the planning of a trip and the buying of the tiket, respetively,are omposed. Note, e.g., that plae itinerary in Z2 is output open with rank 3and input open with rank 1, as needed for adding the onnetions in Z1.3 Proesses of Open NetsA proess of an open net is an open net itself, satisfying suitable ayliity andonit freeness requirements, together with a mapping to the original net.The open net underlying a proess is an open ourrene net, namely anopen net K suh that the underlying net NK is an ordinary ourrene net,with some additional onditions on open plaes. Fig. 6 shows some examples ofourrene nets. The open plaes in the ourrene net are intended to representourrenes of tokens whih are produed or onsumed by the environment in theonsidered omputation. Hene, input open plaes must satisfy o+(s) = 1 and5 Observe that res+i is well-de�ned sine gi is injetive.8



(a) (b)Fig. 3. Composing ranked open nets.additionally they must be minimal. In fat, an input open plae with o+(s) > 1would represent a token possibly produed by two di�erent transitions in theenvironment; similarly an input open plae in the post-set of some transitionwould represent a token whih an be produed either internally or by sometransition in the environments. In both ases the situation would orrespond toa bakward onit and it would prevent one to interpret the plae as a tokenourrene. Instead, an output open plae an be in the pre-set of a transition,as it happens for plae itinerary in the open ourrene nets K1 and K2 of Fig. 6,and it might be that o�Z (s) > 1. The idea is that the token ourrene representedby plae s an be onsumed either by transition t or by two or more ourrenesof transitions in the environment.For a Petri net N = (S; T; �; �) the ausality relation <N � (S [ T )2 isthe least transitive relation suh that x<N y if y 2 x�. Moreover, the onitrelation #N � (S [ T )2 is the least symmetri relation generated by the rules:�t \ �t0 6= ; t 6= t0 t; t0 2 Tt#N t0 x#N y y <N y0x#N y0 (hereditarity)These de�nitions lift to open nets by onsidering the underlying net. We willomit the subsripts when lear from the ontext.De�nition 12 (open ourrene net). An open ourrene net is an opennet K suh that1. �t and t� are sets rather than proper multisets, for eah transition t 2 T ;2. the ausality relation <K is a �nitary strit partial order;3. the onit relation #K is irreexive;4. there are no bakward onits, i.e., deg+(s) � 1 for eah plae s 2 S.Notie that the net NK underlying an open ourrene net is an ourrenenet aording to the standard de�nition.We next introdue the notion of proess for open nets.De�nition 13 (open net proess). A proess of an open net Z is a mapping� : K ! Z where K is an open ourrene net and � : NK ! NZ is a Petri netmorphism, suh that �S(O+K) � O+Z and �S(O�K) � O�Z .9



Note that the mapping from the ourrene netK to the original net Z, is notan open net morphism in general. In fat, the proess mapping, di�erently fromopen net morphisms, must be a simulation, i.e., it must preserve the behaviour.To this aim the image of an open plae in K must be an open plae in Z, sinetokens an be produed (onsumed) by the environment only in input (output)open plaes of Z. Instead, there is no relation between the rank of open plaesin the ourrene net and in the net Z sine a token in an open plae an beonsumed by distint ourrenes of the same transition in the environment.We next introdue the ategory of proesses, where objets are proesses andarrows are pairs of open net morphisms.De�nition 14 (ategory of proesses). We denote by Pro the ategorywhere objets are proesses and given two pro-esses �0 : K0 ! Z0 and �1 : K1 ! Z1, anarrow  : �0 ! �1 is a pair of open net mor-phisms  = h Z : Z0 ! Z1;  K : K0 ! K1isuh that the diagram on the right (indeed theunderlying diagram in Net) ommutes. K0�0  K K1�1Z0  Z Z13.1 Projeting Behaviours along EmbeddingsSine open net morphisms are designed to apture the idea of \insertion" of a netinto a larger one, they are expeted to \reet" the behaviour in the sense thatgiven f : Z0 ! Z1, the behaviour of Z1 an be projeted along the morphismto the behaviour of Z0. As in [1℄, this intuition an be formalised for open netembeddings by showing how a proess of Z1, as de�ned before, an be projetedalong f giving a proess of Z0. Intuitively, eah possible omputation in Z1 anbe \projeted" to Z0, by onsidering only the part of the omputation of thelarger net whih is visible in the smaller net. Ranks are de�ned orrespondingly.De�nition 15 (projetion of a proess). Let f : Z0 ! Z1 be an open netembedding and let �1 : K1 ! Z1 be a proess of Z1. A pro-jetion of �1 along f , is a pair h�0;  i where �0 : K0 ! Z0is a proess of Z0 and  : �0 ! �1 is an arrow in Pro,onstruted as follows. Consider the pullbak of �1 and f inNet, thus obtaining the net morphisms �0 and  K (see thediagram on the right). Then K0 is obtained by taking NK0 asunderlying net, and de�ning NK1 �1 NZ1NK0 K �0 NZ0fo+K0 = o+K1 Æ  K +#in( K) and o�K0 = o�K1 Æ  K +#out( K)(i.e., by opening the plaes as least as possible to make  K : K0 ! K1 an opennet morphism) and  = h K ; fi.4 Composing Non-deterministi ProessesConsider a omposition diagram in ONetr, as in Fig. 2, where f1 and f2 areopen net embeddings. One would like to establish a lear relationship among the10



