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Abstract. We introduce a notion of bisimulation for graph rewriting
systems, allowing us to prove observational equivalence for dynamically
evolving graphs and networks.
We use the framework of synchronized graph rewriting with mobility
which we describe in two different, but operationally equivalent ways: on
graphs defined as syntactic judgements and by using tile logic. One of the
main results of the paper says that bisimilarity for synchronized graph
rewriting is a congruence whenever the rewriting rules satisfy the basic
source property. Furthermore we introduce an up-to technique simplify-
ing bisimilarity proofs and use it in an example to show the equivalence
of a communication network and its specification.

1 Introduction

Graph rewriting can be seen as a general framework in which to specify and
reason about concurrent and distributed systems [8]. The topology and connec-
tion structure of these systems can often be naturally represented in terms of
nodes and connecting edges, and their dynamic evolution can be expressed by
graph rewriting rules. We are specifically interested in hypergraphs where an
arbitrarily long sequence of nodes—instead of a pair of nodes—is assigned to
every edge.

However, the theory of graph rewriting [24] lacks a concept of observational
equivalence, relating graphs which behave the same in all possible context, which
is quite surprising, since observational equivalences, such as bisimilarity or trace
equivalence, are a standard tool in the theory of process calculi.

We are therefore looking for a semantics for (hyper-)graph rewriting systems
that abstracts from the topology of a graph, and regards graphs as processes
which are determined by their interaction with the environment, rather than by
their internal structure. It is important for the observational equivalence to be a
congruence, since this will enable compositional proofs of equivalence and assure
substitutivity, i.e. that equivalent subcomponents of a system are exchangeable.

The applications we have in mind are the verification of evolving networks,
consisting, e.g., of processes, messages and other components. A possible scenario
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would be a user who has limited access to a dynamically changing network.
We want to show that the network is transparent with respect to the location
of resources, failure of components, etc. by showing that it is equivalent to a
simpler specification. Such an equivalence of networks is treated in the example
in Section 7.

One possible (and well-studied) candidate for an observational equivalence is
bisimilarity. So the central aim of this paper is to introduce bisimilarity for graph
rewriting—we will explain below why it is convenient to base this equivalence
on the model of synchronized graph rewriting, as opposed to other models—and
to introduce an up-to proof technique, simplifying actual proofs of bisimilarity.

When defining bisimulation and bisimilarity for graph rewriting systems, two
possibilities come to mind: the first would be to use unlabelled context-sensitive
rewrite rules as, for example, in the double-pushout approach [7]. The defini-
tion of an observational congruence in this context, however, ordinarily requires
universal quantification over all possible contexts of an expression, which is dif-
ficult to handle in practice. This makes us choose the second possibility, which
is closer to process algebras: we use synchronized graph rewriting, which allows
only context-free rewrite rules whose expressive power is increased considerably
by adding synchronization and mobility (i.e. communication of nodes), thus in-
cluding a large class of rewriting systems. In this case we can define a simple
syntactic condition (the basic source property) on the rewrite rules ensuring
that bisimilarity is a congruence (compare with the de Simone format [5] and
the tyft/tyxt-format [12]).

As synchronization mechanism we choose Hoare synchronization which means
that all edges that synchronize via a specific node produce the same synchro-
nization action. This is different from Milner synchronization (as in CCS [19])
where two synchronizing processes produce two different signals: an action a and
a coaction ā.

We prefer Hoare synchronization since it makes it easier to handle the kind of
multiple synchronization we have in mind: several edges connected to each other
on a node must agree on an action a, which means that there is no clear distinc-
tion between action and coaction. This, in turn, causes other nodes connected to
the same edges to perform a different action, and in this way synchronization is
propagated by edges and spreads throughout an entire connected component. It
is conceivable to implement different synchronization mechanisms as processes
working as “connectors”, thus modeling in this way a variety of coordination
mechanisms.

Edges synchronizing with respect to an action a may, at the same time, agree
to create new nodes which are then shared among the right-hand sides of the
respective rewrite rules. (This form of mobility was first presented in [13] and is
also extensively treated in [14].) From the outside it is not possible to determine
whether newly created nodes are different or equal, it is only possible to observe
the actions performed.

Apart from the obvious representation of graphs in terms of nodes and edges,
there are several other approaches representing graphs by terms, which allow for



a more compositional presentation of graphs and enable us, for example, to do
induction on the graph structure. We will introduce two of these term repre-
sentations: first graphs as syntactic judgements, where nodes are represented by
names and we have operators such as parallel composition and name hiding at
our disposal. This representation allows for a straightforward definition of graph
rewriting with synchronization and mobility.

The second representation defines graphs in terms of arrows of a P-monoidal
category [3]. This allows for an easy presentation of graph rewriting in tile logic,
a rewriting framework which deals with the rewriting of open terms that can still
be contextualized and instantiated and allows for different ways of composing
partial rewrites. To show the compositionality of our semantics, we use a property
of tile logic, i.e. the fact that if a tile system satisfies a so-called decomposition
property, then bisimilarity defined on top of this tile system is a congruence (see
also [1]).

Apart from the fact that we use tile logic as a tool to obtain the congruence
result, we also show how mobility, and specifically the form of mobility used in
synchronized graph rewriting, can be handled in the context of tile logic.

2 Synchronized Graph Rewriting with Mobility

We start by introducing a representation of (hyper-)graphs as syntactic judge-
ments, where nodes in general correspond to names, external nodes to free names
and (hyper-)edges to terms of the form s(x1, . . . , xn) where the xi are arbitrary
names.

