
Verification of Well-Structured Graph
Transformation Systems

Von der Fakultät für Ingenieurwissenschaften,
Abteilung Informatik und Angewandte Kognitionswissenschaft

der Universität Duisburg-Essen

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

genehmigte Dissertation

von

Jan Stückrath
aus

Gießen

1. Gutachterin: Prof. Dr. Barbara König
2. Gutachter: Prof. Dr. Giorgio Delzanno

Tag der mündlichen Prüfung: 2. März 2016

Abstract

The aim of this thesis is the definition of a high-level framework for verifying concurrent
and distributed systems. Verification in computer science is challenging, since models
that are sufficiently expressive to describe real-life case studies suffer from the undecid-
ability of interesting problems. This also holds for the graph transformation systems
used in this thesis. To still be able to analyse these system we have to restrict either the
class of systems we can model, the class of states we can express or the properties we
can verify. In fact, in the framework we will present, all these limitations are possible
and each allows to solve different verification problems.
For modelling we use graphs as the states of the system and graph transformation

rules to model state changes. More precisely, we use hypergraphs, where an edge may
be incident to an arbitrary long sequence of nodes. As rule formalism we use the single
pushout approach based on category theory. This provides us with a powerful formalisms
that allows us to use a finite set of rules to describe an infinite transition system.
To obtain decidability results while still maintaining an infinite state space we use the

theory of well-structured transition systems (WSTS), the main source of decidability
results in the infinite case. We need to equip our state space with a well-quasi-order
(wqo) which is a simulation relation for the transition relation (this is also known as
compatibility condition or monotonicity requirement). If a system can be seen as a
WSTS and some additional conditions are satisfied, one can decide the coverability
problem, i.e., the problem of verifying whether, from a given initial state one can reach
a state that covers a final state, i.e. is larger than the final state with respect to a
chosen order. This problem can be used for verification by giving a finite set of minimal
error states that represent an infinite class of erroneous states (i.e. all larger states). By
checking whether one of these minimal states is coverable, we verify whether an error
is reachable. The theory of WSTS provides us with a generic backwards algorithm to
solve this problem.
For graphs we will introduce three orders, the minor ordering, the subgraph ordering

and the induced subgraph ordering, and investigate which graph transformation systems
form WSTS with these orders. Since only the minor ordering is a wqo on all graphs, we

iii

Abstract

will first define so-called Q-restricted WSTS, where we only require that the chosen order
is a wqo on the downward-closed class Q. We examine how this affects the decidability
of the coverability problem and present appropriate classes Q such that the subgraph
ordering and induced subgraph ordering form Q-restricted WSTS. Furthermore, we will
prove the computability of the backward algorithm for these Q-restricted WSTS. More
precisely, we will do this in the form of a framework and give necessary conditions for
orders to be compatible with this framework. For the three mentioned orders we prove
that they satisfy these conditions. Being compatible with different orders strengthens
the framework in the following way: On the one hand error specifications have to be
invariant wrt. the order, meaning that different orders can describe different properties.
On the other hand, there is the following trade-off: coarser orders are wqos on larger
sets of graphs, but fewer GTS are well-structured wrt. coarse orders (analogously the
reverse holds for fine orders).
Finally, we will present the tool Uncover which implements most of the theoretical

framework defined in this thesis. The practical value of our approach is illustrated by
several case studies and runtime results.

iv

Acknowledgements

This thesis is the result of my work in the theoretical computer science group at the
University of Duisburg-Essen. Before I present my research I want to thank those who
supported me – directly or indirectly – with this subject.
First of all I want to thank my supervisor Prof. Dr. Barbara König for her support and

guidance while working on the research presented in this thesis. I am grateful that she
was always there when I had questions and shared her wide knowledge in different fields
of theoretical computer science with me, which lead to the many fruitful discussions we
had. In fact, the idea of combining graph transformation and well-structured transition
systems in the way presented in this thesis originates in a paper published by her and
Salil Joshi. I further pursued this idea to finally define a general framework.
I also want to thank my colleagues at the university Christoph Blume, Sander Brug-

gink, Mathias Hülsbusch, Henning Kerstan, Sebastian Küpper and Dennis Nolte for the
great working atmosphere and interesting discussions about a lot of different topics. A
special thanks goes to my officemate Sander Bruggink with whom I had the most en-
lightening discussions about programming, graph problems and mathematical “tricks” in
general. I also give my thanks to Marvin Heumüller, a student who I did not meet, but
who provided the first quick prototype of what would later become the tool Uncover.