Fig. 4. Transition t would be in self-onit in the omposition.behaviours of the involved nets. Roughly, we would like that the behaviour ofZ3 ould be onstruted \ompositionally" out of the behaviours of Z1 and Z2.In [1℄ we have shown that in the setting of basi open nets this an be doneonly for deterministi proesses. Here we show how, in the setting of ranked opennets, the result extends to general, possibly non-deterministi proesses. Giventwo proesses �1 of Z1 and �2 of Z2 whih \agree" on Z0, one an onstruta proess �3 of Z3 by amalgamating �1 and �2. Vie versa, eah proess �3 ofZ3 an be projeted over two proesses �1 and �2 of Z1 and Z2, whih an beamalgamated to produe �3 again. Hene, all and only the proesses of Z3 anbe obtained by amalgamating the proesses of the omponents Z1 and Z2.4.1 Composition of Non-deterministi Ourrene Open NetsA basi step towards the omposition operation is the formalisation of the in-tuitive idea of proesses of di�erent nets whih \agree" on a ommon part.Conretely, this amounts to identify suitable onditions whih ensure that theomposition of ourrene open nets exists and produes a net in the same lass.First, given a span K1 f1 K0 f2! K2 we introdue the notion of ausalityrelation indued by K1 and K2 over K0. When the two nets are omposed theirausality relations get \fused". Hene, to ensure that the resulting net is againan ourrene net, the indued ausality must be a strit partial order.De�nition 16 (indued ausality). Let K1 f1 K0 f2! K2 be a span of em-beddings in ONetr, where Ki (i 2 f0; 1; 2g) are ourrene open nets. Therelation of ausality <1;2 indued over K0 by K1 and K2, through f1 and f2is the least transitive relation suh that for any x0; y0, if f1(x0)<K1 f1(y0) orf2(x0)<K2 f2(y0) then x0<1;2 y0.When omposing non-deterministi ourrene nets, whih an inlude mu-tual exlusive branhes of omputation, we must also avoid that transitions be-omes non-�rable due to the reation of self-onits. For example, Fig. 4 showsa span where the indued ausality is a strit partial order, but there would bea self-onit on t in the omposed ourrene net. Hene t would not be �rablein any omputation of the net. 11