Definition 1 (Graphs as Syntactic Judgements). Let N be a fixed infinite
set of names. A syntactic judgement is of the form Γ ` G where Γ ⊆ N is a set
of names (the interface of the graph) and G is generated by the grammar

G ::= nil (empty graph) | G|G (parallel composition) |

(νx)G (node hiding) | s(x1, . . . , xn) (edge)

where x ∈ N and s(x1, . . . , xn) with arbitrary xi ∈ N is called an edge of arity
n labelled s. (Every label is associated with a fixed arity.)

Let fn(G) denote the set of all free names of G, i.e. all names not bound by
a ν-operator. We demand that fn(G) ⊆ Γ .

We assume that whenever we write Γ, x, then x is not an element of Γ .
We need to define a structural congruence on syntactic judgements in order

to identify those terms that represent isomorphic graphs (up to isolated nodes)
(see [15, 16]).

Definition 2 (Structural Congruence). Structural congruence ≡ on syntac-
tic judgements obeys the rules below and is closed under parallel composition |
and the hiding operator ν. (We abbreviate equations of the form Γ ` G ≡ Γ ` G′

by G ≡ G′.)



Γ ` G ≡ ρ(Γ ) ` ρ(G) where ρ is an injective substitution

(G1|G2)|G3 ≡ G1|(G2|G3) G1|G2 ≡ G2|G1 G|nil ≡ G

(νx)(νy)G ≡ (νy)(νx)G (νx)nil ≡ nil (νx)G ≡ (νy)G{y/x} if y 6∈ fn(G)

(νx)(G|G′) ≡ (νx)G|G′ if x 6∈ fn(G′)

We sometimes abbreviate (νx1) . . . (νxn)G by (ν{x1, . . . , xn})G.

Example 1. We regard the syntactic judgement y ` (νx)(νz)(P (x) | S(x, y, z) |
P (z)) which consists of two processes P which are connected to each other and
the only external node y via a switch S. A graphical representation of this
syntactic judgement can be found in Figure 2 (graph in the lower left corner).

In order to define rewriting on syntactic judgements we introduce the notion
of rewriting rule. We use a set Act of arbitrary actions, which can be thought of
as the set of signals which are allowed in a network.

Definition 3 (Rewriting Rules). Let Act be a set of actions, containing also
the idle action ε. Each action a ∈ Act is associated with an arity ar(a) ∈ lN, the
arity of ε is 0. (The arity indicates the number of nodes created by an action.)

A rewriting rule is of the form

x1, . . . , xn ` s(x1, . . . , xn)
Λ

−→ x1, . . . , xn, ΓΛ ` G

where all xi are distinct, Λ ⊆ {x1, . . . , xn}×Act\{ε}×N∗ such that Λ is a total
function in its first argument, i.e. if (xi, ai, ỹi) ∈ Λ we write Λ(xi) = (ai, ỹi),
respectively actΛ(xi) = ai and nΛ(xi) = ỹi, and we demand that ar(ai) = |ỹi|.

Furthermore1 ΓΛ =
⋃

xi∈Λ Set(nΛ(xi)) and we demand that {x1, . . . , xn} ∩
ΓΛ = ∅.

A rewriting rule of the form given above indicates that an edge s(x1, . . . , xn)
is rewritten, synchronizing on each node xi with an action ai, and during this
synchronization a string ỹi of new nodes is created. The set ΓΛ contains all new
nodes in the interface which are created by the rewriting step.

The following example will be used as a running example throughout the
paper.

Example 2. We describe a network of processes P of arity 1 and processes Q of
arity 2 connected to each other via switches S of arity 3.

We use three kinds of actions, apart from the idle action ε: τ and a (both of
arity 0) and s (of arity 1) which is the action used for establishing a shared name.
A process of our example network can perform the following rewriting steps:2 P
can either send a signal a, or it can extend the network by transforming itself into
a switch with two processes connected to it, or it can perform an s action and
fork a process Q whose second node is connected to a newly created, privately

1 For any string s̃, we denote the set of its elements by Set(s̃).
2 The empty sequence is denoted by 〈〉.
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Fig. 1. Graphical representation of example rules

shared channel. The action τ is different from the idle action and is used in this
example to represent internal activity.

x ` P (x)
{(x,a,〈〉)}
−→ x ` P (x)

y ` P (y)
{(y,τ,〈〉)}
−→ y ` (νx)(νz)(P (x) | S(x, y, z) | P (z))

x ` P (x)
{(x,s,w)}
−→ x,w ` (νy)(νz)(S(x, y, z) | P (y) | Q(z, w)).

The process Q, on the other hand, can perform any combination of a and τ
actions.

x, y ` Q(x, y)
{(x,a1,〈〉),(y,a2,〈〉)}

−→ x, y ` Q(x, y) where a1, a2 ∈ {a, τ}.

Switches have the task to route the signals and actions originating at the pro-
cesses and in the case of an s action a new node v is created. In both rules we
require that {x, y, z} = {x1, x2, x3}:

x, y, z ` S(x, y, z)
{(x1,a,〈〉),(x2,a,〈〉),(x3,τ,〈〉)}

−→ x, y, z ` S(x, y, z)

x, y, z ` S(x, y, z)
{(x1,s,v),(x2,s,v),(x3,τ,〈〉)}

−→ x, y, z, v ` S(x, y, z)

A graphical representation of the third rule for P and the second rule for S
(with x1 = x, x2 = z, x3 = y) is depicted in Figure 1, where the bound names
are indicated by their enclosure in round brackets.