Furthermore, I thank the computer scientists with which I have collaborated in several
publications. In particular I thank Giorgio Delzanno for our discussions about methods
of verification and how these can be applied in the context of graph transformation.
Last but not least I am grateful to my family and friends for their understanding and

support beyond my research. It is a great pleasure to know and be friends with such
wonderful people.

v

Contents

Abstract iii

Acknowledgements v

1. Introduction 1
1.1. Graph Transformation and Verification . 1
1.2. Contributions by Publication . 4
1.3. Thesis Outline . 5

2. Transition Systems 9
2.1. Basic notation . 9
2.2. General Transition Systems . 12
2.3. Well-Structured Transition Systems . 13
2.4. Q-Restricted Well-Structured Transition Systems 17

3. Graph Transformation Systems 23
3.1. Category Theory . 24
3.2. Category of Graphs . 27
3.3. Graph Transformation Systems . 30
3.4. Construction of Pushouts . 34
3.5. Construction of Pushout Complements . 36

4. Decidability Results for Graph Transformation 45
4.1. Restrictions on the Deletion and Creation of Nodes 46
4.2. Non-Deleting Graph Transformation Systems 50
4.3. General Graph Transformation Systems with Minor Rules 56
4.4. Relabelling Rules . 62

vii

Contents

4.5. Overview . 68

5. Well-Structured Graph Transformation Systems 71
5.1. Minor Ordering . 72
5.2. Subgraph Ordering . 81
5.3. Induced Subgraph Ordering . 88
5.4. Further Interesting Orders . 94

6. Backward Analysis 97
6.1. A General Backward Procedure . 97
6.2. Minor Ordering . 111
6.3. Subgraph Ordering . 114
6.4. Induced Subgraph Ordering . 119
6.5. Optimizations . 123
6.6. Universally Quantified Rules . 127
6.7. Summary . 135

7. Implementation and Case Studies 141
7.1. The Uncover Tool . 141
7.2. Termination Detection . 149
7.3. Leader Election . 152
7.4. Access Rights Management . 154
7.5. Dining Philosophers . 158
7.6. Public-Private Server Communication . 159

8. Conclusion 163
8.1. Summary . 163
8.2. Related Work . 164
8.3. Future Work . 166

A. Related Formalism 171
A.1. Petri Nets . 171
A.2. Turing Machines . 172
A.3. Minsky Machines (Two-Counter Machines) 173

B. Proofs of Chapter 3 175
B.1. Proofs of Section 3.4 . 175
B.2. Proofs of Section 3.5 . 178

C. Proofs of Chapter 6 191
C.1. Proofs of Section 6.1 . 191
C.2. Proofs of Section 6.2 . 192

viii

Contents

C.3. Proofs of Section 6.6 . 198

Bibliography 207

List of Symbols 221

Index 225

ix

Chapter
1

Introduction

1.1. Graph Transformation and Verification
Verification in computer science is a challenging task which can be performed at very
different abstraction levels ranging from hardware verification, over program verification
and verified compilers to proving correctness of protocols. Substantial research is per-
formed on all of these abstraction levels and each level is necessary to fully prove the
correctness and reliability of a complex computer system. Of course, many verification
problems are undecidable but by restricting to verifiable models, by employing algo-
rithms without guaranteed termination or by using over-approximations, good results
can be achieved.
In my research I focused on the highest abstraction level, i.e. the verification of proto-

cols or dynamic systems in general. One possibility to describe these systems are graphs
and graph transformation rules [Roz97], called graph transformation systems (GTS).
Graphs are here used to model the current state of a system and graph transforma-
tion rules are used to model state changes. Graph transformation rules are effectively a
transformation schema which can be applied to possibly infinitely many graphs and can
therefore finitely represent infinitely large transition systems.
Graph transformation systems have been used for verification in many different appli-

cation areas. In [KMP00; KMP02; KMP05] the authors model role-based access control
policies by using graphs and with the goal of proving safety properties. The same
goal is pursued in [ADR09] for directory-based consistency protocols and in [PE02] for
safety-critical systems (using invariants). Ad hoc networks and routing protocols are
modelled and analysed in [SWJ08; DSZ10; DSZ11]. For analysing pointer-manipulating
programs, data structures such as heaps are abstracted by graph transformation systems
in [HJ+15a]. In a wider context, graphs have also been used for analysing vulnerability
of computer networks [PS98; AWK02] and as so-called attack graphs representing attack