To this aim, we introdue new relations, alled anti-ausality and anti-onit. Intuitively, two items x and y in K are related by anti-ausality (anti-onit) if, to ensure the �rability of eah transition in the net, x and y mustremain ausally unrelated (not in onit, resp.) when K is omposed with othernets. Then the idea is to avoid ompositions whih an lead to situations in whihtwo items are related both by a relation and by the orresponding anti-relation.De�nition 17 (anti-relations). Let K be an ourrene open net. The anti-ausality :<K and anti-onit :#K relations over (S [ T )2 are de�ned by thefollowing rules (subsripts are omitted as lear from the ontext):x:#x x:<x (anti1) x:# y x0<xx0 :# y (anti2)x:# y x# y0y0 :<y (anti3) x:# yy:# x (anti4)The rules have a lear interpretation. Rule (anti1) states that the eah single itemmust remain onurrent, while rules (anti2) and (anti3) are obtained by \revert-ing" the rule whih expresses hereditarity of onit w.r.t. ausality. Finally,(anti4) states that :# is symmetri.Given an open net morphism f1 : K0 ! K1, whereK0 andK1 are ourrenenets, in the following we will use the symbols <1, #1, :#1 and :<1 to denotethe projetion over K0 of the orresponding relations over K1, i.e., for any r 2f<;#;:#;:<g and x0; y0 in K0 we will writex0 r1 y0 i� f1(x0) rK1 f1(y0)Given a span of ourrene open nets K1 f1 K0 f2! K2 we next de�ne theonit relation and the anti-relations indued over the net K0 by K1 and K2,through f1 and f2. This has been already done for ausality in De�nition 16,where indued ausality <1;2 is de�ned as the transitive losure of <1 [ <2.De�nition 18 (indued relations). Let K1 f1 K0 f2! K2 be a span in ONetr,where Ki (i 2 f0; 1; 2g) are ourrene open nets. The onit relation and theanti-relations indued over K0 by K1 and K2, through f1 and f2 are as follows.For x0; y0 in K0, let x0 &1 y0 be a shortut for x0<1 y0 and there is no z0suh that x0<K0 z0 �1 y0. Observe that in this ase x0 must be a plae, onnetedto y0 through a hain of transitions in K1, but not in K0. The notation x0 &2 y0is de�ned in the dual way.{ indued onit #1;2: The relation #1;2 over K0 is the least relation,hereditary w.r.t. <1;2 suh that, for any x0; y0,1) if x0#1 y0 or x0#2 y0 then x0#1;2 y0.2) if x0 &1 y0 and x0 &2 z0 then y0#1;2 z0.{ indued anti-relations :<1;2 and :#1;2: The relations :#1;2 and :<1;2over K0 are de�ned as the least relations suh that for x0; y0, for i 2 f1; 2g,if x:#i y then x:#1;2 y, and similarly, if x:<i y then x:<1;2 y, and losedunder rules (anti1)� (anti4). 12



Now we an identify the onditions whih guarantee that the omposition oftwo ourrene open nets is still an ourrene open net.De�nition 19 (onsistent span). A span K1 f1 K0 f2! K2 of ourrene opennets is onsistent if it is omposable in ONetr and for any x0; y0 in K01. x0 :<1;2 y0 ) :(x0<1;2 y0) and x0 :#1;2 y0 ) :(x0#1;2 y0);2. for i; j 2 f1; 2g, i 6= j, we have that x0 :#i y0 implies :(x0 &j y0).Condition (1) just requires that eah anti-relation does not interset the orre-sponding relation. Condition (2), instead, just imposes that two anti-onitualplaes in K1 are never onneted by a hain of transitions in K2 (and vie versa),otherwise in the omposition one would get a self-onit.We an now show that the omposition in ONetr of a onsistent span ofourrene nets produes an ourrene net. We �rst need a preliminary result.Lemma 20. Let K1 f1 K0 f2! K2 be a omposable span of embeddings inONetr, where Ki (i 2 f0; 1; 2g) are ourrene open nets, and let K1 g1! K3 g2 K2 be the omposition. Then for any x0; y0 in K0, if we let x3 = g1(f1(x0)) =g2(f2(x0)) and y3 = g1(f1(y0)) = g2(f2(y0)), we have1. x0<1;2 y0 i� x3<K3 y3;2. x0#1;2 y0 i� x3#K3 y3; 3. x0 :#1;2 y0 i� x3 :#K3 y3;4. x0 :<1;2 y0 i� x3 :<K3 y3.Proposition 21. In the hypotheses of Lemma 20 above, K1 f1 K0 f2! K2 is aonsistent span i� the omposition K3 is an ourrene open net.4.2 Amalgamating Non-deterministi ProessesFor the rest of this setion we refer to a �xed omposition in ONetr, as in Fig. 2,where f1 and f2 are omposable open net embeddings. Two proesses �1 of Z1and �2 of Z2 an be amalgamated when they agree on the ommon subnet Z0.De�nition 22 (agreement of non-deterministi proesses). We say thattwo non-deterministi proesses �1 : K1 ! Z1 and �2 : K2 ! Z2 agree on Z0if there are projetions h�0;  iKi along fi of �i for i 2 f1; 2g suh that the spanK1  1K K0  2K! K2 is onsistent and, for any s0 in K0, if s3 = fi(gi(�0(s0))) isthe orresponding plae in Z3, the following holds:if #out( 1K)(s0) + #out( 2K)(s0) < o�K0(s0) then s3 2 O�Z3 : (1)In this ase h�0;  1Ki, h�0;  2Ki are alled agreement projetions for �1 and �2.Intuitively, the two proesses agree if they have the same projetion over Z0.Additionally, as required by ondition (1), if, for a plae s0 in K0, the numberof external events that an onsume the token in s0 exeeds the events providedby Z1 and Z2 then the orresponding plae in Z3 must be open.13