In order to be able to define inference rules which describe how to derive
more complex transitions from the basic rules, we first introduce the following
notion of a most general unifier which transforms a relation Λ, which does not
necessarily satisfy the conditions of definition 3, into a function.

Definition 4 (Most General Unifier). Let σ : N → N be a name substitu-
tion. If Λ = {(xi, ai, ỹi) | i ∈ {1, . . . , n}}, then σ(Λ) = {(σ(xi), ai, σ

∗(ỹi)) | i ∈
{1, . . . , n}} where σ∗ is the extension of σ to strings.

For any Λ = {(xi, ai, ỹi) | i ∈ {1, . . . , n}} ⊆ N × Act × N∗ we call a sub-
stitution ρ : N → N a unifier of Λ whenever ρ(xi) = xi for i ∈ {1, . . . , n} and
xi = xj implies ai = aj and ρ∗(ỹi) = ρ∗(ỹj).

The mapping ρ is called a most general unifier whenever it is a unifier with
a minimal degree of non-injectivity. Unifiers do not necessarily exist.



Example 3. The substitution ρ = {u/v, u/r, u/s, u/w, u/t} is a unifier for Λ =
{(x, a, uuvw), (x, a, rsst)} since ρ(Λ) = {(x, a, uuuu)}. A most general unifier is,
for example, ρ′ = {u/v, u/r, u/s, w/t} where ρ′(Λ) = {(x, a, uuuw)}.

The set Λ = {(x, a, u), (x, b, v)}, where a 6= b, does not have a unifier.

Most general unifiers are needed in order to make sure that whenever two
nodes are merged, the strings of nodes created by synchronizing on them, are
also merged. Regard, for example, the rewriting rules

x ` s(x)
Λ1={(x,a,y)}

−→ x, y ` s′(x, y) and x ` t(x)
Λ2={(x,a,z)}

−→ x, z ` t′(x, z).

Then—since the edges s and t should agree on a common new name—we expect
that

x ` s(x) | t(x)
Λ={(x,a,y)}

−→ x, y ` s′(x, y) | t′(x, y)

where Λ can be obtained by applying the most general unifier to Λ1 ∪ Λ2.

We introduce the following inference rules for transitions, which are similar
to the rules given in [13, 14].

Definition 5 (Inference Rules for Transitions). All possible transitions Γ `

G
Λ

−→ Γ ′ ` G′ between graphs are generated by a set R of rewriting rules and the
inference rules given below and are closed under injective renaming of all names
occurring in a transition.

(ren)
Γ ` G

Λ
−→ Γ, ΓΛ ` G′

ρ(Γ ) ` ρ(G)
ρ′(ρ(Λ))
−→ ρ(Γ ), Γρ′(ρ(Λ)) ` ρ′(ρ(G′))

where ρ : Γ → Γ and ρ′ is the most general unifier for ρ(Λ).

(par)
Γ ` G1

Λ1−→ Γ, ΓΛ1
` G′

1 Γ ` G2
Λ2−→ Γ, ΓΛ2

` G′
2

Γ ` G1|G2
ρ(Λ1∪Λ2)
−→ Γ, Γρ(Λ1∪Λ2) ` ρ(G′

1|G
′
2)

if ΓΛ1
∩ ΓΛ2

= ∅ and ρ is the most general unifier for Λ1 ∪ Λ2.

(hide)
Γ, x ` G

Λ]{(x,a,ỹ)}
−→ Γ, x, ΓΛ, Y ` G′

Γ ` (νx)G
Λ

−→ Γ, ΓΛ ` (νx)(νY )G′
where Y = Set(ỹ)\ΓΛ.

(idle) Γ ` G
Λ

−→ Γ ` G where3 Λ(x) = (ε, 〈〉) for x ∈ Γ .

(new)
Γ ` G

Λ
−→ Γ, ΓΛ ` G′

Γ, x ` G
Λ]{(x,a,ỹ)}

−→ Γ, x, ΓΛ, ỹ ` G′

We also write R  (Γ ` G
Λ

−→ Γ ′ ` G′) whenever this transition can be derived
from a set R of rewriting rules.

3 The empty sequence is denoted by 〈〉.
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Fig. 2. Processes establishing a privately shared channel

In every transition Λ assigns to each free name the action it performs and
the string of new nodes it creates. Rule (ren) deals with non-injective renaming
of the nodes of a graph, which is necessary in order to handle edges of the form
s(. . . , x, . . . , x, . . .), i.e. edges which are connected several times to the same
node. Parallel composition of syntactic judgements is treated in rule (par) which
makes sure that whenever a synchronization on a node creates a string ỹ1 in
the rewriting of Γ ` G1 and the synchronization on the same node creates a
string ỹ2 in the rewriting of Γ ` G2, then both strings are identified by ρ. In rule
(hide), which deals with hiding of names, we do not only have to hide the name
itself, but all the names which have been created exclusively by interaction on
this name, i.e. all names in the set Y . Furthermore every syntactic judgement
can always make an explicit idle step by performing action ε on all its external
nodes (rule (idle)) and we can add an additional name to the interface which
performs arbitrary actions (rule (new)). This is due to Hoare synchronization
which requires that any number of edges, and therefore also zero edges, can
synchronize on a given node.

Example 4. One of the most interesting rewriting steps which can be derived
from the rules of example 2 is the forking of two processes Q at the same time
and the establishment of a privately shared channel between them. We intend
to reduce the syntactic judgement y ` (νx)(νz)(P (x) | S(x, y, z) | P (z)) from
example 1. The task of the switch S is to route the signal s on which both
processes synchronize, and also to propagate the newly created name.

