
A General Framework for Types in Graph Rewriting?

Barbara König (koenigb@in.tum.de)

Fakultät für Informatik, Technische Universität München

Abstract. A general framework for typing graph rewriting systems is presented: the idea
is to statically derive a type graph from a given graph. In contrast to the original graph, the
type graph is invariant under reduction, but still contains meaningful behaviour information.
We present conditions, a type system for graph rewriting should satisfy, and a methodology
for proving these conditions. In three case studies it is shown how to incorporate existing
type systems (for the polyadic π-calculus and for a concurrent object-oriented calculus) and
a new type system into the general framework.

1 Introduction

In the past, many formalisms for the specification of concurrent and distributed systems have
emerged. Some of them are aimed at providing an encompassing theory: a very general framework
in which to describe and reason about interconnected processes. Examples are action calculi [18],
rewriting logic [16] and graph rewriting [3] (for a comparison see [4]). They all contain a method of
building terms (or graphs) from basic elements and a method of deriving reduction rules describing
the dynamic behaviour of these terms in an operational way.

A general theory is useful, if concepts appearing in instances of a theory can be generalised,
yielding guidelines and relieving us of the burden to prove universal concepts for every single special
case. An example for such a generalisation is the work presented for action calculi in [15] where a
method for deriving a labelled transition semantics from a set of reaction rules is presented. We
concentrate on graph rewriting (more specifically hypergraph rewriting) and attempt to generalise
the concept of type systems, where, in this context, a type may be a rather complex structure.

Compared to action calculi1 and rewriting logic, graph rewriting differs in a significant way
in that connections between components are described explicitly (by connecting them by edges)
rather than implicitly (by referring to the same channel name). We claim that this feature—
together with the fact that it is easy to add an additional layer containing annotations and con-
straints to a graph—can simplify the design of a type system and therefore the static analysis of
a graph rewriting system.

After introducing our model of graph rewriting and a method for annotating graphs, we will
present a general framework for type systems where both—the expression to be typed and the
type itself—are hypergraphs and will show how to reduce the proof obligations for instantiations
of the framework. We are interested in the following properties: correctness of a type system (if an
expression has a certain type, then we can conclude that this expression has certain properties),
the subject reduction property (types are invariant under reduction) and compositionality (the
type of an expression can always be derived from the types of its subexpressions). Parts of the
proofs of these properties can already be conducted for the general case.

We will then show that our framework is realistic by instantiating it to two well-known type
systems: a type system avoiding run-time errors in the polyadic π-calculus [17] and a type system
avoiding “message not understood”-errors in a concurrent object-oriented setting. As a final exam-
ple we model reception and execution of an untrustworthy applet and check that no trustworthy
data is ever modified by the applet.

Note that we do not present a method for automatically deriving a type system from a given
set of rewrite rules. In this paper we are rather interested in fixing the minimal properties a type

? Research supported by SFB 342 (subproject A3) of the DFG.
1 Here we mean action calculi in their standard string notation. There is also a graph notation for action

calculi, see e.g. [7].

system should satisfy and in the development of a proof methodology which simplifies the task of
showing that these properties are indeed met.

2 Hypergraph Rewriting and Hypergraph Annotation

We first define some basic notions concerning hypergraphs (see also [6]) and a method for induc-
tively constructing hypergraphs.

Definition 1. (Hypergraph)
Let L be a fixed set of labels. A hypergraph H = (VH , EH , sH , lH , χH) consists of a set of nodes

VH , a set of edges EH , a connection mapping sH : EH → V ∗
H , an edge labelling lH : EH → L

and a string χH ∈ V ∗
H of external nodes. A hypergraph morphism φ : H → H ′ (consisting of φV :

VH → VH′ and φE : EH → EH′) maps nodes to nodes and edges to edges, preserving connections
and labelling, i.e.2 φV (sH(e)) = sH′(φE(e)) and lH(e) = lH′(φE(e)). A strong morphism (denoted
by the arrow �) additionally preserves the external nodes, i.e. φV (χH) = χH′ . We write H ∼= H ′

(H is isomorphic to H ′) if there is a bijective strong morphism from H to H ′.

The arity of a hypergraph H is defined as ar(H) = |χH | while the arity of an edge e of H is
ar(e) = |sH(e)|. External nodes are the interface of a hypergraph towards its environment and are
used to attach hypergraphs.

Notation: We call a hypergraph discrete, if its edge set is empty. By m
we denote a discrete graph of arity m ∈ lN with m nodes where every
node is external (see Figure (a) to the right, external nodes are labelled
(1), (2), . . . in their respective order).
The hypergraph H = [l]n contains exactly one edge e with label l where
sH(e) = χH , ar(e) = n and3VH = Set(χH) (see (b), nodes are ordered
from left to right).

(a) ... (m)(1)

(b) ...

l

(1) (n)

The next step is to define a method (first introduced in [10]) for the annotation of hyper-
graphs with lattice elements and to describe how these annotations change under morphisms.
We use annotated hypergraphs as types where the annotations can be considered as extra typing
information, therefore we use the terms annotated hypergraph and type graph as synonyms.

Definition 2. (Annotated Hypergraphs) Let A be a mapping assigning a lattice A(H) =
(I,≤) to every hypergraph and a function Aφ : A(H) → A(H ′) to every morphism φ : H → H ′.
We assume that A satisfies:

Aφ ◦ Aψ = Aφ◦ψ AidH
= idA(H) Aφ(a ∨ b) = Aφ(a) ∨ Aφ(b) Aφ(⊥) = ⊥

where ∨ is the join-operation, a and b are two elements of the lattice A(H) and ⊥ is its bottom
element.

If a ∈ A(H), then H[a] is called an annotated hypergraph. And φ : H[a] →A H ′[a′] is called
an A-morphism if φ : H → H ′ is a hypergraph morphism and Aφ(a) ≤ a′. Furthermore H[a] and
H ′[a′] are called isomorphic if there is a strong bijective A-morphism φ with Aφ(a) = a′ between
them.

Example: We consider the following annotation mapping A: let ({false, true},≤) be the boolean
lattice where false < true. We define A(H) to be the set of all mappings from VH into {false, true}
(which yields a lattice with pointwise order). By choosing an element of A(H) we fix a subset of
the nodes. So let a : VH → {false, true} be an element of A(H) and let φ : H → H ′, v′ ∈ VH .
We define: Aφ(a) = a′ where a′(v′) =

∨

φ(v)=v′ a(v). That is, if a node v with annotation true is

mapped to a node v′ by φ, the annotation of v′ will also be true.

2 The application of φV to a string of nodes is defined pointwise.
3 Set(s̃) is the set of all elements of a string s̃

From the point of view of category theory, A is a functor from the category of hypergraphs and
hypergraph morphisms into the category of lattices and join-morphisms (i.e. functions preserving
the join operation of the lattice).

We now introduce a method for attaching (annotated) hypergraphs with a construction plan
consisting of discrete graph morphisms.

Definition 3. (Hypergraph Construction) Let H1[a1], . . . , Hn[an] be annotated hypergraphs
and let ζi : mi → D, 1 ≤ i ≤ n be hypergraph morphisms where ar(Hi) = mi and D is discrete.
Furthermore let φi : mi � Hi be the unique strong morphisms.

For this construction we assume that the node and edge sets of H1, . . . , Hn and D are pairwise
disjoint. Furthermore let ≈ be the smallest equivalence on their nodes satisfying ζi(v) ≈ φi(v) if
1 ≤ i ≤ n, v ∈ Vmi

. The nodes of the constructed graph are the equivalence classes of ≈. We define

D
n

i=1
(Hi, ζi) = ((VD ∪

⋃n

i=1
VHi

)/≈,
⋃n

i=1
EHi

, sH , lH , χH)

where sH(e) = [v1]≈ . . . [vk]≈ if e ∈ EHi
and sHi

(e) = v1 . . . vk. Furthermore lH(e) = lHi
(e) if

e ∈ EHi
. And we define χH = [v1]≈ . . . [vk]≈ if χD = v1 . . . vk.

If n = 0, the result of the construction is D itself.
We construct embeddings φ : D � H and ηi : Hi → H by mapping every node to its equivalence

class and every edge to itself. Then the construction of annotated graphs can be defined as follows:

D
n

i=1
(Hi[ai], ζi) =

(

D
n

i=1
(Hi, ζi)

) [

∨n

i=1
Aηi

(ai)
]

In other words: we join all graphs D,H1, . . . , Hn and fuse exactly the nodes which are the
image of one and the same node in the mi, χD becomes the new sequence of external nodes.
Lattice annotations are joined if the annotated nodes are merged. In terms of category theory,

D
n

i=1
(Hi[ai], ζi) is the colimit of the ζi and the φi regarded as A-morphisms (D and the mi

are annotated with the bottom element ⊥). The properties of the annotation mapping, given in
Definition 2, are needed to show that D

n

i=1
(Hi[ai], ζi) is in fact a colimit.

Proposition 1. Let H[a1], . . . , Hn[an] be annotated hypergraphs with with mi = ar(Hi), let ζi :
mi[⊥] →A D[⊥] be discrete morphisms and let φi : mi[⊥] �A Hi[ai] be the unique strong mor-
phisms.

Then H[a] = D
n

i=1
(Hi[ai], ζi) (with morphisms ηi, φ of Definition 3) is the colimit of the ζi

and the φi in the category of annotated hypergraphs and A-morphisms.

Proof. We first have to show that ηi ◦ φi = φ ◦ ζi holds: all v ∈ Vmi
satisfy φi(v) ≈ ζi(v)

by definition by ≈ is the equivalence defined in Definition 3. Therefore ηi(φi(v)) = [φi(v)]≈ =
[ζi(v)]≈ = φ(ζi(v)).

Now we assume that there is another annotated hypergraph H ′[a′] and A-morphisms η′i :
Hi[ai] →A H ′[a′] and φ′ : D[⊥] �A H ′[a′] such that η′i ◦ φi = φ′ ◦ ζi. In order to show that H[a]
is a colimit we need to construct a unique A-morphism ψ : H[a] �A H ′[a′] such that ψ ◦ ηi = η′i
and ψ ◦ φ = φ′.

The nodes and edges of H[a] are defined in Definition 3. The only possible definition of ψ which
satisfies the conditions above is to set

ψ(ηi(e)) = η′i(e) and ψ([v]≈) =

{

φ′(v) if v ∈ VD
η′i(v) if v ∈ VHi

It is straightforward to show that ψ is well-defined. It rests to prove that it is an A-morphism:

Aψ(a) = Aψ(
∨n

i=1
Aηi

(ai)) =
∨n

i=1
Aψ(Aηi

(ai)) =
∨n

i=1
Aψ◦ηi

(ai)

=
∨n

i=1
Aη′

i
(ai) ≤

∨n

i=1
a′ = a′

Example: we present a small example for graph construction, where we combine hypergraphs
H1, H2 with the discrete morphisms ζ1 : 3 → D and ζ2 : 2 → D depicted in Figure (A) below
(ignore the grey nodes for the moment). The resulting hypergraph is H.

m2

m1

φ
1

ζ 2

(A)

ζ

(1)(1) (2)

(2)

D

H

H

φ
2

1

2

φ

η1

2η

(3)

B

(1) (2)

A

(1) (2)

C

BAC

(1)

(2) H

(1) (2) (3)

1

(1) (2)

C

(1) (2)

(3)

B

(1) (2)

A

(B)

The following points are noteworthy:

– the first external node of m1 and the first external node of m2 are mapped to the same node
in D, which means that the respective nodes of H1 and H2 are to be fused in H.