K0�0 1K  2KK1�1 �1K Z0f1 f2 K2�2�2KZ1 g1 K3�3 Z2g2Z3Fig. 5. Amalgamation of open net proesses.De�nition 23 (proess amalgamation). Let �i : Ki ! Zi (i 2 f0; 1; 2; 3g)be non-deterministi proesses and let h�0;  1Ki and h�0;  2Ki be agreement pro-jetions of �1 and �2 along f1 and f2 (see Fig. 5). We say that �3 is an amalga-mation of �1 and �2, written �3 = �1+ 1K ; 2K �2, if there are projetions h�1; �1iand h�2; �2i of �3 over Z1 and Z2, respetively, suh that the upper square is aomposition in ONetr.We next give a more onstrutive haraterisation of proess amalgamation,whih also proves that the result is unique up to isomorphism.Lemma 24 (amalgamation onstrution). Let �1 : K1 ! Z1 and �2 : K2 !Z2 be non-deterministi proesses that agree on Z0, and let h�0;  1Ki and h�0;  2Kibe orresponding agreement projetions. Then the amalgamation �1+ 1K; 2K �2 isa proess �3 : K3 ! Z3, where net K3 is obtained as the omposition in ONetrof  1K : K0 ! K1 and  2K : K0 ! K2 and the proess mapping �3 : K3 ! Z3 isuniquely determined by the universal property of the underlying pushout diagramin Net (see Fig. 5). Hene �1 + 1K ; 2K �2 is unique up to isomorphism.As an example, in Fig. 6 a proess for the net Z3 of Fig. 1 is obtained as theamalgamation of proesses of the omponent nets. The proess for Z1 representsa reservation ativity, whih an sueed after two attempts or an be �nallyanelled. In the proess for Z2 two possible itineraries are visible: the �rst onean only be disarded (used by the environment) while the seond one an alsotrigger a payment, thus resulting in a tiket. Composing the two proesses onegets a full booking proess for net Z3.We next show that eah non-deterministi proess of a omposed net arisesas the amalgamation of non-deterministi proesses of the omponents.Lemma 25 (proess deomposition). Let �3 : K3 ! Z3 be a proess of Z3and, for i 2 f1; 2g, let h�i; �ii be projetions of �3 along gi. Then there areagreement projetions h�0;  1Ki, h�0;  2Ki of �1, �2 suh that �3 �= �1+ 1K ; 2K �2.As a onsequene we �nally have our main result.Theorem 26 (ompositionality for non-deterministi proesses). Alland only the non-deterministi proesses of Z3 an be obtained as amalgama-tions of proesses of Z1 and Z2 whih agree on Z0.14



Fig. 6. An example of proess amalgamation.5 Conlusions and Future WorkWe have introdued a ompositional semantis based on non-deterministi pro-esses for ranked open nets, an extension of the basi open net model of [1℄where it is possible to speify, for open plaes, the maximum number of allowedonnetions. The omposition operation is haraterised as a pushout in a at-egory of ranked open nets with onrete morphisms. The notion of agreementbetween proesses of di�erent sub-omponents, whih is a requirement for pro-ess omposition, builds upon a theory of anti-relations (i.e., anti-ausality andanti-onit) whih ould have an interest for Petri nets in general.We believe that a theory of non-deterministi proesses for open nets anrepresent a starting point for a modular veri�ation of open nets based on �nitepre�xes of the unfolding [10℄. There are obvious diÆulties, e.g., the fat thatopen nets are always in�nite state (whenever they have at least one input openplae). However the \regularity" of the state spae suggests the possibility ofundertaking a symboli approah, for whih analogous work for standard Petrinets, like [6℄, ould provide an inspiration.We foresee also potential outomes in the setting of graph transformationsystems. In fat graph transformation systems an be seen as generalisation ofPetri nets, and it has been often produtive to fous �rst in the latter simplersetting. The notion of openness [8, 7℄ as well as the notion of proesses [5℄ havealready been studied in the setting of graph transformation, however until nowthere have been no attempts to ombine them. The present work an be a �rststep in this diretion. 15
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