We first derive a transition for x, y, z ` P (x) | S(x, y, z) | P (z) which is
depicted in the upper half of Figure 2 and which can be obtained by composing
the rewriting rules given in Figure 1 where the concept of the most general unifier
forces v = w. Then in the next step we hide both names x and z which causes
all names produced by interaction on x or z to be hidden as well, which means
that v is removed from the interface (see the lower half of Figure 2).

We can also observe that when a process P creates a new node which is
communicated to the environment, a form of name extrusion as in the π-calculus
[21] is performed. In the extrusion rule of the labelled transition semantics of the



π-calculus, a private, but extruded, name may also appear free in the right-hand
side of the rule.

3 Representation of Graphs in a P-monoidal Category

In order to be able to describe graph rewriting in tile logic, we will now describe
a second possibility of graph representation, which abstracts from names, i.e.
nodes are not addressed via their name, but via their position in the interface.
In this way we identify all graphs which can be seen as isomorphic, i.e. which
are equal up to the laws of structural congruence given in Definition 2.

We will introduce new operators, such as the duplicator ∇ and the coduplica-
tor ∆ (splitting respectively merging nodes), the permutation ρ, the discharger
! and the codischarger ? (hiding respectively creating nodes), which will be de-
fined below (see also Figure 3). For the representation of rewriting steps as tiles,
it is convenient to be able to describe these unary operators as graphs as well.
In order to achieve this, we introduce an interface consisting of two sequences
of nodes: root and variable nodes. Additionally we have two binary operators:
composition ; and a monoidal operation ⊗.

We will now describe graphs as arrows of a P-monoidal (or Part-monoidal)
category [3], which can be obtained from dgs-monoidal categories [10] by adding
an axiom.

P-monoidal categories are an extension of gs-monoidal categories. These de-
scribe term graphs, i.e. terms minus copying and garbage collection. Intuitively
P-monoidal categories do not only contain term graphs, but also term graphs
turned “upside down” and all possible combinations of these graphs.

We first give a formal definition in terms of category theory and then infor-
mally describe the meaning of the constants and operations in our setting.

Definition 6 (P-monoidal category). A gs-monoidal category G is a six-
tuple (C,⊗, e, ρ,∇, !) where (C,⊗, e, ρ) is a symmetric strict monoidal category
and ! : Id ⇒ e : C → C, ∇ : Id ⇒ ⊗ ◦ D : C → C are two transformations (D
is the diagonal functor), such that !e = ∇e = ide and the following coherence
axioms

∇a; ida ⊗∇a = ∇a;∇a ⊗ ida ∇a; ida⊗!a = ida ∇a; ρa,a = ∇a

and the monoidality axioms

∇a⊗b; ida ⊗ ρb,a ⊗ idb = ∇a ⊗∇b !a⊗!b =!a⊗b

are satisfied.

A P-monoidal category D is an eight-tuple (C,⊗, e, ρ,∇, !,∆, ?) such that
both the six-tuples (C,⊗, e, ρ,∇, !) and (Cop ,⊗, e, ρ,∆, ?) are gs-monoidal cate-
gories (where Cop is the dual category of C) and satisfy

∆a;∇a = ida ⊗∇a;∆a ⊗ ida ∇a;∆a = ida ?a; !a = ide
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In order to model graphs we use a P-monoidal category where the objects are
of the form n, n ∈ lN, e = 0 and n ⊗ m is defined as n + m. If Σ is a set of
symbols each associated with a sort n → 0, then PMon(Σ) is the P-monoidal
category freely generated from the symbols in Σ which are interpreted as arrows.

In order to save brackets we adopt the convention that the monoidal opera-
tion ⊗ takes precedence over ; (the composition operator of the category). Note
that by omitting the last axiom ?a; !a = ide we obtain exactly the definition of
a dgs-monoidal category.

We depict an arrow t : n → m of PMon(Σ) by drawing a hypergraph
with two sequences of external nodes: n root nodes and m variable nodes (see
Figure 3). Root nodes are indicated by labels 1, 2, . . ., variable nodes by labels
[1], [2], . . . The composition operator ; merges the variable nodes of its first ar-
gument with the root nodes of its second argument. The tensor product ⊗ takes
the disjoint union of two graphs and concatenates the sequences of root respec-
tively variable nodes of its two arguments. Note that the axiom ?a; !a = ide has
the intuitive meaning that isolated nodes are garbage-collected.

Similar to the case of syntactic judgements it can be shown that two terms
of PMon(Σ) are equal if and only if the underlying hypergraphs are isomorphic
(up to isolated nodes) [3].

There is a one-to-one correspondence between P-monoidal terms w : m →
n ∈ PMon(∅) (corresponding to the set of all discrete graphs) and equivalence
relations on the union of {r} × {1, . . . ,m} and {v} × {1, . . . , n}. We say that
(r, i) ≡w (r, j) whenever the i-th and the j-th root node of w are equal, addi-
tionally (r, i) ≡w (v, j) whenever the i-th root node and the j-th variable node
are equal and (v, i) ≡w (v, j) whenever the i-th and the j-th variable node are
equal. An equivalence relation on a set can also be seen as a partition of this set,
which is the origin of the name P(art)-monoidal category.

Syntactic judgements can be encoded into P-monoidal terms. We introduce a
mapping α assigning to each name its position in the sequence of external nodes.
One name may appear in several positions.