1

Chapter 1. Introduction

possibilities against such networks [OBM06]. There are also approaches to use graphs
and graph transformations for programming [AE+99; HP01] which lead to a language for
graph programs (GP) [Ste07] which was further extended to GP 2 in [Plu12]. Monadic
second-order logic has also been defined for graphs [Cou90].

In our analysis approach we use hypergraphs, a generalization of directed graphs,
where each edge need not connect only two nodes, but can be connected to an arbitrarily
long, but finite sequence of nodes. Furthermore, for rewriting we use the so-called single
pushout approach (SPO) [EH+97] based on category theoretical constructions using
partial morphisms, i.e. partial mappings from graphs to graphs. In this approach deletion
is preferred over preservation, i.e. when removing a node all incident edges are removed
as well, even if their removal was not explicitly stated in the rule. For comparison, in the
double pushout approach (DPO) [CM+97] such rule applications would be blocked. Both
approaches are thoroughly covered in the Handbook of Graph Grammars and Computing
by Graph Transformation that spans over three volumes [Roz97; EE+99; EK+99].
The basic problem we will build our framework on is the coverability problem wrt. some

order �, i.e. given two graphs G, Gf , is there a graph G′ reachable (by application of
the rules) from G such that Gf � G′? The main idea is to choose an appropriate order
� such that an error in the system can be described by a set of minimal graphs. The
order � must hence preserve the error in the sense that if some graph G is erroneous,
then all G′ � G are erroneous as well. Assume for instance a graph transformation
system modelling a multi-user access rights management system, where there are users
and objects, and users can have read or write access to objects. The graph shown in
Figure 1.1 shows an error graph, since two users having write access to the same object is
an undesired state in the system. Provided the use of an appropriate order, every graph
“containing” this graph, i.e. every larger graph, is also erroneous, since the problem
of two write access rights to the same object persists. We can prove that no error is
reachable – and thus the correctness of the system – by showing that none of the minimal
error graphs is coverable from the initial graph (or graphs). Note that this approach can
also be used to model desired states and check whether they are coverable. However,
the coverability problem only states that they can be covered, although usually one is
interested in checking whether some states will eventually be covered on all possible
paths.

U

U

O
W

W

Figure 1.1.: An undesired state in a multi-user system

2

1.1. Graph Transformation and Verification

Unfortunately, it is a well-known result that the coverability problem is undecidable
for graph transformation systems in general (see for instance [BD+12b]). To still obtain
decidability results while keeping a possibly infinite state space we use the theory of
well-structured transition systems (WSTS) [AČ+96; FS01]. These transition systems
〈S,⇒,�〉 are equipped with a partial order � on the set of states S which has to be
a well-quasi-order and a simulation relation for the transition relation, i.e. if there are
states with s1 ⇒ s2 and s1 � t1, then there is a state t2 with t1 ⇒∗ t2 and s2 � t2 (this is
called the compatibility condition). A well-quasi-order (wqo) is a transitive and reflexive
relation where there is no infinite, strictly decreasing sequence s1 � s2 � . . . and no
infinite antichain, i.e. a sequence of pairwise incomparable elements. Direct consequences
of this property are that every upward closed set wrt. to a wqo is finitely representable by
its minimal elements and that every infinite increasing sequence I1 ⊆ I2 ⊆ . . . of upward
closed set Ii becomes stationary. Together, these properties give rise to a backward
algorithm for solving the coverability problem for WSTS. The algorithm is guaranteed
to terminate due to � being a wqo and is correct due to � being a simulation relation for
⇒. There are large classes of infinite-state systems that are well-structured and therefore
can benefit from this algorithm, for instance (unbounded) Petri nets and certain lossy
systems.
The main contribution of this thesis is the investigation of well-structured graph trans-