– the hypergraph H2 has duplicates in the sequence of its external nodes. This causes all nodes
that are to be fused with either the first or the second node of H2 to be fused themselves,
which happens to the two nodes attached to the A-edge.

– the discrete graph D contains an internal and an external node which are not in the range of
the ζi. This indicates that they are still present in the resulting graph H, but not attached to
any edge.

If we assume an annotation mapping as in the example above (mapping the node set to {true, false})
forH1 andH2 and shade all nodes that are labelled true with grey, then, in the annotation mapping
for H, exactly the nodes that are the image of at least one grey node will be again grey.

We also use another, more intuitive notation for graph construction. Let
ζi : mi → D, 1 ≤ i ≤ n. Then we depict D

n

i=1
(Hi, ζi) by drawing the

hypergraph (VD, {e1, . . . , en}, sH , lH , χD) where sH(ei) = ζi(χmi
) and

lH(ei) = Hi.

...

H1 H2

(n)(1)

Example: we can draw n
2

i=1
(Hi, ζi) where ζ1, ζ2 : n � n as in the picture above (note that

the edges have dashed lines). Here we fuse the external nodes of H1 and H2 in their respective
order and denote the resulting graph by H12H2. If there is an edge with a dashed line labelled
with an edge [l]n we rather draw it with a solid line and label it with l (see e.g. the second figure
in section 4.1).

In our example above, the new notation looks as drawn in Figure (B).

Definition 4. (Hypergraph Rewriting) Let R be a set of pairs (L,R) (called rewriting rules),
where the left-hand side L and the right-hand side R are both hypergraphs of the same arity. Then
→R is the smallest relation generated by the pairs of R and closed under hypergraph construction.

In our approach we generate the same transition system as in the double-pushout approach to
graph rewriting described in [2] (for details see [13]).

We need one more concept: a linear mapping which is an inductively defined transformation,
mapping hypergraphs to hypergraphs and adding annotation.

Definition 5. (Linear Mapping) A function from hypergraphs to hypergraphs is called arity-
preserving if it preserves arity and isomorphism classes of hypergraphs.

Let t be an arity-preserving function that maps hypergraphs of the form [l]n to annotated
hypergraphs. Then t can be extended to arbitrary hypergraphs by defining t(D

n

i=1
([li]ni

, ζi)) =

D
n

i=1
(t([li]ni

), ζi) and is then called a linear mapping.

A linear mapping satisfies t(D
n

i=1
(Hi, ζi)) ∼= D

n

i=1
(t(Hi), ζi) for arbitrary hypergraphs Hi.

Note that the construction operator on the left-hand side of the equation works on ordinary
hypergraphs, while the one on the right-hand side operates on annotated hypergraphs.

3 Static Analysis and Type Systems for Graph Rewriting

Having introduced all underlying notions we now specify the requirements for type systems. We
assume that there is a fixed set R of rewrite rules, an annotation mapping A, a predicate X on
hypergraphs (representing the property we want to check), a property Y on type graphs and a
relation . with the following meaning: if H . T where H is a hypergraph and T a type graph
(annotated wrt. to A), then H has type T . It is required that H and T have the same arity.

We demand that . satisfies the following conditions: first, a type should contain information
concerning the properties of a hypergraph, i.e. if a hypergraph has a type and Y holds for this
type, then we can be sure that the property X holds.

H . T ∧ Y (T) ⇒ X(H) (correctness) (1)

Note that in the short version of this paper [11], we have omitted the predicate Y , since it is
always true for the two examples presented there. But for some examples (see section 4.3) it is
convenient to have possibility to perform an additional check on the type graph.

During reduction, the type stays invariant.

H . T ∧ H →R H ′ ⇒ H ′ . T (subject reduction property) (2)

From (1) and (2) we can conclude that H .T , Y (T) and H →∗
R H ′ imply X(H ′), that is X holds

during the entire reduction.
The strong A-morphisms introduced in Definition 2 impose a preorder on type graphs. It should

always be possible to weaken the type with respect to that preorder.

H . T ∧ T �A T ′ ⇒ H . T ′ (weakening) (3)

We also demand that the type system is compositional, i.e a graph has a type if and only if this
type can be obtained by typing its subgraphs and combining these types. We can not sensibly
demand that the type of an expression is obtained by combining the types of the subgraphs in
exactly the same way the expression is constructed, so we introduce a partial arity-preserving
mapping f doing some post-processing.

∀ i:Hi . Ti ⇒ D
n

i=1
(Hi, ζi) . f(D

n

i=1
(Ti, ζi))

D
n

i=1
(Hi, ζi) . T ⇒ ∃Ti: (Hi . Ti and f(D

n

i=1
(Ti, ζi)) �A T)

(compositionality) (4)

A last condition—the existence of minimal types—may not be strictly needed for type systems,
but type systems satisfying this condition are much easier to handle.

H typable ⇒ ∃T : (H . T ∧ (H . T ′ ⇐⇒ T �A T ′)) (minimal types) (5)

Let us now assume that types are computed from graphs in the following way: there is a linear
mapping t, such that H . f(t(H)), if f(t(H)) is defined, and all other types of H are derived by
the weakening rule, i.e. f(t(H)) is the minimal type of H.

The meaning of the mappings t and f can be explained as follows: t is a transformation local
to edges, abstracting from irrelevant details and adding annotation information to a graph. The

mapping f on the other hand, is a global operation, merging or removing parts of a graph in order
to anticipate future reductions and thus ensure the subject reduction property. In the example in
section 4.1 f “folds” a graph into itself, hence the letter f . In order to obtain compositionality, it
is required that f can be applied arbitrarily often at any stage of type inference, without losing
information (see condition (7) of Theorem 1).

This early restriction to a somewhat more specialised type system is partly motivated by the
fact that it allows a classical rule-based formulation. By definition H . T holds if and only if
f(t(H)) �A T . And this, in turn, holds if and only if H . T can be derived with the following
typing rules:

[l]m . f(t([l]m))
∀ i:Hi . Ti

D
n

i=1
(Hi, ζi) . f(D

n

i=1
(Ti, ζi))

H . T, T �A T ′

H . T ′

In this setting it is sufficient to prove some simpler conditions, especially the proof of (2) can
be conducted locally.

Theorem 1. Let A be a fixed annotation mapping, let f be an arity-preserving mapping as above,
let t be a linear mapping, let X and Y be predicates on hypergraphs respectively type graphs and
let H . T if and only if f(t(H)) �A T . Let us further assume that f and Y satisfy4

T �A T ′ ∧ Y (T ′) ⇒ Y (T) (6)

f(D
n

i=1
(Ti, ζi)) ∼= f(D

n

i=1
(f(Ti), ζi)) (7)

T �A T ′ ⇒ f(T) �A f(T ′) (8)

Then the relation . satisfies conditions (1)–(5) if and only if it satisfies

Y (f(t(H))) ⇒ X(H) (9)

(L,R) ∈ R ⇒ f(t(R)) �A f(t(L)) (10)

Proof. Note that in the short version of this paper [11], we have omitted the predicate Y . This is
equivalent to setting Y (T) = true for every type graph T .

We first show that (9) and (10) imply (1)–(5)

(1) Let H . T and Y (T). From the definition of . it follows that f(t(H)) �A T and (6) implies
that Y (f(t(H))) is satisfied. With (9) we conclude that X(H) holds.

(2) Let H . T and H →R H ′. From the definition of . it follows that f(t(H)) �A T .
The relation →R is defined via the closure of R under hypergraph construction, i.e. H ∼=

D
n

i=1
(Hi, ζi), H

′ ∼= D
n

i=1
(H ′

i, ζi) and there is a rule (L,R) ∈ R such that Hj
∼= L and

H ′
j
∼= R. For all other i with i 6= j it holds that Hi

∼= H ′
i.

Since f and t preserve isomorphism classes, it holds that f(t(Hi)) ∼= f(t(H ′
i)) and with (10)

it follows that f(t(R)) �A f(t(L)).
Since A-morphisms are preserved by graph construction (this can easily be shown via the
characterisation of graph construction as a colimit) it follows that

D
n

i=1
(f(t(H ′

i)), ζi) �A D
n

i=1
(f(t(Hi)), ζi)

Conditions (8) and (7) imply that

f(t(H ′)) ∼= f(D
n

i=1
(f(t(H ′

i)), ζi)) �A f(D
n

i=1
(f(t(Hi)), ζi)) ∼= f(t(H)) �A T

Thus f(t(H ′)) �A T and this implies H ′ . T .
(3) Let H . T and T �A T ′. From the definition of . it follows that f(t(H)) �A T �A T ′ and

therefore H . T ′.

4 In an equation of the form T ∼= T ′ we assume that T is defined if and only if T ′ is defined. And in a
condition of the form T �A T ′ we assume that T is defined if T ′ is defined.

(4) We show that both directions are satisfied:

– we assume that there are type graphs Ti such that Hi .Ti. It follows that f(t(Hi)) �A Ti.
Since A-morphisms are preserved by graph construction (see above) and by the operation
f (see condition (8)) we conclude that

f(t(D
n

i=1
(Hi, ζi)))

(7)
∼= f(D

n

i=1
(f(t(Hi)), ζi)) �A f(D

n

i=1
(Ti, ζi))

And therefore D
n

i=1
(Hi, ζi) . f(D

n

i=1
(Ti, ζi)).

– let D
n

i=1
(Hi, ζi) . T . From the definition of . and with (7) it follows that

f(D
n

i=1
(f(t(Hi)), ζi)) �A T

We set Ti = f(t(Hi)) and Hi . Ti is also satisfied.

(5) Let H be typable, i.e. T = f(t(H)) is defined. We show that T is the minimal type.
If H . T ′ for any type graph T ′ it follows from the definition of . that T ∼= f(t(H)) �A T ′.
If, on the other hand, T ∼= f(t(H)) �A T ′, it follows immediately with (3) that H . T ′.

We will now show that (1)–(5) imply (9) and (10).

(9) We assume that Y (f(t(H))) holds. Since H .f(t(H)), condition (1) implies that X(H) holds.
(10) let (L,R) ∈ R, that is L→R R and L.f(t(L)). Condition (2) implies that R.f(t(L)). And

from the definition of . it follows that f(t(R)) �A f(t(L)).

Note: it is a direct consequence of condition (7) above that the operator f is idempotent, i.e.
f(f(T)) ∼= f(T). Just take the identity graph construction with n = 1 and ζ1 : n � n where
n = ar(T).

The operation f can often be characterised by a universal property with the intuitive notion
that f(T) is the “smallest” type graph (wrt. the preorder �A) for which T �A f(T) and a
property C hold. The morphism T �A f(T) can also be seen as the initial element in a comma
category (T ↓ F) where F is the obvious functor from the category of hypergraphs satisfying
C (with all strong morphisms between them) into the category of all hypergraphs with strong
morphisms.

Proposition 2. Let C be a property on type graphs such that f(T) can be characterised in the
following way: f(T) satisfies C, there is a morphism φ : T �A f(T) and for every other morphism
φ′ : T →A T ′ where C(T ′) holds, there is a unique morphism ψ : f(T) →A T ′ such that ψ ◦φ = φ′.
Furthermore we demand that if there exists a morphism φ : T →A T ′ such that C(T ′) holds, then
f(T) is defined.

Then if f(T) is defined, it is unique up to isomorphism. Furthermore f satisfies conditions (7)
and (8).

Proof. We first show that f(T) is unique up to isomorphism, if it exists. The property (also called
universal property) which f(T) satisfies is depicted in Figure 1(a). Let us assume that there is
another graph T which also satisfies this property.