Definition 7 (Encoding of Syntactic Judgements). Let Γ ` G be a syn-
tactic judgement and let α : {1, . . . , n} → Γ be a surjective (but not necessarily
injective) function, indicating which positions a name should occupy in the in-
terface. We will also call α an n-ary interface mapping.



Then [[Γ ` G]]α : n → 0 is an arrow of PMon(Σ) where Σ contains s : m →
0 for every edge of the form s(x1, . . . , xm). The encoding is defined as follows:

[[Γ ` G1|G2]]α = ∇n; [[Γ ` G1]]α ⊗ [[Γ ` G2]]α

[[Γ ` (νx)G]]α = idn⊗?1; [[Γ, x ` G]]α∪{n+1 7→x} if x 6∈ Γ

[[Γ ` nil ]]α = !n

[[Γ ` s(x1, . . . , xm)]]α = w; s

where w : n → m ∈ PMon(∅) (the “wiring”) such that ≡w is the smallest
equivalence containing {((r, i), (v, j)) | α(i) = xj}.

Note that if α is injective, all P-monoidal terms of the form [[Γ ` G]]α lie
in a subcategory of PMon(Σ) which is generated by all symbols and constants
apart from ∆n, which means in practice that all root nodes in the interface of a
graph are distinct.

Example 5. By encoding the syntactic judgement Γ ` G = y ` (νx)(νz)(P (x) |
S(x, y, z) | P (z)) of Example 1 with the mapping α : {1} → {y}, α(1) = y we
obtain the following P-monoidal term

id1⊗?1; id2⊗?1;∇3; (!1 ⊗ id1⊗!1;P ) ⊗ (∇3; (ρ1,1 ⊗ id1;S) ⊗ (!2 ⊗ id1;P )).

Proposition 1. It holds that Γ ` G ≡ Γ ′ ` G′ if and only if there exist injective
α, α′ such that [[Γ ` G]]α = [[Γ ′ ` G′]]α′ .

4 A Tile Logic Representation for Synchronized Graph

Rewriting with Mobility

We now describe graph rewriting in the framework of tile logic, in which we

consider rewrites of the form s
a

b
// t where s and t are configurations (i.e.

hypergraphs) of a system and both may have root and variable nodes, their
interface to the environment. The observation a describes the actions of s with
respect to its root nodes, while b describes the interaction with respect to its
variable nodes. The rules of tile logic describe how to derive partial rewrites and
how to extend them whenever configurations are contextualized or instantiated,
or—in this case—whenever two graphs are combined.

We first define the notion of a tile.

Definition 8. Let H and V be two categories which coincide in their set of
objects, which is {n | n ∈ lN}. We call H the horizontal category and V the
vertical category. The arrows of H are also called configurations and the arrows
of V are called observations.

A tile (compare [11]) is of the form s
a

b
// t where s : n → m, t : n′ → m′

are elements of H, and a : n → n′, b : m → m′ are elements of V.
Tiles can be depicted as squares (see the leftmost square in Figure 4).
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Fig. 4. Composing tiles

We can now define the more specific tiles of tile graph rewriting and the way
in which they can be composed.

Definition 9 (Tile graph rewriting).

Let Σ = {s : n → 0 | s is an edge of arity n} and let PMon(Σ) be the hori-
zontal category H whereas the vertical category V is the free monoidal category 4

generated by the arrows a : 1 → 1 + n for every a ∈ Act\{ε} with ar(a) = n.
The idle action ε corresponds to the identity arrow id 1.

Tiles can be constructed in the following way: a tile is either taken from a
fixed set R of generator tiles, or it is a reflexive tile (h-refl) or (v-refl), or it is
one of the auxiliary tiles (dupl), (codupl), (disch), (codisch) or (perm), or it is
obtained by parallel composition (p-comp), horizontal composition (h-comp) or
vertical composition (v-comp) (see also Figure 4).

We write R  s
a

b
// t whenever this tile can be derived from the generator

tiles in R.

(h-refl)

s : n → m ∈ H

s
idn

idm

// s
(v-refl)

a : n → m ∈ V

idn
a

a
// idm

(dupl)
a : n → m ∈ V

∇n
a

a⊗a
// ∇m

(codupl)
a : n → m ∈ V

∆n
a⊗a

a
// ∆m

(disch)
a : n → m ∈ V

!n
a

id0

// !m
(codisch)

a : n → m ∈ V

?n

id0

a
// ?m

4 Given a set A of arrows, the free monoidal category generated by A consists of all
arrows which can be obtained from composing the arrows of A with the composition
operator ; and the monoidal operator ⊗, observing the category axioms (; is asso-
ciative and ε = id1 is its unit), the monoidality axioms (⊗ is associative and id 0 is
its unit) and a1; a

′

1 ⊗ a2; a
′

2 = (a1 ⊗ a2); (a
′

1 ⊗ a
′

2).



(perm)
a : n → m, b : n′ → m′ ∈ V

ρn,n′

a⊗b

b⊗a
// ρm,m′

(p-comp)

s
a

b
// t, s′

a′

b′
// t′

s ⊗ s′
a⊗a′

b⊗b′
// t ⊗ t′

(h-comp)
s

a

c
// t, s′

c

b
// t′

s; s′
a

b
// t; t′

(v-comp)

s
a

b
// u, u

a′

b′
// t

s
a;a′

b;b′
// t

We first show that if the generator tiles exhibit a certain well-formedness
property, then we can construct every tile in the following way: first, we can use
all rules apart from (v-comp) in order to construct several tiles which, finally,
can be combined with rule (v-comp). This says, basically, that it is sufficient to
examine tiles which describe one single rewriting step.