formation systems and the application of the backward algorithm to these. This has first
been done by König and Joshi in [JK08] using the minor ordering. A graph G is a minor
of a graph G′ if G can be obtained by a sequence of node deletions, edge deletions and
edge contractions. The contraction of an edge deletes the edge and merges its incident
nodes according to an arbitrary partition on these nodes. The minor ordering is a well-
quasi-order on all graphs [RS04; RS10], but only forms a WSTS if the GTS is lossy
[JK08], i.e. messages (modelled via edges) can be removed by the GTS. In this thesis
we present a general framework (previously published in [KS14b]) which is compatible
with different orders satisfying certain constraints. So far we have shown that the mi-
nor ordering, the subgraph ordering and the induced subgraph ordering are compatible
with the framework, but additional orders such as the topological minor ordering or
the induced minor ordering [FHR12] are conceivable. Using multiple orders enhances
the approach in two ways. On the one hand error specifications have to be invariant
wrt. the order, meaning that different orders can describe different properties. On the
other hand, there is the following trade-off: coarser orders are wqos on larger sets of
graphs, but fewer GTS are well-structured wrt. coarse orders (analogously the reverse
holds for fine orders). For instance, we will later see that the minor ordering is a well-
quasi-order on all graphs, but not well-structured wrt. all graph transformation systems,
whereas the subgraph ordering is a well-quasi-order only on a restricted class of graphs,
but well-structured wrt. all graph transformation systems. If all graphs reachable by
applying rules of a graph transformation system are in the class of graphs Q on which
the chosen order is a well-quasi-order, then the coverability problem is decidable. How-

3

Chapter 1. Introduction

ever, if this is not the case, we can not simply ignore rule applications that generate
graphs outside of Q, since this will violate the compatibility condition. In that case
we can still use the backward algorithm to obtain useful partial decidability results or
apply the backward algorithm without restricting to Q. In the latter case we no longer
have a guarantee of termination, but can fully decide coverability for every terminating
instance. We will make these considerations precise by introducing Q-restricted WSTSs,
where the order need only be a wqo on Q, a subset of the state space. In general, one
wants Q to be as large as possible to obtain stronger statements. We will also present
the tool Uncover, which implements our framework for graph transformation systems,
and present some case studies we were able to verify using the tool.

1.2. Contributions by Publication
The following list shows the main publications which lead to this thesis. Their content
has been revised and extended to form the basis of several chapters.

[BD+12b] Nathalie Bertrand, Giorgio Delzanno, Barbara König, Arnaud Sangnier,
and Jan Stückrath. “On the Decidability Status of Reachability and Cov-
erability in Graph Transformation Systems”. In: Proceedings of RTA ’12.
Vol. 15. LIPIcs. Schloss Dagstuhl – Leibniz Center for Informatics, 2012,
pp. 101–116.

[DS14b] Giorgio Delzanno and Jan Stückrath. “Parameterized Verification of
Graph Transformation Systems with Whole Neighbourhood Operations”.
In: Proceedings of RP ’14. Ed. by Joël Ouaknine, Igor Potapov, and
James Worrell. Vol. 8762. LNCS. Springer, 2014, pp. 72–84.

[HJ+11] Marvin Heumüller, Salil Joshi, Barbara König, and Jan Stückrath. “Con-
struction of Pushout Complements in the Category of Hypergraphs”.
In: Selected Revised Papers from the Workshop on Graph Computation
Models (GCM 2010). Vol. 39. Electronic Communications of the EASST.
2011.

[KS12b] Barbara König and Jan Stückrath. “Well-Structured Graph Transforma-
tion Systems with Negative Application Conditions”. In: Proceedings of
ICGT ’12. Vol. 7562. LNCS. Springer, 2012, pp. 89–95.

[KS14b] Barbara König and Jan Stückrath. “A General Framework for Well-
Structured Graph Transformation Systems”. In: Proceedings of CON-
CUR ’14. Ed. by Paolo Baldan and Daniele Gorla. Vol. 8704. LNCS.
Springer, 2014, pp. 467–481.

[KS16] Barbara König and Jan Stückrath. “Well-Structured Graph Transforma-
tion Systems”. In: Information and Computation (2016). Accepted for
publication.