Thus φ : T �A f(T) and φ : T �A T . Because f(T) as well as T can take the role of T ′ in
Figure 1(a), it follows that there exist morphisms φ1 : T �A f(T) and φ2 : f(T) �A T such that
φ1 ◦ φ = φ and φ2 ◦ φ = φ (see 1(b)).

T f(T), C(f(T))

1(a)

T’, C(T’)

∃!

φ

φ φ

φ

T f(T)

T

1

2

1(b)

T f(T), C(f(T))

T’ f(T’), C(f(T’))

1(c)

The universal property must also hold if we set T ′ = f(T) in Figure 1(a) and use the morphism
φ twice. We have two candidates for the unique morphism ψ satisfying ψ◦φ = φ. One is the identity
on f(T) and the other is φ1 ◦ φ2. Since ψ is unique, it follows that φ1 ◦ φ2 = idf(T), which implies
that φ1 is surjective and φ2 is injective.

We can apply the same argument to T and obtain φ2 ◦ φ1 = idT , which implies that φ2 is
surjective and φ1 is injective.

So both morphisms, φ1 and φ2, are isomorphisms and we conclude that f(T) ∼= T .

We next show that condition (8) is satisfied. If T →A T ′ and T ′
�A f(T ′) (because of the

definition of f), it follows that T →A f(T ′), and because of the universal property for f(T), this
implies the existence of a morphism f(T) →A f(T ′) (see Figure 1(c)).

If T �A T ′ is a strong morphism, then f(T) �A f(T ′) is also strong.

At last we prove that condition (7) holds. Let T = D
n

i=1
(Ti, ζi) and T = D

n

i=1
(f(Ti), ζi). We

show that there exists an isomorphism from f(T) to f(T).
Since T (together with morphisms ηi and φ) is the colimit of the ζi and the φi, the square (a) in

Figure 1(d) below commutes and is a colimit. Let ψi : Ti �A f(Ti) be the A-morphisms satisfying
the universal property. The ψi ◦ φi are the only strong morphisms from mi into f(Ti). Let T
(together with morphisms η′i and φ) be the colimit generated by the ζi and the ψi ◦ φi.

It is a standard property of colimits (see e.g. [2]) that this implies the existence of a morphism
ψ : T �A T such that ψ ◦ φ = φ and the square (b) in Figure 1(d) is again a colimit.

Furthermore let ψT : T �A f(T) and ψT : T �A f(T) be the morphisms satisfying the
universal property.

Ti

f(Ti)

ζi

i
φ

ψ
i

Tψ

mi D

T

T f(T)

f(T)
η

ψ

i

Tiη’ ψ

1(d)
φ

φ

(a)

(b)

Ti

f(Ti)

ζi

i
φ

ψ
i

Tψ

mi D

T

T f(T)

f(T)
η Ti ψ

ψ

φ

φ φ

iη’

’ ’’

1(e)

2
1ρ

ρ

Since ψT ◦ ψ : T �A f(T), it follows from the universal property of f(T) that there is a unique
morphism ρ1 : f(T) �A f(T) such that ρ1 ◦ ψT = ψT ◦ ψ.

It also holds that ψT ◦ηi : Ti →A f(T) and the universal property of f(Ti) implies the existence
of a unique morphism φ′ : f(Ti) →A f(T) such that φ′ ◦ ψi = ψT ◦ ηi.

Furthermore φ′ : f(Ti) →A f(T) and ψT : T �A f(T). Thus the universal property of the
colimit (b) implies that there exists a morphism φ′′ : T �A f(T) such that φ′′ ◦ η′i = φ′ and
φ′′ ◦ ψ = ψT (the last condition implies that φ′′ is a strong morphism).

At last, the morphism φ′′ : T �A f(T) and the universal property of f(T) imply that there
exists a unique morphism ρ2 : f(T) �A f(T) such that ρ2 ◦ ψT = φ′′.

In the last step we will show that ρ1 and ρ2 are both bijective and inverse to each other by
proving ρ1 ◦ ρ2 = idf(T) and ρ2 ◦ ρ1 = idf(T).

– we show ρ2 ◦ ρ1 = idf(T). It holds that (ρ2 ◦ ρ1) ◦ ψT = ρ2 ◦ ψT ◦ ψ = φ′′ ◦ ψ = ψT .
Since the morphism satisfying this property is unique (universal property of f(T)), and id f(T)

is already satisfying it, we conclude that ρ2 ◦ ρ1 = idf(T).
– we show that ρ1 ◦ φ′ = ψT ◦ η′i. It holds that (ρ1 ◦ φ′) ◦ ψi = ρ1 ◦ ψT ◦ ηi = ψT ◦ ψ ◦ ηi =

(ψT ◦ η′i) ◦ψi. A morphism satisfying this property is unique (universal property of f(Ti)) and
thus ρ1 ◦ φ′ = ψT ◦ η′i.

– we show that ρ1 ◦ φ′′ = ψT . It holds that (ρ1 ◦ φ′′) ◦ψ = ρ1 ◦ψT = ψT ◦ψ and (ρ1 ◦ φ′′) ◦ η′i =
ρ1 ◦ φ′ = ψT ◦ η′i. A morphism satisfying this property is unique (universal property of the
colimit (b)) and thus ρ1 ◦ φ

′′ = ψT .

– finally we show that ρ1 ◦ ρ2 = idf(T). It holds that (ρ1 ◦ ρ2) ◦ ψT = ρ1 ◦ φ′′ = ψT . From the

universal property of f(T) we know that a morphism satisfying this property is unique and
idf(T) is already satisfying it. So it follows that ρ1 ◦ ρ2 = idf(T).

It is left to show that f(T) is defined if and only if f(T) is defined: let f(T) be defined, then there
is, according to Figure 1(d), a morphism ψT ◦ ψ : T �A f(T), i.e. there is a morphism from T
into a hypergraph satisfying C. The preconditions then imply that f(T) is defined.

If, on the other hand, f(T) is defined, then there are morphisms ψT ◦ ηi : Ti →A f(T), which
implies that the f(Ti) and therefore also T are defined. It follows that there exists a morphism
φ′′ : T �A f(T) (see Figure 1(e)) where f(T) satisfies C and therefore f(T) is defined.

4 Case Studies

4.1 A Type System for the Polyadic π-Calculus

We present a graph rewriting semantics for the asynchronous polyadic π-calculus [17] without
choice and matching, already introduced in [12]. Different ways of encoding the π-calculus into
graph rewriting can be found in [21, 5, 4].

We apply the theory presented in section 3, introduce a type system avoiding runtime errors
produced by mismatching arities and show that it satisfies the conditions of Theorem 1. Afterwards
we show that a graph has a type if and only if the corresponding π-calculus process has a type in
a standard type system with infinite regular trees.

Definition 6. (Process Graphs) A process graph P is inductively defined as follows: P is a
hypergraph with a duplicate-free string of external nodes. Furthermore each edge e is either labelled
with (k, n)Q where Q is again a process graph, 1 ≤ n ≤ ar(Q) and 1 ≤ k ≤ ar(e) = ar(Q)−n (e is
a process waiting for a message with n ports arriving at its k-th node), with !Q where ar(Q) = ar(e)
(e is a process which can replicate itself) or with the constant M (e is a message sent to its last
node).

The reduction relation is generated by the rules in (A) (replication) and by rule (B) (reception
of a message by a process) and is closed under isomorphism and graph construction.

(A)
(m)(m) (1)(1)

Q!Q !Q

(B) if n = r
(m + 1)(m) (m + r)(k)(1)

QM(k, n)Q

A process graph may contain a bad redex, if it contains a subgraph corresponding to the left-
hand side of rule (B) with n 6= r, so we define the predicate X as follows: X(P) if and only if P
does not contain a bad redex.

We now propose a type system for process graphs by defining the mappings t and f . (Note
that in this case, the type graphs are trivially annotated by ⊥, and so we omit the annotation
mapping.)

The linear t mapping is defined on the hyperedges as follows:
t([M]n) = [3]n (3 is a new edge label), t([!Q]m) = t(Q) and
t([(k, n)Q]m) is defined as in the image to the right (in the notation
explained after Definition 3). It is only defined if n+m = ar(Q).

...... ...

t(Q)

(1) (k) (m)

t([(k, n)Q]m) =

3

n

The mapping f is defined as in Proposition 2 where C is defined as follows5

C(T) ⇐⇒ ∀ e1, e2 ∈ ET : (bsT (e1)car(e1) = bsT (e2)car(e2) ⇒ e1 = e2)

5 bsci extracts the i-th element of a string s.

The linear mapping t extracts the communication structure from a process graph, i.e. an edge
of the form [3]n indicates that its nodes (except the last) might be sent or received via its last
node. Then f makes sure that the arity of the arriving message matches the expected arity and
that nodes that might get fused during reduction are already fused in f(t(H)).

The condition that we want to check is simply that f(t(H)) is defined. Thus we set Y (T) = true
for every type graph T .

Proposition 3. The trivial annotation mapping A (where every lattice consists of a single element
⊥), the mappings f and t and the predicates X and Y defined above satisfy conditions (6)–(10) of
Theorem 1. Thus if P . T and Y (T), then P will never produce a bad redex during reduction.

Proof. We show that A, f , t, X, Y satisfy the conditions of Theorem 1.

(6) This holds obviously since Y (T) = true for every graph T .
(7)&(8) We have to show that the conditions of Proposition 2 are satisfied. The universal property

holds by definition and it is left to show that f(T) is defined whenever there is a morphism
φ : T → T ′ with C(T ′).
We define a condition on equivalences ∼ on the nodes and edges of T :

(bsT (e)car(e) ∼ bsT (e′)car(e′) ⇒ e ∼ e′) ∧ (e ∼ e′ ⇒ ∀ j: bsT (e)cj ∼ bsT (e′)cj)

∧ (e ∼ e′ ⇒ lT (e) = lT (e′)) (11)

That is, a hypergraph factored by ∼ is well-defined (since ∼ is a congruence) and it satisfies
C.
It is easy to check that the intersection of two equivalences satisfying this condition, again
satisfies the condition. So the smallest equivalence ≈ satisfying (11) does either not exist (if
there are no equivalences satisfying (11)), or it is the intersection of all equivalences satisfying
the condition.
Now let the equivalence ∼′ on T be defined in the following way: e ∼′ e′ ⇐⇒ φ(e) = φ(e′) and
v ∼′ v′ ⇐⇒ φ(v) = φ(v′). It is straightforward to check that ∼′ also satisfies condition (11),
therefore ≈ exists and ≈⊆∼′.
So we can define f(T) = T/≈, i.e. T factored by the equivalence ≈. The morphism ψ : T �

f(T) maps each node or edge to its equivalence class and obviously f(T) satisfies condition C.
We still have to show that the universal property holds: let φ : T → T ′ again be a morphism
such that C(T ′) holds. We define an equivalence ∼′ as above. A morphism φ′ : f(T) → T ′ can
be defined as follows φ′([v]≈) = φ(v) and φ′([e]≈) = φ(e). It is well defined because of ≈⊆∼′

and it satisfies φ′ ◦ ψ = φ.
It is left to show that φ′ is unique: we assume that there is another morphism φ′′ : f(T) → T ′

such that φ′′ ◦ ψ = φ. Then φ′′([v]≈) = φ′′(ψ(v)) = φ(v) = φ′([v]≈). The same is true for the
edges and so φ′ and φ′′ coincide.