Proposition 2. We assume that the set R of generator tiles satisfies the fol-

lowing properties: let s
a

b
// t be a generator tile, then it holds that s ∈ Σ and

furthermore there are actions a1, . . . , an ∈ Act\{ε}, such that a = a1 ⊗ . . . ⊗ an

and b = id0.

Now let R  s
a

b
// t. Then it holds that there are configurations s =

s0, s1, . . . , sm = t and observations a′
1, . . . , a

′
m, b′1, . . . , b

′
m such that

R  si−1

a′

i

b′
i

// si for i ∈ {1, . . . , n} and the respective tiles can be derived

without rule (v-comp). Furthermore a = a′
1; . . . ; a

′
m and b = b′1; . . . ; b

′
m.

We can now formulate one of the two main results of this paper: the op-
erational correspondence between rewriting of syntactic judgements and of P-
monoidal terms.

We first introduce the following notation: let x1 . . . xn be a string of names. By
α = 〈x1 . . . xn〉 we denote the interface mapping α : {1, . . . , n} → {x1, . . . , xn}
where α(i) = xi.

Proposition 3 (Operational Correspondence). Let R be a set of rewriting
rules on syntactic judgements. We define a set R of generator tiles as follows:

R = {s
a1⊗...⊗am

id0

// [[Γ ′ ` G′]]〈x1ỹ1...xmỹm〉 |

(x1, . . . , xm ` s(x1, . . . , xm)
Λ

−→ Γ ′ ` G′) ∈ R, ai = actΛ(xi), ỹi = nΛ(xi)}.

– It holds that R  (Γ ` G
Λ

−→ Γ ′ ` G′) implies

R  ([[Γ ` G]]α
a1⊗...⊗am

id0

// [[Γ ′ ` G′]]〈α(1)ỹ1...α(m)ỹm〉) where ai = actΛ(α(i)),

ỹi = nΛ(α(i)).



– And it holds that if R  ([[Γ ` G]]α
a1⊗...⊗am

id0

// t) for some P-monoidal term

t, then R  (Γ ` G
Λ

−→ Γ ′ ` G′) where ai = actΛ(α(i)), ỹi = nΛ(α(i)) and
[[Γ ′ ` G′]]〈α(1)ỹ1...α(m)ỹm〉 = t.

Proof (Sketch). The first half of the proposition can be shown by induction on
the inference rules applied. The second half of the proposition is shown by induc-
tion on the syntactic structure of Γ ` G and with the decomposition property
(Proposition 4 which will be proved in Section 5 without referring back to this
proposition). ut

Example 6. Encoding the rewrite rules on syntactic judgements from Example 2
into generator tiles gives us the tiles depicted in Figure 5.
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Fig. 5. Generator tiles

Here we represent a tile of the form s
a1⊗...⊗an

id0

// t by drawing s and t as

graphs and by labelling the free nodes of t by the actions a1, . . . , an. Specifically
if Ni =

∑i
j=1(ar(aj)+1), then the Ni−1 +1-st free node of t is labelled ai, while

the next ar(ai) − 1 nodes stay unlabelled (and are shaded grey in the graphical
representation), indicating that these nodes are generated by the action ai. Two
nodes that are connected by a line represent one and the same node.

5 Bisimilarity is a Congruence

Based on tiles we can now define the notions of bisimulation and bisimilarity
and thus define a notion of an observable, compositional equivalence on graphs.

Definition 10 (Bisimulation on tiles). Given a labelled transition system, a
bisimulation is a symmetric, reflexive relation ∼ on the states of the transition
system, such that if s ∼ t and s

a
→ s′, then there exists a transition t

a
→ t′ such

that s′ ∼ t′. We say that two states s and t are bisimilar (s ' t) whenever there
is a bisimulation ∼ such that s ∼ t.



In tile graph rewriting the tile s
a

b
// t is considered to be a transition

with label (a, b). We say that two configuration s, t are bisimilar wrt. a set R
of generator tiles (in symbols s 'R t) whenever s and t are bisimilar in the
transition system generated by R.

It is already known that bisimilarity is a congruence whenever the underlying
tile system satisfies the following decomposition property.

Definition 11 (Decomposition Property). A tile system satisfies the de-

composition property if for all tiles s
a

b
// t entailed by the tile system, it holds

that (1) if s = s1; s2 then there exist c ∈ V, t1, t2 ∈ H such that s1
a

c
// t1,

t1
c

b
// t2 and t = t1; t2 (2) if s = s1 ⊗ s2 then there exist a1, a2, b1, b2 ∈

V, t1, t2 ∈ H such that s1
a1

b1

// t1, s2
a2

b2

// t2, a = a1 ⊗ a2, b = b1 ⊗ b2 and

t = t1 ⊗ t2.

Proposition 4 (cf. [11]). If a tile system satisfies the decomposition property,
then bisimilarity defined on its transition system is a congruence.

Similar to the case of de Simone [5] or tyft/tyxt-formats [12], there is a
sufficient syntactical property ensuring that bisimilarity is indeed a congruence,
which is stated in the second main result of this paper.

Proposition 5. If, in tile graph rewriting, all generator tiles satisfy the basic

source property, i.e. if for every generator tile s
a

b
// t it holds that s ∈ Σ,

then the decomposition property holds. Thus bisimilarity is a congruence.

Proof (Sketch). By induction on the derivation of a tile, following the lines of a
similar proof in [2].

