
Analysis and Abstraction of Graph
Transformation Systems via Type Graphs?

Dennis Nolte

Abteilung für Informatik und Angewandte Kognitionswissenschaft,
Universität Duisburg-Essen, Germany

dennis.nolte@uni-due.de

Abstract. We generalize verification techniques from the theory of for-
mal languages to the framework of graph languages. For this purpose,
we investigate formalisms for specifying graph languages based on type
graphs and compare them to existing formalisms. To adapt the verifica-
tion approaches one needs a specification formalism with suitable closure
properties and positive results for decidability problems.

Introduction

The theory of formal languages plays an important role in computer science
and there exists a large number of applications for this theory, for instance
in compiler construction, parsing and verification. In verification some typical
methods are (non-)termination analysis [14,16], reachability analysis [15] and
counterexample-guided abstraction refinement [5]. Reachability analysis for ex-
ample is based on the decidability of the language inclusion problem, in com-
bination with the closure under union property and the possibility to compute
postconditions. Starting with an initial set of states, one builds the set of all
reachable states iteratively by computing the strongest postcondition and adding
all new states to the current set with the union operator. An inclusion check af-
ter each iteration is used to check if no new reachable state was added. Using
this analysis, one can prove the absence of erroneous states. While the theory of
formal languages is worked out very well in string and tree/term rewriting, it is
often non-trivial to solve the same problems when it comes to graph rewriting.
It is natural to ask for generalizations of these verification techniques for the
framework of graph rewriting and additionally for a theory of graph languages,
where these techniques can be applied. The analysis of pointer structures, in the
research field of heap analysis, is just one example, where the adequate specifi-
cation of sets of graphs in combination with verification techniques is needed.

For this purpose, one needs a specification formalisms for graph languages
with suitable closure properties, positive results for decidability problems (like
membership, language inclusion and emptiness) and computable pre- and post-
conditions. Instead of just tinkering with fitting existing specification formalisms
for any given verification problem, we try to achieve a different main goal here:

? This research is in a mature stage



The contribution of this research is help to understand the essence of differ-
ent graph specification languages, which grant them the possibility to adapt
the verification techniques. Therefore, we have started research on a very sim-
ple specification formalism based on type graphs. This formalism is analysed in
detail with respect to desirable properties and then refined stepwise to enrich
its expressiveness. Each refinement is again analysed and in addition compared
to existing formalisms. With this approach, we want to contribute to compare
existing formalisms and structure them according to their capabilities to use in
certain verification techniques.

Related Work

There already exist several approaches to specifying graph languages, for in-
stance via logics [8,9], grammars [12,17], automata [1,2] or even annotated ab-
stract graphs [20,22]. Most of these formalisms differ in terms of closure proper-
ties and there exists a trade off between expressiveness and decidability proper-
ties. This might lead to incompatibility with certain verification techniques.

Courcelle’s notion of recognizable graph languages [9] (which is equivalent
to regular word languages and closely related with monadic second-order graph
logic [8]) is widely known and accepted. However, it becomes quite impractical
with respect to actual applications due to the large size of the resulting graph
automata [1]. Nested application conditions [18] (as the counterpart to first order
logic [21]) can already be used to compute pre- and postconditions. However,
implication and satisfiability are already undecidable for this formalism. There
also exist hyperedge replacement grammars [17] (being equivalent to the notion
of context-free (word-)grammars) and several other approaches one could name.

Usually these specification languages have at least one of the following prob-
lems: Language inclusion checks, needed for invariant checking, are usually unde-
cidable. This is already true once the formalism has an expressiveness power of at
least first-order logic. On the other hand, expressiveness might sometimes not be
sufficient enough, for instance the existence of paths can not be specified in first-
order logic. The computation of postconditions, used in reachability analysis, is
often impossible or just too difficult, such that some kind of over-approximation
might be necessary to compute it. Or the computation can become way too
costly in general, which makes the formalism impractical from some point.

We believe that there is no one-fits-all solution. Our approach is to study
graph specification languages and classify them according to their properties.

Proposed solution

We focus on specification languages based on type graphs [7], where the language
of a type graph T consists of all graphs that can be mapped homomorphically
into T (with potentially extra constraints to extend the framework). Many spec-
ification formalisms that are usually used in abstract graph transformation [23]
and verification, are based on type graphs. For instance, shape graphs [20] can
be seen as type graphs with additional annotations.