(9) Let Y (f(t(H))) hold, which means that f(t(H)) is defined. Let us assume that H contains a
bad redex Red , which implies that t(H) contains t(Red) which is depicted in the figure below
(n 6= r).

... (k)

t(Q)

(m)(1) n

e e’

(m+1) (m+r)

Furthermore f(t(H)) is defined only if f(t(Red)) is defined. We show that f(t(Red)) is un-
defined. The two edges to the right of t(Red) are denoted by e respectively e′. We assume
that there is a morphism ψ : t(Red) �A f(t(Red)). It holds that bsf(t(Red))(ψ(e))car(e) =

ψ(bst(Red)(e)car(e)) = ψ(bst(Red)(e
′)car(e)) = bsf(t(Red))(ψ(e′))car(e) and condition C im-

plies that ψ(e) = ψ(e′), but since they have different arities, this can not be the case.
(10) We show the local subject reduction property for both rules (or in the case of (A) for both

directions)

(A) We first consider the direction from right to left, i.e. L = Q2[!Q]m and R = [!Q]m. We
assume that f(t(Q2[!Q]m)) is defined and since f(t(Q2[!Q]m)) ∼= f(f(t(Q))2t([!Q]m)) we
know that f(t(Q)) is also defined and there exists a strong A-morphism from f(t(Q)) into
f(t(Q2[!Q]m)).
Concerning the direction from left to right, i.e. L = [!Q]m and R = Q2[!Q]m: we assume
that f(t(L)) ∼= f(t(Q)) is defined and therefore f(t(Q))2f(t(Q)) ∼= f(t(Q))2f(t([!Q]m))
is defined. Since there is an A-morphism from this graph into f(t(Q)) ∼= f(t(L)), it follows
with Proposition 2, that f(t(R)) ∼= f(f(t(Q))2f(t([!Q]m))) is defined and that f(t(R)) �A

f(f(t(L))) ∼= f(t(L)).
(B) In this case f(t(R)) ∼= f(t(Q)) and t(L) is the type graph depicted above in the proof

of condition (9), but in this case r = n. With condition (7) and the graph construction
operation we can transform f(t(L)) as shown in the figure below.

... ...

(1)

= f(f()

...... (k)

t(Q)

(m)(1) n (m+1) (m+n)

)

= f(

...... (k)

t(Q)

(m)(1) n (m+k)(m+1)... ...

... ... (2n+1)

) = f(

...... (k) (m)(1) (m+k)(m+1)...

)

...... (k) (m)(1) n (m+k)(m+1)... ...

...(2,n+2) (n+1,2n+1)f(t(Q)) f(t(Q))

(n+2)(n+1)(1) (2)

And from the fact that A-morphisms are preserved by graph construction, from condi-
tion (8) and from f(t(Q)) ∼= f(f(t(Q))), it follows that f(t(R)) ∼= f(t(Q)) �A f(t(L)).

We now compare our type system to a standard type system of the π-calculus. An encoding of
process graphs into the asynchronous π-calculus (for the operational semantics of the π-calculus
see appendix A) can be defined as follows.

Definition 7. (Encoding) Let P be a process graph, let N be the name set of the π-calculus and
let t̃ ∈ N ∗ such that |t̃| = ar(P). We define Θt̃(P) inductively as follows:

Θa1...an+1
([M]n+1) = an+1〈a1, . . . , an〉 Θt̃([!Q]m) =!Θt̃(Q)

Θa1...am
([(k, n)Q]m) = ak(x1, . . . , xn).Θa1...amx1...xn

(Q)

Θt̃(D
n

i=1
(Pi, ζi)) = (ν µ(VD\Set(χD)))(Θµ(ζ1(χm1

))(P1) | . . . | Θµ(ζn(χmn
))(Pn))

where ζi : mi → D, 1 ≤ i ≤ n and µ : VD → N is a mapping such that µ restricted to VD\Set(χD)
is injective, µ(VD\Set(χD))∩µ(Set(χD)) = ∅ and µ(χD) = t̃. Furthermore the x1, . . . , xn ∈ N are
fresh names.

The encoding of a discrete graph is included in the last case, if we set n = 0 and assume that
the empty parallel composition yields the nil process 0.

An operational correspondence can be stated as follows:

Proposition 4. Let p be an arbitrary expression in the asynchronous polyadic π-calculus without
summation. Then there exists a process graph P and a duplicate-free string t̃ ∈ N ∗ such that
Θt̃(P) ≡ p. Furthermore for process graphs P, P ′ and for every duplicate-free string t̃ ∈ N ∗ with
|t̃| = ar(P) = ar(P ′) it is true that:

− P ∼= P ′ implies Θt̃(P) ≡ Θt̃(P
′) − P →∗ P ′ implies Θt̃(P) →∗ Θt̃(P)

− Θt̃(P) →∗ p 6= wrong implies that P →∗ Q and Θt̃(Q) ≡ p for some process graph Q.

− Θt̃(P) →∗ wrong if and only if P →∗ P ′ for some process graph P ′ containing a bad redex

Proof. We do not show this proposition here, but refer the reader to [12].

We now compare our type system with a standard type system of the π-calculus: a type tree is
a potentially infinite ordered tree with only finitely many non-isomorphic subtrees. A type tree is
represented by the tuple [t1, . . . , tn] where t1, . . . , tn are again type trees, the children of the root.
A type assignment Γ = x1 : t1, . . . , xn : tn assigns names to type trees where Γ (xi) = ti. The
rules of the type system are simplified versions of the ones from [19], obtained by removing the
subtyping annotations.

Γ ` 0
Γ ` p Γ ` q
Γ ` p | q

Γ ` p
Γ ` ! p

Γ, a : t ` p
Γ ` (νa)p

Γ (a) = [t1, . . . , tm] Γ, x1 : t1, . . . , xm : tm ` p
Γ ` a(x1, . . . , xm).p

Γ (a) = [Γ (a1) . . . , Γ (am)]
Γ ` a〈a1, . . . , am〉

We will now show that if a process graph has a type, then its encoding has a type in the
π-calculus type system and vice versa. In order to express this we first describe the unfolding of a
type graph into type trees.

Proposition 5. Let T be a type graph and let σ be a mapping from VT into the set of type trees.
The mapping σ is called consistent, if it satisfies for every edge e ∈ ET : sT (e) = v1 . . . vnv ⇒
σ(v) = [σ(v1), . . . , σ(vn)]. Every type graph of the form f(t(P)) has such a consistent mapping.

Let P . T with n = ar(T) and let σ be a consistent mapping for T . Then it holds for every
duplicate-free string t̃ of length n that bt̃c1 : σ(bχT c1), . . . , bt̃cn : σ(bχT cn) ` Θt̃(P).

Now let Γ ` Θt̃(P). Then there exists a type graph T such that P .T and a consistent mapping
σ such that for every 1 ≤ i ≤ |t̃| it holds that σ(bχT ci) = Γ (bt̃ci).

Proof. We first show two lemmata:

Lemma A: let φ : T → T ′ and let σ′ be a mapping which is consistent for T ′. We define
σ(v) = σ′(φ(v)) for every v ∈ VT and claim that σ is consistent for T .
Proof: let e ∈ ET with sT (e) = v1 . . . vnv. Then

σ(v) = σ′(φ(v)) = σ′(φ(bsT (e)cn+1)) = σ′(bsT ′(φ(e))cn+1)

= [σ′(bsT ′(φ(e))c1), . . . , σ
′(bsT ′(φ(e))cn)]

= [σ′(φ(bsT (e)c1)), . . . , σ
′(φ(bsT (e)cn))] = [σ(bsT (e)c1), . . . , σ(bsT (e)cn)]

= [σ(v1), . . . , σ(vn)]

Lemma B: let T be a type graph which has a consistent mapping σ. Then it holds that f(T) is
defined and there is a consistent mapping σ′ for f(T) such that σ′(bχf(T)ci) = σ(bχT ci).
Proof: we define an equivalence u on the nodes and edges of T in the following way: e1 u

e2 ⇐⇒ σ(bsT (e1)car(e1)) = σ(bsT (e2)car(e2)) and v1 u v2 if and only if v1 = v2 or there are
edges e1, e2 and an index i such that e1 u e2 and bsT (ej)ci = vj , j ∈ {1, 2}.
Factoring T by u yields a well-defined hypergraph T/u.
We will prove that v1 u v2 implies σ(v1) = σ(v2): if v1 u v2 then either v1 = v2 and the claim
is obviously true, or there are edges e1, e2 such that e1 u e2 and bsT (ej)ci = vj , j ∈ {1, 2}.
e1 u e2 implies that σ(bsT (e1)car(e1)) = σ(bsT (e2)car(e2)). Since σ is consistent it holds that
σ(v1) = σ(bsT (e1)ci) = σ(bsT (e2)ci) = σ(v2).
We define a consistent mapping σu for T/ u: let σu([v]u) = σ(v). From what we have
just shown, it follows that σu is well-defined and it is left to show that it is consistent:
let sT/u([e]u) = [v1]u . . . [vn]u[vn+1]u such that vj = bsT (e)cj . It follows that σu([vn+1]u) =
σ(vn+1) = [σ(v1), . . . , σ(vn)] = [σu([v1]u), . . . , σu([vn]u)] and therefore σu is consistent.
We next show that T/ u satisfies condition C: let [e1]u and [e2]u be two edges such that
bsT/u([e1]u)car(e1) = bsT/u([e2]u)car(e2). Then [bsT (e1)car(e1)]u = [bsT (e2)car(e2)]u and also

bsT (e1)car(e1) u bsT (e2)car(e2). Therefore σ(bsT (e1)car(e1)) = σ(bsT (e2)car(e2)) and from the
definition of u it follows that e1 u e2 and thus [e1]u = [e2]u.
Now let φ : T � T/u a morphism which maps each node or edge to its equivalence class.
Since C(T/u) holds, it follows from Proposition 2 and the definition of f , that f(T) is defined,
and there are morphisms ψ : T � f(T) and φ′ : f(T) � T/u such that φ′ ◦ ψ = φ.
With Lemma A, we can derive a consistent mapping σ′ for f(T) by defining σ′(v′) = σu(φ′(v′)).
And it holds that

σ(bχT ci) = σu([bχT ci]u) = σu(bχT/uci) = σu(φ′(bχf(T)ci)) = σ′(bχf(T)ci)

We first show that f(t(P)) has a consistent mapping σ: we know that f(t(P)) satisfies condition C.
So we can define: for any node v of T for which there is no edge e ∈ VT with bsT (e)car(e) = v, let
σ(v) be an arbitrary type tree. For all other nodes v there is a unique edge e with bsT (e)car(e) = v
and we set σ(v) = [σ(v1), . . . , σ(vn)] if sT (e) = v1 . . . vnv. The definition has a smallest fixed-point,
which is then our mapping σ.

We can now prove the two main parts of the proposition.

Type graphs → π-calculus: let P .T which implies that there is a morphism φ : f(t(P)) � T .
Furthermore let σ′ be a mapping which is consistent for T .
Now we can define a mapping σ on the nodes of f(t(P)) with σ(v) = σ′(φ(v)). From Lemma A
it follows that σ is also consistent and furthermore σ and σ′ coincide on the external nodes.
So it is sufficient to show our claim for T = f(t(P)).
We will do so by induction on P but with a stronger induction hypothesis: let t̃ be a string
of names (possibly with duplicates), σ be a consistent mapping for T = f(t(P)) such that
bt̃ci = bt̃cj implies σ(bχci) = σ(bχcj) (we will say that σ and t̃ are compatible). Then it holds
that bt̃c1 : σ(bχT c1), . . . , bt̃cn : σ(bχT cn) ` Θt̃(P).
From this we can derive the original claim, since there we demand that t̃ is duplicate-free.
– P = [M]n+1, that is T = f(t(P)) = [3]n+1 and let σ be a consistent mapping for T and

let t̃ be a string of names, compatible with σ.
The type assignment Γ = bt̃ci : σ(bχT ci) is well-defined because of the compatibil-
ity of σ and t̃. And since σ is consistent, it holds that Γ (bt̃cn+1) = σ(bχT cn+1) =
[σ(bχT c1), . . . , σ(bχT cn)] = [Γ (bt̃c1), . . . , Γ (bt̃cn)].