Corollary 1. All the tile graph rewriting systems derived from rewriting rules
on syntactic judgements satisfy the basic source property. Thus the decomposition
property holds and bisimilarity is a congruence.

Having established that bisimilarity is indeed a congruence in the case of tile
graph rewriting we now transfer this result back to rewriting on syntactic judge-
ments with the help of the operational correspondence (Proposition 3). First we
have to define bisimulation on syntactic judgements. We use the following intu-
ition: an observer from the outside has access to the external nodes of a graph,
however he or she is not able to determine their names and he or she should
also not be able to find out whether or not two nodes are equal. So, given two
syntactic judgements, we add an interface mapping α which assigns numbers to
names and in this way hides the internal details from an external observer.

For the next definition remember that the mapping i 7→ xi is denoted by
〈x1 . . . xn〉.



Definition 12 (Bisimulation on syntactic judgements). Let Γ ` G be a
syntactic judgements. An n-ary interface for a syntactic judgement is a surjective
mapping α : {1, . . . , n} → Γ , as defined in Definition 7.

A symmetric, reflexive relation ∼ on pairs consisting of syntactic judgements
and their corresponding interfaces is called a bisimulation (wrt. a set R of rewrit-
ing rules) if whenever (Γ1 ` G1, α1) ∼ (Γ2 ` G2, α2), then

– there is an n ∈ lN such that α1 and α2 are both n-ary interfaces

– whenever Γ1 ` G1
Λ1−→ Γ ′

1 ` G′
1 with Λ1(α1(i)) = (ai, ỹi), then it holds that

Γ2 ` G2
Λ2−→ Γ ′

2 ` G′
2 with Λ2(α2(i)) = (ai, z̃i) and

(Γ ′
1 ` G′

1, 〈α1(1)ỹ1 . . . α1(n)ỹn〉) ∼ (Γ ′
2 ` G′

2, 〈α2(1)z̃1 . . . α2(n)z̃n〉).

We say that two pairs (Γ1 ` G1, α1) and (Γ2 ` G2, α2) are bisimilar (wrt. a
set R of rewriting rules) whenever there is a bisimulation ∼ (wrt. a set R of
rewriting rules) such that (Γ1 ` G1, α1) ∼ (Γ2 ` G2, α2). Bisimilarity on
syntactic judgements is denoted by the symbol 'R.

In order to show that bisimilarity on syntactic judgements is a congruence
with respect to parallel composition and hiding, we need the following result on
full abstraction.

Proposition 6 (Full abstraction). The encoding [[ ]]α is fully abstract in the
following sense: for any set R of rewriting rules it holds that

(Γ1 ` G1, α1) 'R (Γ2 ` G2, α2) ⇐⇒ [[Γ1 ` G1]]α1
'R [[Γ2 ` G2]]α2

where R is defined as in Proposition 3.

Proof (Sketch). Straightforward by regarding the respective definitions of bisim-
ilarity, from Proposition 2 and the operational correspondence result in Propo-
sition 3. ut

Now it is straightforward to show that bisimilarity on syntactic judgements
is a congruence as well.

Proposition 7. Let R be a set of rewriting rules and let R be the corresponding
set of generator tiles defined as in Proposition 3.

We assume that (Γ1, X1 ` G1, α1) 'R (Γ2, X2 ` G2, α2) such that αi :
{1, . . . , n+m} → Γi ∪Xi and α−1

i (Xi) = {n+1, . . . , n+m} for i ∈ {1, 2}. Then
it holds that (Γ1 ` (νX1)G1, α1|{1,...,n}) 'R (Γ2 ` (νX2)G2, α2|{1,...,n}).

And if (Γ1 ` G1, α1) 'R (Γ2 ` G2, α2) and (Γ1 ` G′
1, α1) 'R (Γ2 ` G′

2, α2),
then it follows that (Γ1 ` G1 | G′

1, α1) 'R (Γ2 ` G2 | G′
2, α2).

Proof (Sketch). Straightforward by using the full abstraction result from Propo-
sition 6, by using that fact that bisimilarity on P-monoidal terms is a congruence
(see Proposition 5) and by regarding the definition of the encoding [[ ]]α in Def-
inition 7. ut
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Fig. 6. Specification of the communication network

6 Bisimulation up-to Congruence

In order to show that two graphs are bisimilar in practice, we need a proof
technique for bisimulation, a so-called bisimulation up-to congruence (for up-to
techniques see also [18]).

Definition 13. For a given relation B on P-monoidal terms, we denote by ≡B

the smallest congruence (with respect to the operators ; and ⊗) that contains B.
A symmetric relation B is called a bisimulation up-to congruence whenever

(s, t) ∈ B and s
a

b
// s′ imply t

a

b
// t′ and s′ ≡B t′.

Proposition 8. If the decomposition property holds for the respective tile logic
and B is a bisimulation up-to congruence, then ≡B is a bisimulation.

It is typically easier to show that B is a bisimulation up-to congruence than
to show that ≡B is a bisimulation, mainly because B can be much smaller than
≡B and so there are fewer cases to consider. It may even be the case that B is
finite and ≡B is infinite in size.

7 Example: Communication Network

We return to our running example and intend to investigate which steps a single
process can perform, or rather which are the actions that are observable from
the outside. To this aim we give a specification N1 which models in a single edge
the entire communication topology P may generate. Note that a process P may
start with a single free node, but can create new free nodes by performing s
actions. The specification has to take this into account and N1 may therefore
reduce to N2, N3 etc., where Ni : i → 0.