We work with the algebraic double-pushout (DPO) approach to graph rewrit-
ing [11], to analyse graph transformation systems. Since we are interested in the



verification of graphs which may model specific systems, the advantage in using
DPO lies in the fact that deletion in unknown contexts is forbidden per default.

Type graphs are a standard tool for typing graph transformation systems
[6,11], but we are not aware of any case where they have been extensively studied
from the perspective of specification languages.

Preliminary Work

The following section presents my joint work with several co-authors and gives
an overview of my research topics. Up until now we have achieved several results,
which can be divided into the following two work packages:

– Termination Analysis. Proving the termination property of a rewriting sys-
tem (for instance in graph rewriting) is an undecidable problem in general [19].
Nonetheless, given a rewriting system, one can try to run several proposed meth-
ods in parallel to possibly find a solution for the specific termination problem.
We introduced a new technique based on type graphs which are weighted over
different kinds of semirings (see [3,4]), to check if a given graph transformation
system is uniformly terminating, i.e. independent of the initial graph the rules
of the system can only be applied a finite number of times. This technique was
inspired by an existing method based on matrix interpretations for proving ter-
mination in string, cycle and term rewriting systems [13]. The type graph was
used to specify the set of all possible graphs by finite means.

We implemented the new termination analysis technique (among others) in
a prototype Java-based tool named Grez. The tool concurrently runs several
algorithms to possibly prove the termination of a given graph transformation
system. Our work in [3] extended Grez to be able to employ an SMT solver, to
solve inequalities resulting from our method. Finally, in [24] we translated term
rewrite systems from the Termination Problems Database (TPDB) into graph
transformation systems and let Grez automatically prove termination on them.

– Specifying Graph Languages. In our recent work [7] we analysed decidability
and closure properties for graph languages specified by type graphs. While not
being as expressive as recognizable graph languages, we proved positive results
with respect to decidability problems for the two simplest cases of specification
formalisms, namely type graph languages and restriction graph languages. A type
graph language contains all graphs which allow a homomorphism into a given
type graph, whereas a restriction graph language includes all graphs that do
not contain an homomorphic image of a given type graph. We also extended
the formalism in two different ways: First, we introduced boolean connectives
between type graphs to generate a type graph logic and second, we increased
the expressiveness of the type graph itself, by adding annotations to every type
graph element.

In case of the type graph logic, one already obtains the desired closure proper-
ties for free since they are semantically given by the logical ∧,∨ and ¬ operators.
However, it is still impossible to compute postconditions within this formalism.
This is due to the fact, that one can not express the existence of a subgraph (here



the right hand-side graph from a graph transformation rule) in every graph con-
tained in the specified graph language.

We defined a category of annotated type graphs, to generate an abstract
framework, from which most existing formalisms based on type graphs can be
instantiated. Annotations are used to globally count all elements that can be
mapped to the elements in the type graph. This is different from UML multi-
plicities, which are locally specified on the edges. Adding these annotations to
the type graph itself, the expressiveness is too powerful, such that the language
inclusion problem becomes hard to decide. We only obtained positive results for
the language inclusion problem by restricting the analysed graph languages to
only contain graphs up to a given pathwidth (equivalent to [1]). The situation
remains unclear for the unbounded case and is an open problem. However, by
adding annotations to the formalism, we were able to compute postconditions
of rule applications, which was impossible in the other refinements of the type
graph specification language.

Future Work

While classifying specification languages via our categorical approach, we are
still interested in characterizing a specification language that allows to gener-
alize verification techniques, from the theory of formal languages. Our current
results show that one needs to extend the expressiveness of the type graphs by
allowing a set of annotations on the type graph elements, to be able to compute
postconditions. This is necessary, if we want to extensively use these formalisms
in application scenarios such as reachability analysis or non-termination analy-
sis. To compute the pre-/postconditions within the formalism, we will also have
to generalize Hoare logic. We still plan to study the possibility to integrate UML
multiplicities into our framework and investigate if the framework is able to
handle attributes and inheritance (like in [10]). Exploiting universal properties
from category theory, we are currently working on a materialisation construc-
tion (similar to [22]) for our generalized abstract setting. Being able to compute
postconditions for the specification of graph languages by using annotated type
graphs, we plan to implement verification techniques for this formalism in a pro-
totype Java-tool called DrAGoM. We further plan to benchmark the techniques
of the tool with respect to runtime results.