Therefore the typing rules for the π-calculus imply that Γ ` bt̃cn+1〈bt̃c1, . . . , bt̃cn〉 =
Θt̃(P).

– P = [!Q]m, that is T = f(t(P)) = f(t(Q)). Let σ be a consistent mapping for T and let t̃
be compatible with σ. From the induction hypothesis it follows that Γ = bt̃ci : σ(bχT ci) `
Θt̃(Q). Then the typing rules for the π-calculus imply that Γ `!Θt̃(Q) = Θt̃(P).

– P = [(k, n)Q]m, that is T = f(t(P)) has the form depicted in the figure below.

(1) (k) n(m)

f(t(Q)))f(

Now let σ be a consistent mapping for T and let t̃ be compatible with σ. Let φ : f(t(Q)) →
T be the embedding of T ′ = f(t(Q)) into T and we define a mapping σ′ on the nodes of
f(t(Q)) such that σ′(v) = σ(φ(v)). According to Lemma A, σ′ is consistent.
Let s̃ = t̃x1 . . . xn, where x1, . . . , xn are fresh names. Since σ and t̃ are compatible, σ′ and
s̃ are also compatible.
So it follows with the induction hypothesis that ∆ = bs̃ci : σ′(bχT ′ci) ` Θs̃(Q).
Let vi = bsT (e)ci, where e ∈ ET is the unique edge satisfying bsT (e)car(e) = bχT ck. It
holds that vi = φ(bχT ′cm+i). Furthermore

∆(bt̃ck) = ∆(bs̃ck) = σ′(bχT ′ck) = σ(bχT ck) = [σ(v1), . . . , σ(vn)]

= [σ(φ(bχT ′cm+1)), . . . , σ(φ(bχT ′cm+n))]

= [∆(bs̃cm+1), . . . ,∆(bs̃cm+n)] = [∆(x1), . . . ,∆(xn)]

This implies that bt̃ci : σ′(bχT ′ci) ` bt̃ck(x1, . . . , xn).Θs̃(Q). And since σ′(bχT ′ci) =
σ(bχT ci) for 1 ≤ i ≤ m, it holds that bt̃ci : σ(bχT ci) ` Θt̃(P).

– P = D
n

i=1
(Pi, ζi), i.e. T = f(t(P)) ∼= f(D

n

i=1
(f(t(Pi)), ζi)).

Let T = D
n

i=1
(f(t(Pi)), ζi), let ηi : f(t(Pi)) → T and φ : D → T be the standard

embeddings generated by graph construction and let ψ : T � T be the morphism satisfying
the universal property of f(T) = T . We also set Ti = f(t(Pi)).
We define mappings σi on the Ti by setting σi(v) = σ(ψ(ηi(v))). According to Lemma A,
the σi are consistent.
We now prove a property concerning σ and µ: let µ : VD → N be the function defined in
the encoding (Definition 7). We show that µ(v) = µ(v′) implies σ(ψ(φ(v))) = σ(ψ(φ(v′))).
If µ(v) = µ(v′), then either v = v′ and the claim holds obviously, or there are indices
i, j such that v = bχDci, v′ = bχDcj and bt̃ci = bt̃cj . Then it follows with the fact that
σ and t̃ are compatible, that σ(ψ(φ(v))) = σ(ψ(φ(bχDci))) = σ(bχT ci) = σ(bχT cj) =
σ(ψ(φ(bχDcj))) = σ(ψ(φ(v′))).
We show that σi and µ(ζi(χmi

)) are compatible: let bµ(ζi(χmi
))cj = bµ(ζi(χmi

))ck. This
implies that µ(ζi(bχmi

cj)) = µ(ζi(bχmi
ck)) and it follows that

σi(bχTi
cj) = σ(ψ(ηi(bχTi

cj))) = σ(ψ(φ(ζi(bχmi
cj)))) = σ(ψ(φ(ζi(bχmi

ck))))

= σ(ψ(ηi(bχTi
ck))) = σi(bχTi

ck)

Then the induction hypothesis implies that

Γi = bµ(ζi(χmi
))cj : σi(bχTi

cj) ` Θµ(ζi(χm
i
))(Pi)

Now let ∆ be a type assignment, containing all assignments of the form µ(v) : σ(ψ(φ(v)))
for all v ∈ VD. Because of (µ(v) = µ(v′) ⇒ σ(ψ(φ(v))) = σ(ψ(φ(v′)))) shown above it
follows that ∆ is well-defined and since σi(bχTi

cj) = σ(ψ(φ(ζi(χmi
)))), it follows that ∆

can be obtained from any Γi by adding extra type assignments. Thus it follows from the
weakening rule for the π-calculus type system, that ∆ ` Θµ(ζi(χmi))(Pi). And with the rule
for parallel composition it follows that

∆ ` Θµ(ζ1(χm1))(P1) | . . . | Θµ(ζn(χmn))(Pn)

Now let Γ be a type assignment containing all assignments of the form µ(v) : σ(ψ(φ(v)))
for v ∈ Set(χD). With the rule for hiding of the π-calculus type system, it follows that

Γ ` (ν µ(VD\Set(χD)))(Θµ(ζi(χmi))(P1) | . . . | Θµ(ζi(χmi))(Pn)) = Θt̃(P)

It is left to show that Γ = bt̃ci : σ(bχT ci). This is quite straightforward, since µ(v),
v ∈ Set(χD) is exactly bt̃ci if v = bχDci, and in this case σ(ψ(φ(v))) = σ(ψ(φ(bχDci))) =
σ(bχT ci).

π-calculus → type graphs: now let Γ ` Θt̃(P), where t̃ is a duplicate-free sequence of names.
We show that T = f(t(P)) is defined and that there is a mapping σ consistent with T , such
that σ(bχT ci) = Γ (bt̃ci). We proceed by induction on P .

– P = [M]n+1, which implies that Θt̃(P) = bt̃cn+1〈bt̃c1, . . . , bt̃cn〉.
Since Γ ` p, it holds that Γ (bt̃cn+1) = [Γ (bt̃c1), . . . , Γ (bt̃cn)].
We set T = t(P) = [3]n+1 and furthermore we define a mapping σ on the nodes of T
with σ(bχT ci) = Γ (bt̃ci). σ is obviously consistent, and it follows with Lemma B that
T = f(T) = f(t(P)) is defined and has a consistent mapping σ such that σ(bχT ci) =
σ(bχT ci) = Γ (bt̃ci).

– P = [!Q]m, which implies that Θt̃(P) =!Θt̃(Q).
The typing rules of the π-calculus imply that Γ ` Θt̃(Q). Then it follows from the induction
hypothesis that T = f(t(Q)) is defined, there is a mapping σ on the nodes of T which is
consistent and σ(bχT ci) = Γ (bt̃ci).
Since T = f(t(P)) = f(t(Q)) = T , T is also defined and we can use σ = σ as a consistent
mapping with the appropriate properties.

– P = [(k, n)Q]m, which implies that Θt̃(P) = bt̃ck(x1, . . . , xn).Θt̃x1...xn
(Q).

It follows from the typing rules of the π-calculus that Γ, x1 : t1, . . . , xn : tn ` Θt̃x1...xn
(Q)

where Γ (bt̃ck) = [t1, . . . , tn]. Then the induction hypothesis implies that T = f(t(Q)) is
defined and that there is a consistent mapping σ for T such that σ(bχT ci) = Γ (bt̃ci) if
1 ≤ i ≤ m and σ(bχT cm+i) = ti if 1 ≤ i ≤ n.

Now let T̂ be defined as in the figure below.

(1) (k) n(m)

f(t(Q)) e

We know that f(T̂) = f(t(P)) if both are defined. In order to show that f(T̂) is defined,
we construct a consistent mapping σ̂: let φ : T → T̂ be the standard embedding of T into
T̂ , φ is bijective on the node sets. So we can define σ̂(φ(v)) = σ(v). The mapping σ̂ is
consistent for all edges of T = f(t(Q)), so it suffices to show that σ̂ is consistent for the
new edge e: sT̂ (e) = φ(bχT cm+1) . . . φ(bχT cm+n)φ(bχT ck) and therefore

σ̂(φ(bχT ck)) = σ(bχT ck) = Γ (bt̃ck) = [t1, . . . , tn]

= [σ(bχT cm+1), . . . , σ(bχT cm+n)]

= [σ̂(φ(bχT cm+1)), . . . , σ̂(φ(bχT cm+n))]

Thus σ̂ is consistent for T̂ and with Lemma B it follows that T = f(T̂) is defined and that
there is a consistent mapping σ for T such that σ(bχT ci) = σ̂(bχT̂ ci) = σ(bχT ci) = Γ (bt̃ci).

– P = D
n

i=1
(Pi, ζi) which implies that

Θt̃(P) = (ν µ(VD\Set(χD)))(Θµ(ζ1(χm1
))(P1) | . . . | Θµ(ζn(χmn

))(Pn))

and µ : VD → N and µ(χD) = t̃. (Note that this case also covers discrete graphs, i.e. the
case where n = 0.)
It follows from the typing rules of the π-calculus that there is a type assignment ∆, which
is exactly Γ enriched by type assignments of the form µ(v) : tv for all v ∈ VD\Set(χD)
and that ∆ ` Θµ(ζi(χm

i
))(Pi).

The induction hypothesis thus implies that all Ti = f(t(Pi)) are defined and that there
are mappings σi consistent with Ti such that σi(bχTi

cj) = ∆(bµ(ζi(χmi
))cj).

Now we define T̂ = D
n

i=1
(Ti, ζi). We know that T = f(t(P)) is defined if and only if f(T̂)

is defined. In order to show this, we define a consistent mapping σ̂ for T̂ . We assume that
ηi : Ti → T̂ , φ : D � T̂ are the standard embeddings generated by the graph construction
and we define σ̂ in the following way:

σ̂(v̂) =

{

σi(v) if v̂ = ηi(v)
∆(µ(v)) = tv if v̂ = φ(v)

We first have to show that σ̂ is well-defined: let φi : mi � Ti be the unique strong
morphisms from mi into Ti. When we restrict all morphisms to the node sets, then the
(ηi)V and φV are still the colimit of the (φi)V and the (ζi)V . We show that ∆◦µ◦ (ζi)V =
σi ◦ (φi)V :

∆(µ(ζi(bχmi
cj))) = σi(bχTi

cj) = σi(φi(bχmi
cj))

Because of the colimit property, there must be a unique mapping σ′ from the nodes of T̂
into the set of type trees such that σ′ ◦ (ηi)V = σi and σ′ ◦ φV = ∆ ◦ µ. So σ′ is exactly
the σ defined above.
It is left to show that σ̂ is consistent with T̂ : let e be one of the edges of T̂ and it follows
that there must be a e′ ∈ ETi

such that e = ηi(e
′). If sT̂ (e) = v1 . . . vn+1, it follows that

vj = ηi(bsTi
(e′)cj). Thus

σ̂(vn+1) = σ̂(ηi(bsTi
(e′)cn+1)) = σi(bsTi

(e′)cn+1)

= [σi(bsTi
(e′)c1), . . . , σi(bsTi

(e′)cn)]

= [σ̂(ηi(bsTi
(e′)c1)), . . . , σ̂(ηi(bsTi

(e′)cn))] = [σ̂(v1), . . . , σ̂(vn)]

Lemma B implies that T = f(T̂) = f(t(P)) is defined and that there is a mapping σ con-
sistent with T such that σ(bχT ci) = σ̂(bχT̂ ci). Thus it holds that σ(bχT ci) = σ̂(bχT̂ ci) =
σ̂(φ(bχDci)) = ∆(µ(bχDci)) = ∆(bt̃ci).