The generator tiles for the specification are depicted in Figure 6, where this
time we put the observations on the arrows rather than on the free nodes of the
right-hand side.

The edge Ni can either perform an arbitrary combination of a and τ actions
and stay Ni or it can perform an s action on its first node and a’s and τ ’s on
the remaining nodes and become Ni+1.

In order to show that P and N1 are indeed bisimilar we proceed as follows:
We consider the tile system generated by both the tiles belonging to processes
and switches and the tiles of the specification, and denote the combined set of
generator tiles by R. Since the set of edges involved in the first set of generator
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Fig. 7. Example of a bisimulation up-to congruence

tiles is disjoint from that in the second set, the rules can not interfere with each
other and P respectively N1 can not perform more reductions with the additional
tiles.

Proposition 9. The symmetric closure of the relation B depicted in Figure 7
is a bisimulation up-to congruence. Since the basic source property and therefore
the decomposition property hold, it follows that ≡B is a bisimulation.

And since (P,N1) ∈ B, we conclude that P 'R N1.

Proof (Sketch). From Proposition 2 it follows that it is sufficient to regard only
tiles which can be composed without using rule (v-comp).

We exemplarily treat the following case: let (P,N1) ∈ B and we assume that
P performs a τ action and replaces itself with a switch and two processes, i.e.

the second rewrite rule for P is applied. In this case N1
τ

id0

// N1 and we have

to show that the two resulting graphs are in the ≡B-relation:

P

1

SPP

1 1

S

11

N1 N1 N1N1

τ τ
≡B ≡B

ut

The scenario we have presented resembles the view of a user which starts
with one single port of access to a network which may be huge. The user can
request further connections into the network (with an s action) and he or she
can send signals a which are received in the network. However, in whatever way
the user interacts with the entire network, its topology will always be hidden,
its expansion unobservable and it thus constitutes a black box. Internal commu-
nications, of which several may take place in parallel, are indistinguishable from
τ -steps and thus completely hidden from the environment.

If, however, we start with a disconnected graph with i external nodes and
compare it to an edge Ni, the two expressions are not bisimilar. Consider for
example the two graphs P ⊗ P and N2, both of arity 2. We observe that P ⊗

P
a⊗id1

id0

// P ⊗ P , whereas N2 can not match this transition. If we assume that



the first node of N2 produces an action a, we either get a or τ as the action of the
second node, but we never get id1. In general we can state that whenever we have
a graph t consisting of processes and switches, we can determine its connected
external nodes in the following way: a set of external nodes is connected if and
only if there is a transition such that exactly the nodes of the set perform an
action different from id1 = ε, and that furthermore there is no proper subset
with the same property.

Another scenario would be to start with a graph with several external nodes of
which two or more are connected via switches. In this case an s action originating
on one of the external nodes may be routed to a different external node, giving
us two new nodes in the interface, which, however, must be equal.

8 Conclusion

We have presented synchronized graph rewriting with mobility for two forms of
graph representation (syntactic judgements and arrows in a P-monoidal cate-
gory) and we have shown that bisimilarity for synchronized graph rewriting is a
congruence with respect to graph composition. A tile logic semantics for synchro-
nized graph rewriting without mobility has already been defined in [23], whereas
synchronized graph rewriting with mobility has so far only been considered for
syntactic judgements [13, 14], but not in the context of tile logics. Moreover no
equivalence of graphs based on observations has been introduced there.

In [14] not only Hoare synchronization, but also Milner synchronization is
treated and an encoding of the π-calculus into synchronized graph rewriting is
given, using Milner synchronization.

An earlier form of synchronized graph rewriting has been treated in [6]. Fur-
thermore, the mobility treated in this paper is reminiscent of the rendezvous
mechanism presented in [4].

In general we know of little work concerning the definition of observational
equivalences for graph rewriting. As already mentioned in the introduction there
are basically two ways to go when one wants to introduce bisimilarity on graphs.
The first alternative would be to base the theory on unlabelled production as in
the double-pushout approach [7]. Without labels on the transitions it is necessary
to define canonical forms of graphs, in order to be able to observe something.
Work by Fernández and Mackie on interaction nets [9] and by Yoshida on process
graphs [25] goes in that direction.

In π-calculus, for example, the canonical forms mentioned above are called
“barbs” and a process has a barb for channel c whenever it is able to perform
an input or output on c. The resulting bisimulation is therefore called barbed
bisimulation [22], which ordinarily does not induce a congruence, and the defini-
tion of the smallest congruence containing barbed bisimilarity requires universal
quantification over all possible contexts. This, however, makes actual proofs of
bisimilarity complicated.

In this paper, however, we chose to use synchronized graph rewriting as a
framework. We model transitions whose transition labels (observations) describe



exactly the interaction of a single edge with its environment. This enables us to
define a simple syntactic property on the rewriting rules which ensures that
bisimilarity is a congruence. Existing work is mainly related to action calculi
[20, 17] which also have a graphical representation.

As we have seen in the example in Section 7, the bisimilarity defined in this
paper is rather coarse-grained: it can determine whether a network is connected
or disconnected, but we can, for example, not determine the degree of parallelism
in a network. In order to be able to do this, it would be necessary to establish
a concurrent semantics for synchronized graph rewriting. Another interesting
extension would be to enrich the notion of observation: so far we are only able
to observe the actions performed on external nodes, but we are not able to
determine whether, for example, two nodes are connected by an edge. It seems
therefore promising to extend the framework in such a way that we are allowed
to observe occurrences of specific subgraphs.
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