4

1.3. Thesis Outline

[Stü15] Jan Stückrath. “Uncover: Using Coverability Analysis for Verifying
Graph Transformation Systems”. In: Proceedings of ICGT ’15. Ed. by
Francesco Parisi-Presicce and Bernhard Westfechtel. Vol. 9151. LNCS.
Springer, 2015, pp. 266–274.

Note that some of these publications are also available as extended versions [BD+12a;
DS14a; KS14a; KS12a], containing proofs also presented in this thesis.
With [BD+12b] we published a survey on the current results for reachability and cov-

erability for graph transformation systems. Both problems are undecidable in the general
case, but we presented several subclasses for which these problems become decidable.
One of these subclasses are graph transformation systems with minor rules. Minor rules
can be either node-deleting (rules deleting a single node), edge-deleting (rules deleting
a single edge) or edge-contracting (rules deleting a single edge and merging some of
its incident nodes). If a graph transformation system contains edge-contraction rules
for each label, the coverability problem becomes decidable, and if it contains all minor
rules, the reachability problem is decidable as well. We will later obtain both results
as a consequence of applying the theory of well-structured transition systems to graph
transformation systems.
In [KS12b] we further developed the idea of using well-structured transition systems

based on the minor ordering, first introduced in [JK08]. We added negative application
conditions and presented necessary conditions for correctness as well as an adapted
backward search. In [KS14b; KS16] we further developed the idea and defined a general
framework which is also able to handle other orders, such as the subgraph and the
induced subgraph ordering. However, we had to introduce so-called Q-restricted well-
structured transition systems, since not every order is a well-quasi-order on all graphs,
an important condition for WSTS. We had to weaken this condition to also allow finer
orders, which of course also affects the decidability of coverability for these systems. We
obtained interesting partial decidability results which allow us to analyse these systems
as well. In [DS14b] we added so-called universally quantified rules to our framework
and adequately modified the backward search. Most of the framework is implemented
in the tool Uncover [Stü15] with which we analysed several case studies in several
papers. The algorithmic enumeration of pushout complement, essential for applying
rules backward, has already been investigated in [HJ+11].

1.3. Thesis Outline
In the following I will briefly summarize the content of each chapter and give some
reading advice.

Chapter 2 – Transition Systems In this chapter we will first fix some basic notations
for mathematical clarification of the subsequent chapters. Furthermore, we will

5

Chapter 1. Introduction

define the notion of ordinary as well as well-structured transition systems. The
latter will be extended to so-called Q-restricted well-structured transition systems
for which we will later show that graph transformation systems form an instance
of these. We also define the reachability and coverability problems and recall how
well-structuredness affects the decidability of these problems.
Readers familiar with the theory of well-structured transition systems can skip
most of this chapter and can limit themselves to Section 2.4 where we define
Q-restricted well-structured transition systems and state decidability results in
Theorem 2.21.

Chapter 3 – Graph Transformation Systems This chapter first introduces some basic
notions of category theory, such as pushouts and pushout complements, and proves
abstract properties for these. We then introduce two categories for graphs and de-
fine graph transformation systems as well as the application of rules based on
these categories. Finally we present constructions for pushouts and pushout com-
plements in both categories. For ease of reading, long proofs have been moved to
Appendix B.
Readers familiar with SPO graph rewriting can skip this chapter. However, the
construction of pushouts and pushout complements will be used in some proofs of
subsequent chapters.

Chapter 4 – Decidability Results for Graph Transformation An overview of decidabil-
ity of reachability and coverability for graph transformation systems is given in this
chapter. Since these problems are undecidable in general, we investigate subclasses
such as systems without node deletion and creation, non-deleting graph transfor-
mation systems and systems which contain special rules. Furthermore, we also
examine simple relabelling GTS. In Appendix A we give definitions of other well-
known computation models used for the reductions in this chapter.
This chapter relies on the notions presented in Chapter 3. Since it is an overview
chapter, it does not contain any notions or results used by later chapters.

Chapter 5 – Well-Structured Graph Transformation Systems In this chapter we will
prove that graph transformation systems can form (Q-restricted) well-structured
transition systems and introduce a general framework for such systems. We in-
vestigate three main orders which we will integrate into our framework, the minor
ordering, the subgraph ordering and the induced subgraph ordering. Further in-
teresting orders are discussed at the end.
This chapter uses some definitions of Chapters 2 and 3 and is essential for the
understanding of Chapter 6.