Example: as an example, look at the process graph P depicted in Figure (1) below. It consists
of two edges, both able to replicate themselves, where the edge on the left-hand side waits for
incoming messages on its first and only node. Each message should be equipped with two nodes,
to the first of which another message is sent. The edge on the right-hand side produces arbitrarily
many messages to be received by the edge on the left-hand side. Note that this process graph
has an infinite reduction sequence (not even counting the replication steps) and if we denote the
innermost process graph of arity 3 in the left-hand side edge by P ′, then P →∗ P2P ′

2 . . .2P ′.

(1)

(1)

(1) (3)(2)

(1) (3)(2)

(1)

!

(2) (3)
c

(1,2)

!

a b

M

M

If we set t̃ = abc, its π-calculus counterpart Θt̃(P) = ! a(x, y).x〈a〉 | ! a〈b, c〉 = p, which reduces
to ! a(x, y).x〈a〉 | ! a〈b, c〉 | b〈c〉 | . . . | b〈c〉. The process p can be typed under the type assignment
Γ = a : t, b : [t], c : t′ where t′ is an arbitrary type tree and t is the solution of the fixed-point
equation t = [[t], t′]. Note that the infinity of the tree is not caused by replication, but rather by
the fact that the left-hand side process emits its own name as the content of a message.

Now, computing t(P) yields the type graph depicted in Figure (D) below, where the edge in
the middle is generated by applying t to the process abstraction [(1, 2)Q]1, and the other two
edges are generated by t([M]2) respectively t([M]3). Computing f(t(P)) fuses the two rightmost
edges. We indicate a consistent mapping σ by mapping the nodes to appropriate type trees. This
consistent mapping corresponds exactly to the type assignment Γ given above.

(1) (2) (3)

f

(1) (2) (3)
σ:

(2)
t [t] t’

4.2 Concurrent Object-Oriented Programming

We now show how to model a concurrent object-oriented system by graph rewriting and then
present a type system. In our model, several objects may compete in order to receive a message,
and several messages might be waiting at the same object. Typically, type systems in object-
oriented programming are there to ensure that an object that receives a message is able to process
it.

Definition 8. (Concurrent object-oriented rewrite system) Let (C, <:) be a lattice of classes
with a top class6 > and a bottom class ⊥. We denote classes by the letters A,B,C, Further-
more let M be a set of method names. The function ar : C ∪M → lN\{0} assigns an arity to every
class or method name.

An object graph G is a hypergraph with a duplicate-free string of external nodes, labelled with
elements of C\{⊥} ∪ M where for every edge e it holds that ar(e) = ar(lG(e)). A concurrent
object-oriented rewrite system (specifying the semantics) consists of a set of rules R satisfying the
following conditions:

– the left-hand side of a rule always has the form shown in Figure (C) below (where A ∈ C\{⊥},
ar(A) = n, m ∈ M, ar(m) = k + 1).

The right-hand side is again an object graph of arity
n + k. If a left-hand side RA,m exists, we say that A
understands m.

...... (C)

A m = RA,m

(1) (n) (n + k)(n + 1)

– If A <: B, A 6= ⊥ and B understands m, then A also understands m.
– For all m ∈ M, either {A | A understands m} is empty or it contains a greatest element.

An object graph G contains a “message not understood”-error if G contains a subgraph RA,m, but
A does not understand m.

Thus the predicate X for this section is defined as follows: X(G) if and only if G does not
contain a “message not understood”-error.

In contrast to the previous section, we now use annotated type graphs: the annotation mapping
A assigns a lattice ({a : VH → C × C},≤)) to every hypergraph H. The partial order is defined as
follows: a1 ≤ a2 ⇐⇒ ∀v: (a1(v) = (A1, B2) ∧ a2(v) = (A2, B2) ⇒ A1 <: A2 ∧ B1 :> B2), i.e.
we have covariance in the first and contravariance in the second position. If a node v is labelled
(A,B), this has the following intuitive meaning: we can accept at least as many messages as an
object of class A on this node and we can send at most as many messages as an object of class B
can accept.

Furthermore we define Aφ(a)(v
′) =

∨

φ(v)=v′ a(v) where φ : H → H ′, a is an element of A(H)

and v′ ∈ VH′ .
We now define the operator f : let T [a] be a type graph of arity n where it holds for all nodes

v that a(v) = (A,B) implies A <: B (otherwise f is undefined). Then f reduces the graph to its
string of external nodes, i.e f(T [a]) = n[b] where b(bχnci) = a(bχT ci). We accept a type graph, if
it is defined, i.e. if f is successful. So we define Y (T [a]) = true for all type graphs T .

The linear mapping t determines the type of a class or method. It is necessary to choose a
linear mapping that preserves the interface of left-hand and right-hand sides, i.e. we can use any
t that satisfies condition (10) and the following two conditions below for A ∈ C\{⊥} and m ∈ M:

t([A]n) = [A]n[a] where a(bχ[A]nc1) ≥ (A,>)

t([m]n) = [m]n[a] where a(bχ[m]ncn) ≥ (⊥,max{B | B understands m})

Proposition 6. The annotation mapping A, the mappings f and t and the predicates X and Y
defined above satisfy conditions (6)–(10) of Theorem 1. Thus if G.T and Y (G), then G will never
produce a “message not understood”-error during reduction.

Proof. We show that A, f, t, Y,X satisfy conditions (6)–(10) of Theorem 1.

(6) This property does trivially hold since Y (T [a]) = true for all T .
(8) Let φ : T [a] �A T ′[a′]. It holds that f(T [a]) = n[b] and f(T ′[a′]) = n[b′] where n = ar(T) =

ar(T ′), b(bχnci) = a(bχT ci) and b′(bχnci) = a′(bχT ′ci). There is trivially a strong morphism
from n into n (the identity) and furthermore b′(bχnci) = a′(bχT ′ci) ≥ Aφ(a)(bχT ′ci) =
∨

φ(v)=bχT ′ci
a(v) ≥ a(bχT ci) = b(bχnci).

And thus f(T [a]) �A f(T ′[a′]).

6 This corresponds to the class Object in Java

(7) let Ti[ai] be type graphs and we set

T = D
n

i=1
(Ti[ai], ζi), Ti[ai] = f(Ti[ai]), T [a] = D

n

i=1
(Ti[ai], ζi)

We prove that f(T) ∼= f(T).
It is clear from the definition of f that f(T) �A T , if f(T) is defined. So we have the situation
depicted in the figure below

ζi

i
φ

ψ
i

Ti

[ai]

[ai]

mi D

T

T

η

ψ

i

iη

φ

(b)

(a)

’

Ti

[a]

[a]

φ
f(T[a]) =

f(T[a]) =

n

n

[b]

[b]

(a) is a colimit, and the ψi ◦ φi are the unique strong morphisms from mi into Ti. We assume
that the ηi and φ are the colimit of the ζi and the ψi ◦ φi. It follows from standard properties
of colimits that there is a morphism ψ : T [a] �A T [a] such that ψ ◦ φ = φ and (b) is also a
colimit.
We first show that a(ψ(v)) = a(v) holds for all v ∈ VT : note that whenever ψ(v) = ηi(v

′) for
any v′ ∈ VTi

, then it follows from the definition of graph construction that v′ is an external
node of Ti and therefore aj(v

′) =
∨

ψj(v′′)=v′
aj(v

′′), where all aj(v
′′) are equal.

a(ψ(v)) =
∨n

j=1

∨

ηj(v′)=ψ(v)
aj(v

′) =
∨n

j=1

∨

ηj(v′)=ψ(v)

∨

ψj(v′′)=v′
aj(v

′′)

=
∨n

j=1

∨

ηj(ψj(v′′))=ψ(v)
aj(v

′′) =
∨n

j=1

∨

ψ(η′
j
(v′′))=ψ(v)

aj(v
′′)

=

ψ inj.
∨n

j=1

∨

η′
j
(v′′)=v

aj(v
′′) = a(v)

In the next step we prove that f(T [a]) is defined, i.e. T [a] satisfies condition (12), if and only
if f(T [a]) is defined.

∀ v ∈ VT : (a(v) = (A,B) ⇒ A <: B) (12)

We first assume that T [a] satisfies (12). Since T [a] �A T [a] and (12) is preserved by inverse
morphisms, it follows that f(T [a]) is also defined.
Now let f(T [a]) be defined, i.e. the f(Ti[ai]) = Ti[ai] are defined and T [a] satisfies (12). Let
v ∈ VT . We distinguish two cases:
– v is not in the range of φ: in this case there is a unique i and a unique node v′ ∈ VTi

such
that ηi(v

′) = v and ai(v
′) = a(v). Therefore a(v) = (A,B) implies A <: B since Ti[ai]

satisfies condition (12).
– v is in the range of φ: in this case there is a node v′ ∈ VT such that v = ψ(v′) and (see

above) a(v) = a(ψ(v′)) = a(v′). Since T [a] satisfies (12) it holds that a(v) = (A,B) implies
A <: B.

It is left to show that f(T [a]) = n[b] and f(T [a]) = n[b] are isomorphic. The underlying graphs
are clearly isomorphic and it is left to prove that b = b:

b(bχnci) = a(bχT ci) = a(ψ(bχT ci)) = a(bχT ci) = b(bχnci)

(9) we assume that Y (f(t(G))) holds, which implies that f(t(G)) is defined, or—in other words—if
T [a] = t(G), v ∈ VT and a(v) = (A,B), then it holds that A <: B.
We now assume that G has a subgraph RA,m and we show that A understands m. It follows
that there is a morphism η : t(RA,m) →A t(G). We set T [a] = t(RA,m).
From the conditions imposed on t it follows that

a(bχT c1) ≥ (A,⊥) and a(bχT c1) ≥ (⊥,max{B | B understands m})

Now let a(bχT c1) = (C,D) and a(η(bχT c1)) = (C ′, D′). Since η is an A-morphism, it holds
that (C,D) ≤ (C ′, D′) and therefore C <: C ′ and D :> D′. Furthermore

⊥ 6= A <: C <: C ′ <: D′ <: D <: max{B | B understands m}

Then it follows from Definition 8 that A understands m.
(10) this is satisfied because of the condition imposed on t.

In this case we do not prove that this type systems corresponds to an object-oriented type
system, but rather present a semi-formal argument: we give the syntax and a type system for a
small object calculus, and furthermore an encoding into hypergraphs, without really defining the
semantics. For the formal semantics of object calculi see [20, 9], among others.