References

1. Christoph Blume. Graph Automata and Their Application to the Verification of
Dynamic Systems. PhD thesis, University of Duisburg-Essen, 2014.

2. H.J. Sander Bruggink and Barbara König. On the recognizability of arrow and
graph languages. In Proc. of ICGT ’08. Springer, 2008. LNCS.

3. H.J. Sander Bruggink, Barbara König, Dennis Nolte, and Hans Zantema. Prov-
ing termination of graph transformation systems using weighted type graphs over
semirings. In Proc. of ICGT ’15, volume 9151 of LNCS. Springer, 2015.

4. H.J. Sander Bruggink, Barbara König, and Hans Zantema. Termination analysis
for graph transformation systems. In Proceedings of IFIP-TCS 2014, 2014.



5. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Jour-
nal of the ACM, 50(5):752–794, 2003.

6. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation—part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 1: Foundations, chapter 3. World Scientific, 1997.

7. Andrea Corradini, Barbara König, and Dennis Nolte. Specifying graph languages
with type graphs. In Proc. of ICGT ’17. Springer, 2017. LNCS, to appear.

8. Bruno Courcelle. The monadic second-order logic of graphs I. Recognizable sets
of finite graphs. Information and Computation, 85:12–75, 1990.

9. Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order
Logic, A Language-Theoretic Approach. Cambridge University Press, June 2012.

10. Juan de Lara, Roswitha Bardohl, Hartmut Ehrig, Karsten Ehrig, Ulrike Prange,
and Gabriele Taentzer. Attributed graph transformation with node type inheri-
tance. Theoretical Computer Science, 376(3):139 – 163, 2007. Fundamental Aspects
of Software Engineering.

11. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. Springer, 2006.

12. H. Ehrig, M. Pfender, and H. Schneider. Graph grammars: An algebraic approach.
In Proc. 14th IEEE Symp. on Switching and Automata Theory, 1973.

13. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. Journal of Automated Reasoning, 40:195–220, 2008.

14. Jörg Endrullis and Hans Zantema. Proving non-termination by finite automata. In
RTA ’15, volume 36 of LIPIcs, pages 160–176. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2015.

15. Laurent Fribourg and Hans Olsén. Reachability sets of parameterized rings as
regular languages. In Proceedings of Infinity ’97, volume 9 of Electronic Notes in
Theoretical Computer Science. Elsevier, 1997.

16. Alfons Geser, Dieter Hofbauer, and Johannes Waldmann. Match-bounded string
rewriting. Applicable Algebra in Engineering, Communication and Computing,
15(3–4):149–171, 2004.

17. Annegret Habel. Hyperedge Replacement: Grammars and Languages. Springer-
Verlag, 1992. LNCS 643.

18. Annegret Habel and Karl-Heinz Pennemann. Nested constraints and application
conditions for high-level structures. In Formal Methods in Software and Systems
Modeling. Essays Dedicated to Hartmut Ehrig, on the Occasion of His 60th Birth-
day, pages 294–308. Springer, 2005. LNCS 3393.

19. D. Plump. Termination of graph rewriting is undecidable. Fundamenta Informat-
icae, 33(2):201–209, 1998.

20. Arend Rensink. Canonical graph shapes. In Proc. of ESOP ’04, pages 401–415.
Springer, 2004. LNCS 2986.

21. Arend Rensink. Representing first-order logic using graphs. In Proc. of ICGT ’04,
pages 319–335. Springer, 2004. LNCS 3256.

22. Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. TOPLAS, 24(3):217–298, 2002.

23. Dominik Steenken, Heike Wehrheim, and Daniel Wonisch. Sound and complete
abstract graph transformation. In Proc. of SBMF ’11, pages 92–107. Springer,
2011. LNCS 7021.

24. Hans Zantema, Dennis Nolte, and Barbara König. Termination of term graph
rewriting. In Proc. of WST ’16 (Workshop on Termination), 2016.


	Analysis and Abstraction of Graph Transformation Systems via Type Graphs