An expression e in the object calculus either has the form new A(e1, . . . , en) where A ∈ C\{⊥}
and ar(A) = n + 1 or e.m(e1, . . . , en) where m ∈ M and ar(m) = n + 2. The ei are again
expressions. Every class A is assigned an (ar(A)−1)-tuple of classes defining the type of the fields
of A (A : (A1, . . . , An)) and every method m with ar(m) = n + 2 defined in class B is assigned
a type B.m : C1, . . . , Cn → C. If a method is overwritten in a subclass it is required to have the
same type. A simple type systems looks as follows:

e : A, A <: B
e : B

A : (A1, . . . , An), ei : Ai
new A(e1, . . . , en) : A

e : B, B.m : C1, . . . , Cn → C, ei : Ci
e.m(e1, . . . , en) : C

Now an encoding [[·]] can be defined as shown
in the figure to the right. We introduce the
convention that the penultimate node of a
message can be used to access the result af-
ter the rewriting step.

...

...

...

...

[[e]] mA

[[newA(e1, . . . , en)]] = [[e.m(e1, . . . , em)]] =

[[e1]] [[en]] [[e1]] [[en]]
(1)

(1)

If A : (A1, . . . , An) we define t in such a way that the n + 1 external nodes of t([A]n+1) are
annotated by (A,>), (⊥, A1), . . ., (⊥, An). And if B.m : C1, . . . , Cn → C (where B is the maximal
class which understands method m), we annotate the external nodes of t([m]n+2) by (⊥, C1), . . .,
(⊥, Cn), (C,>), (⊥, B). Now we can show by induction on the typing rules that if e : A, then there
exists a type graph T [a] such that [[e]] . T [a] and a(bχT c1) = (A,>).

Proof: we show a stronger induction hypothesis. If e : A, then f(t([[e]])) is defined and
f(t([[e]])) = 1[a] where a(bχ1c1) = (A′,>) ≤ (A,>). With the weakening rule (3) we then obtain
the original claim.

– Let e : B where e : A and A <: B. With the induction hypothesis it follows that f(t([[e]])) =
1[a] where a(bχ1c1) = (B′,>) ≤ (B,>). And since B <: A, we also obtain (B ′,>) ≤ (A,>).

– Let e = new A(e1, . . . , en) : A where A : (A1, . . . , An) and ei : Ai. From the induction
hypothesis it follows that f(t([[ei]])) = 1[ai] is defined and that ai(bχ1c1) = (A′

i,>) ≤ (Ai,>).
Now we can conclude that

[[]]e

ne[[]]))f(t(

(, A 1)
(, A)n (A,)

(, A 1)
(, A)n

(1)

f(

...

A

...

)

(1) (,)n(1) (,)1A’ A’

, A)nnA’((1)
(A,)

(1)
(A,)f(

...

A
)

A’(,1 A 1)

=

f(t()) = =f(

(1) ...

A

...))1e[[]]f(t(

)

(A,)

=

The last step is defined since A′
i <: Ai.

– Let e = e0.m(e1, . . . , en) : A where e0 : B, B.m : C1, . . . , Cn → A and ei : Ci. From the
induction hypothesis it follows that f(t([[ei]])), 0 ≤ i ≤ n is defined and that f(t([[ei]])) = 1[ai]
with a0(bχT0

c1) = (B′,>) ≤ (B,>) and ai(bχTi
c1) = (C ′

i,>) ≤ (Ci,>) for 1 ≤ i ≤ n.
So we can conclude that:

[[]]ef(t()) = f(t(
[[]]

ne[[]]))f(t(

(, B) (A,))C,(n
1)C,(

me0

...))1e[[]]f(t(

f(t())

(1)
...

f(

(1) (,)1C’

,)(1) (B

)C, n(C’n)(A,
(1)

)(A,

1)C,(C’1, B)(B’

) = f(
m

...

(1)
...

1)C,((, B)
)C,(n (A,)

(1) (,)C’n

) =

m

...

) =
(1)

f(

The last step is defined since B′ <: B and C ′
i <: Ci.

4.3 A Security Policy for Untrustworthy Applets

In this last case study we show how to construct a new type system rather than simulate an existing
one. We have the following scenario: an applet is received and is executed in an environment
containing trustworthy and untrustworthy objects. By definition, all objects in the applet are
untrustworthy. Objects may interact with each other and modify each other. An untrustworthy
object must not modify a trustworthy one.

In order to achieve this, two solutions are applicable: the first solution is that every object
has to authenticate itself by some sort of protocol during runtime, which can be rather costly.
The second solution is that, after reception of the applet, a static type check is performed which
excludes the possibility of trust violation for at least a subset of trustworthy objects. For these
objects there is no need to conduct the authentification protocol. Since typing is compositional,
it is sufficient to compute the type of the environment only once. Thus, if a rather small applet is
received, the computation of its type and the composition of the two types is cheap.

The system model is as follows: both, environment and applet are represented by hypergraphs
and can be combined by some suitable construction operation. There are three forms of edges:
objects, request messages and update messages.

Each object (represented by an edge) has a unique name N ∈ N , a behaviour B ∈ B, a
clearance cl ∈ {t, u} indicating if the object is trustworthy or untrustworthy and a fixed arity
n ∈ lN. Objects may spontaneously send request or update messages. A request message is an
edge of arity 2 which is labelled reqi, meaning that the i-th field of an object is requested and
should be merged with the second node of the message. An update message is an edge of arity 1
which is labelled upd(N,B, cl), meaning that the receiving object should change its name to N ,
its behaviour to B and its clearance to cl. According to its behaviour B, an object only sends and
accepts a subset of all messages, so RB (the set of all rewrite rules for behaviour B) is a subset of
the rules depicted in the figure below.

......(1) (n)(1) (j)

(n+1)(i,n+1)......(i)

(k) ...

(n)(1) (1) (n)

(n)... (n)(j)(1)(n) (1)

...(1) (n)(1) ... (n)

req

req

(N’,B’,cl’)(N,B,cl)

(N,B,cl)

(N,B,cl) upd(N’,B’cl’)

(N,B,cl)

upd(N’,B’))

req upd(N’,B’,cl)

jk

i

i

(send j

(N,B,cl)

i)(receive req

)i(send

(N,B,cl) (N,B,cl)

(receive upd) (2)

(4)(3)

(1)

The clearance labels are only there for clarification of the problem, but they are not yet the
solution. In practice nothing would keep an object from sending a message with a faked label.

We say that B emits B′ if the rule (sendj upd(N ′, B′, cl ′)) is contained in RB . For technical
reasons we demand that the “emits”-relation does not have cycles.

The set R of all rewrite rules is the union of the RB . We want to make sure that for a certain
object of name N no program will ever contain a subgraph in the form of the left-hand side of
rule (2) where cl = t and cl ′ = u. We call this a trust violation for N . The predicate XN holds for
a program P , if P does not contain a trust violation for N .

We can regard the set {t, u} as a lattice with elements t and u where t < u. Then our type
graphs have the following form: edges are labelled either by (N,B) ∈ N × B (then they are
annotated by an element from {t, u}) or by reqi (trivial annotations) or by upd (annotations
from {t, u}). Let a be an annotation assigning lattice elements to the respective edges. We define
Aφ(a)(e

′) =
∨

φ(e)=e′ a(e) if φ : H → H ′ and e′ ∈ EH′ .
The linear mapping t—which anticipates all components that might be introduced into the

graph during reduction and creates information for f on how they should be merged—is defined
as depicted in the figure below. We define

1≤i≤n
Ti = T12 . . .2Tn. The image of an object

edge is defined via the auxiliary mapping tcl which takes into account all the rules which may be
applied to the object edge. Because of the condition on the “emits”-relation, the construction of
t terminates and is well-defined.

t cl (receive upd) =

t([req i]2)

= [req 2]it([(N,B,cl)]n)

(1)

t cl i(receive req) =

(N,B)cl

t

...(j)(1) (n)... ...

t()[(N’,B’,cl)]ncl

(1)
i

...

...... (j) ... (n)...(i)
t cl (send jk req (send) =

cl

t([(N,B,cl)]

t([upd(N,B,cl)]1) =

n

...
r

(k)(1) (n)
t cl

R

j upd(N’,B’)) =

t cl) = (r)
B

(1) (n)

(1) ... (n) ...

ii

upd

upd reqreq upd

The operation f can now be defined according to Proposition 2 where an annotated hypergraph
T [a] satisfies property C if and only if it holds for all e1, e2 ∈ ET that

lT (e1) = lT (e2) ∈ {upd} ∪
⋃

i∈lN
{reqi} ∧ bsT (e1)c1 = bsT (e2)c1 ⇒ e1 = e2

In other words: if two message edges are sent to the same node, they are merged. This is basically
equivalent to the condition C imposed in section 4.1.

It is left to define a predicate YN in order to infer the absence of trust violation for a trustworthy
object of name N : let T [a] be a type graph. We say that YN (T [a]) holds if no untrustworthy update
message is attached to an edge labelled (N,B) for any behaviour B:

∀ e, e′ ∈ ET : ((∃B : lT (e) = (N,B)) ∧ lT (e′) = upd ∧ bsT (e′)c1 = bsT (e)c1

⇒ a(e′) = t)

Proposition 7. The annotation mapping A, the mappings f and t and the predicates XN and
YN defined above satisfy conditions (6)–(10) of Theorem 1. Thus if P . T and YN (P), then there
will never be a trust violation for an object of name N in P .

Proof. We show that A, f, t,X, Y satisfy the conditions of Theorem 1.

(6) We show that YN is preserved by invariant morphisms: let φ : T [a] →A T ′[a′] and YN (T ′[a′]).
Now let e, e′ ∈ ET such that there is a behaviour description B with lT (e) = (N,B), fur-
thermore lT (e′) = upd and bsT (e′)c1 = bsT (e)c1. Since labels and the connection func-
tion are preserved by morphisms, it follows that lT ′(φ(e)) = (N,B), lT ′(φ(e′)) = upd and
bsT ′(φ(e′))c1 = bsT ′(φ(e))c1. Since YN (T ′[a′]) holds, we conclude that a′(φ(e′)) = t.
Since φ is an A-morphism it follows that a(e) ≤ a′(φ(e)) = t and therefore a(e′) = t.

(7) & (8) Showing that f satisfies the universal property (as defined in Proposition 2) with
respect to condition C is analogous to proving the same fact for process graphs (see the proof
of Proposition 3).

(9) Let YN (f(t(H))). We show that this impliesXN (H): let us assume thatH contains a subgraph
corresponding to the left-hand side L of rule (2) where cl = t. Then there is an A-morphism
from f(t(L)) into f(t(H)) and since YN is preserved by inverse A-morphisms, it follows that
YN (f(t(L))) and also YN (t(L)) hold. The type graph t(L) has the following form:

(1) (n)

r R B
t cl(r)

e e’

...

(N,B)

...

cl’ t()[(N’,B’,cl’)]nt upd

And since YN is satisfied, it follows that cl′ = t.

(10) We show that this property holds for all four types of rules. For a rule r, we set TN,B,clr =

[(N,B)]n[a]2 r∈RB\{r}
tcl(r) where a(e) = cl for the only edge e of [(N,B)]n. That is TN,B,clr

is t([(N,B, cl)]n) without tcl(r), or t([(N,B, cl)]n) = TN,B,clr 2tcl(r).
(1) r = (receive req i). In this case we conclude

(1) (n)(i,n+1) ...

......(i)(1) (n)

...

)

......(i)(1) (n)

=f(

......(1) (n) (n+1)(i)

T N,B,cl
r

)

(n+1)

t([req i])2

......(1) (n)(i) (n+1)

= f(t(L)))

=

...(i)(1) (n)...(i)(1) (n) (n+1)

=
r

t)f(cl r
N,B,clT

(i)

(r)

...

f(t(R)) = f()T N,B,cl

...

n)f(t([(N,B,cl]

f(

......(1) (n) (n+1)

ii

req i

i reqreq

ireq

req

req i

(2) r = (receive upd). In this case it holds that

An))f(t([(N’,B’,cl’] =
n))f(t([(N’,B’,cl’]

...(1) (n)

upd

n))upd f(t([(N’,B’,cl’]upd

...(1) (n) ...

=

t([(N,B,cl]n) = f(t(L)))

f(t(R)) =

f(T N,B,cl
r

f()

)

T N,B,cl
r

cl’

cl’t

f(

......(1) (n)(i)

t([upd(N’,B’,cl’)]
1
)

(3) r = (send jk req i). Here we know that

T N,B,cl

(1) (j) (k) (n)

r
=

=A

(1) (j) (k) (n) ...

T N,B,cl
r

T N,B,cl
r

(1) (j) (k) (n)

f(

(k)

t)

t cl(r)

clf(

)

(1) (j)

=

(n)

f(T N,B,cl
r

(r)

f(

) f(t(L))

)f(t(R)) = reqreq ii

ireq

ireq

(4) r = (send j upd(N’,B’)) and in this case we can conclude that

=f(T N,B,cl
r

t cl(r)

(n)(1) (j)

T N,B,cl
r

A T N,B,cl
r

=

=

f(

(n)(1) (j)

)cl

...

t([(N’,B’,cl)])n

f(T N,B,cl
r

t cl(r)

(n)(1) (j)

) f(t(L))

f(

f(t(R)) =

(1)

cl

...

t([(N’,B’,cl)])n)

cl

(n)

)

...... (j)

n

cl

...

t([(N’,B’,cl)]
...

t([(N’,B’,cl)])n

)

upd

upd

upd

upd

Example: we assume that there is an environment E into which an applet A should be plugged,
and the combination P of environment and applet is obtained as shown in Figure (5) below. We
assume that E has already been typed and that E .T where T is depicted in Figure (6). Although
it is normally not possible to reconstruct the original graph from a type, we can speculate how this
type could have originated: for example, E has two objects labelled with (N1, B1, t) respectively
(N2, B2, t) where the first accepts request and update messages while the second only accepts
update messages.

E AP =

(5)
(N1 ,B1)

(2) (3)

(N ,B)2 2 t = T

(1)

req 2

t
t

(6)

tupd upd

Now assume that we receive an applet A from outside, which has the form drawn in Figure (7).
We have to make sure that all objects and update messages have the label “untrustworthy”, which
holds in this case. In order to type A, all we need to know is the rule set RB3

and in this case we
assume that it contains the rules (receive req2) and (receive req3).

req 2

(1)

upd(N ,B ,u)3 3

(7)

req 2

(1)

req 2

(N ,B)3 3

req 3

upd

(8)

u
u

So, computing t(A) yields the type graph drawn in Figure (8) and because of condition (4), the
entire program P has a type T ′ as depicted in Figure (9). T ′ is rather complex and we will not
draw the entire graph here, but we will describe its most important features: since the first external
node of T and the first external node of t(A) are merged, it follows that the two req 2-edges sent

to these nodes are merged, which causes the first node of the untrusted update message in t(A)
and the first node of the edge labelled (N2, B2) to merge. Therefore YN2

(T ′) does not hold, but
YN1

(T ′) holds. So we need an authentication protocol for the object with name N2, but we can
be sure that no untrusted update message is ever sent to N1, although N1 can accept update
messages.

(9)

T t(A)T’ = f()

5 Conclusion and Comparison to Related Work

This is a first tentative approach aimed at developing a general framework for the static analysis
of graph rewriting in the context of type systems. It is obvious that there are many type systems
which do not fit well into our proposal. But since we are able to capture the essence of two
important type systems, we assume to be on the right track.

Types are often used to make the connection of components and the flow of information through
a system explicit (see e.g. the type system for the π-calculus, where the type trees indicate which
tuple of channels is sent via which channel). Since connections are already explicit in graphs, we
can use them both as type and as the expression to be typed. Via morphisms we can establish a
clear connection between an expression and its type. Graphs are furthermore useful since we can
easily add an extra layer of annotation (in our case: annotation by lattice elements).

Work that is very close in spirit to ours is [8] by Honda which also presents a general framework
for type systems. The underlying model is closer to standard process algebras and the main focus
is on the characterisation and classification of type systems.

The idea of composing graphs in such a way that they satisfy a certain property was already
presented by Lafont in [14] where it is used to obtain deadlock-free nets.

In graph rewriting there already exists a concept of typed graphs [1], related to ours, but
nevertheless different. In that work, a type graph is fixed a priori and there is only one type graph
for every set of productions. Graphs are considered valid only if they can be mapped into the type
graph by a graph morphism (this is similar to our proposal). In our case, we compute the type
graphs a posteriori and it is a crucial point in the design of every type system to distinguish as
many graphs as possible by assigning different type graphs to them.

This paper is a continuation of the work presented in [10] where the idea of generic type systems
for process graphs (as defined in section 4.1) was introduced, but no proof of the equivalence of
our type system to the standard type system for the π-calculus was given. The ideas presented
there are now extended to general graph rewriting systems.

Further work will consist in better understanding the underlying mechanism of the type system.
An interesting question in this context is the following: given a set of rewrite rules, is it possible
to automatically derive mappings f and t satisfying the conditions of Theorem 1? The crucial
point here is the fact that cyclic dependencies may appear (i.e. there are two rules (L,R) and
(L′, R′) where L and R′ contain an edge labelled A and R and L′ contain an edge labelled B), we
avoided such a situation in section 4.3 by imposing an additional condition on the “emits”-relation,
otherwise the definition of the linear mapping t would not have been well-founded. Is there some
way to uniformly treat such situations? Probably some results concerning fixed-points are needed.

Acknowledgements: I would like to thank Reiko Heckel and Andrea Corradini for their
comments on drafts of this paper, and Tobias Nipkow for his advice. I am also grateful to the
anonymous referees for their valuable comments.

Remark: this report is the extended version of [11].

References

1. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Informaticae, 26(3/4):241–
265, 1996.

2. H. Ehrig. Introduction to the algebraic theory of graphs. In Proc. 1st International Workshop on
Graph Grammars, pages 1–69. Springer-Verlag, 1979. LNCS 73.

3. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of Graph Grammars
and Computing by Graph Transformation, Vol.3: Concurrency, Parallellism, and Distribution. World
Scientific, 1999.

4. F. Gadducci and U. Montanari. Comparing logics for rewriting: Rewriting logic, action calculi and
tile logic. Theoretical Computer Science, 2000. to appear.

5. Philippa Gardner. Closed action calculi. Theoretical Computer Science (in association with the
conference on Mathematical Foundations in Programming Semantics), 1998.

6. Annegret Habel. Hyperedge Replacement: Grammars and Languages. Springer-Verlag, 1992. LNCS
643.

7. Masahito Hasegawa. Models of Sharing Graphs (A Categorical Semantics of Let and Letrec). PhD
thesis, University of Edingburgh, 1997. available in Springer Distinguished Dissertation Series.

8. Kohei Honda. Composing processes. In Proc. of POPL’96, pages 344–357. ACM, 1996.

9. Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A core calculus for Java
and GJ. In Proc. of OOPSLA 1999, 1999.

10. Barbara König. Generating type systems for process graphs. In Proc. of CONCUR ’99, pages 352–367.
Springer-Verlag, 1999. LNCS 1664.

11. Barbara König. A general framework for types in graph rewriting. In Proc. of FST&TCS 2000.
Springer-Verlag, 2000. to appear.

12. Barbara König. A graph rewriting semantics for the polyadic pi-calculus. In Workshop on Graph
Transformation and Visual Modeling Techniques (Geneva, Switzerland), ICALP Workshops 2000,
pages 451–458. Carleton Scientific, 2000.

13. Barbara König. Hypergraph construction and its application to the compositional modelling of con-
currency. In GRATRA 2000: Joint APPLIGRAPH/GETGRATS Workshop on Graph Transformation
Systems, 2000. Proceedings available as Report Nr. 2000-2 (Technische Universität Berlin).

14. Yves Lafont. Interaction nets. In Proc. of POPL ’90, pages 95–108. ACM Press, 1990.

15. James J. Leifer and Robin Milner. Deriving bisimulation congruences for reactive systems. In Proc.
of CONCUR 2000, 2000. LNCS 1877.

16. José Meseguer. Rewriting logic as a semantic framework for concurrency: A progress report. In
Concurrency Theory, pages 331–372. Springer-Verlag, 1996. LNCS 1119.

17. Robin Milner. The polyadic π-calculus: a tutorial. In F. L. Hamer, W. Brauer, and H. Schwichtenberg,
editors, Logic and Algebra of Specification. Springer-Verlag, Heidelberg, 1993.

18. Robin Milner. Calculi for interaction. Acta Informatica, 33(8):707–737, 1996.

19. Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. In Proc. of LICS
‘93, pages 376–385, 1993.

20. David Walker. Objects in the π-calculus. Information and Computation, 116:253–271, 1995.

21. Nobuko Yoshida. Graph notation for concurrent combinators. In Proc. of TPPP ’94. Springer-Verlag,
1994. LNCS 907.

A Semantics of the Asynchronous Polyadic π-Calculus

In section 4.1 we have given an alternative semantics for the asynchronous polyadic π-calculus
in terms of process graphs. We have also presented an encoding from process graphs into the
π-calculus (more details can be found in [12]). Here we give the syntax and semantics for this
variant of the π-calculus, where we use the semantics given for its synchronous version in [19].

The asynchronous polyadic π-calculus without choice and matching can be described by the
following syntax where we assume that N is a fixed set of names, c ∈ N and ã, x̃ ∈ N ∗:

p := 0 (nil process)

| (νc)p (restriction)

| c〈ã〉 (output)

| c(x̃).p (input)

| p1|p2 (parallel composition)

| !p (replication)

| wrong (error)

The operational semantics of the π-calculus is defined as follows: structural congruence ≡ is the
smallest congruence closed under renaming of bound names (α-conversion) and under the rules
given in the table below. The reduction relation → is generated by the rules listed below. By
p{ã/x̃} we denote the substitution of the names bx̃ci by bãci in p (with possible α-conversion in
order to avoid capture).

Rules of Structural Congruence:

p1|p2 ≡ p2|p1 p1|(p2|p3) ≡ (p1|p2)|p3 (νc)0 ≡ 0 (νc)(νb)p ≡ (νb)(νc)p

((νc)p1)|p2 ≡ (νc)(p1|p2) if c 6∈ fn(p2) p|0 ≡ p !p ≡!p|p

!wrong ≡ wrong wrong |p ≡ wrong (νc)wrong ≡ wrong

Reduction Rules:

c(x̃).p | c〈ã〉 → p{ã/x̃} if |ã| = |x̃| c(x̃).p | c〈ã〉 → wrong if |ã| 6= |x̃|

p→ p′

p|q → p′|q
p→ p′

(νc)p→ (νc)p′
q ≡ p, p→ p′, p′ ≡ q′

q → q′

Note that replication, which is part of the structural congruence, is simulated by two reduction
rules in the case of process graphs. Therefore the operational correspondence in Proposition 4 does
not hold for one-step reduction, but for the transitive closure →∗ of the reduction relations.

With the π-calculus type system presented in section 4.1, the same kind of mismatching arities
as denoted by the term “bad redex” (introduced in section 4.1) are avoided. So if Γ ` p, then
p6→∗wrong .