6

1.3. Thesis Outline

Chapter 6 – Backward Analysis The main decidability procedures of this thesis are de-
fined in this chapter. Here we introduce a specialization of the general backward
search for well-structured transition systems for graph transformation systems. We
also give necessary and sufficient correctness conditions and show that the minor
ordering, subgraph ordering and induced subgraph ordering all satisfy these condi-
tions. Furthermore, we introduce some optimizations of the backward search and
define so-called universally quantified rules for use with the subgraph ordering. For
ease of reading, some of the proofs of this chapter have been moved to Appendix C.
This chapter extensively uses results and definitions of Chapters 2, 3 and 5.

Chapter 7 – Implementation and Case Studies To prove practicality of our approach,
we implemented the framework defined in Chapters 5 and 6 in the tool Uncover.
Basic functionality and design choices of this tool are described in this chapter.
Furthermore, five different case studies using the minor and subgraph orderings
are presented to measure performance of the tool.
Although this chapter can be read independently, a good understanding of the
framework in Chapters 5 and 6 is helpful.

Chapter 8 – Conclusion Finally, in this chapter we summarize our approach and com-
pare with other existing approaches using well-structured transition systems. We
also discuss some interesting points for future extension of our framework.

For better readability a list of symbols and an index is provided at the end of this
thesis.

7

Chapter
2

Transition Systems

In the first part of this chapter I will fix some basic definitions and notations which
will be needed in this and the following chapters. The second part describes classical
well-structured transition systems and I will introduce a generalisation of these, so-called
Q-restricted well-structured transition systems.

2.1. Basic notation
2.1.1. Sets and Relations
We use N0 to denote the set of natural numbers {0, 1, 2, . . .}, including zero, and use N
to denote the natural numbers without zero. For distinction, we use A ⊆ B to denote
that A is a subset of B or equal to B and we use A ⊂ B to denote that A is a strict
subset of B, i.e A 6= B. For any n ∈ N0 we use An to denote the Cartesian product
A×A× · · · ×A of length n.

In this work binary relations R ⊆ A×A are of special interest and will later be used
to describe equivalences, orders and transition relations. A binary relation is called
reflexive if 〈a, a〉 ∈ R holds for every a ∈ A, symmetric if for every 〈a, b〉 ∈ R it also
holds that 〈b, a〉 ∈ R, antisymmetric if for every a, b ∈ A with 〈a, b〉 ∈ R and 〈b, a〉 ∈ R
it holds that a = b, and transitive if for every a, b, c ∈ A with 〈a, b〉 ∈ R and 〈b, c〉 ∈ R
it holds that 〈a, c〉 ∈ R.

We will often write relations in infix notation, i.e. we will write a R b if 〈a, b〉 ∈ R.

Definition 2.1 (Equivalence). Let A be a set. A relation ≡ ⊆ A×A is an equivalence
relation if it is reflexive, transitive and symmetric. We use [a]≡ to denote the equivalence
class of a, i.e. [a]≡ = {a′ | a ≡ a′}. We write A/≡ for the quotient set, the set of all
equivalence classes of ≡ on A.

9

Chapter 2. Transition Systems

Let R ⊆ A × A be a binary relation. We use R to denote the equivalence closure of
R, i.e. the smallest equivalence containing R.

The equivalence closure of R can be obtained by performing the reflexive closure, the
symmetric closure and the transitive closure, in this order. It always exists and is unique.

2.1.2. Sequences
Given some set A we use A∗ to denote the set of all finite sequences consisting of elements
of A. For a finite sequence usually we write s1, s2, . . . , sn or alternatively s1 ∼ s2 ∼ . . . ∼
sn to denote that two consecutive elements are related by some binary relation ∼. If the
elements of the sequence are simple objects, e.g. numbers or symbols, we use s1s2 . . . sn as
an abbreviation of the sequence s1, s2, . . . , sn. We use s[i] = si to denote the i-th element
of a sequence s as well as |s| to denote the length of s. We write infinite sequences as
s1, s2, . . . or use one of the alternative notations in the same way. Note that in some
cases for convenience we will start numbering sequences with zero instead of one.

2.1.3. Functions
We use f : A→ B to denote a (total) function mapping each element of a ∈ A to some
element of f(a) ∈ B. We call A the domain and B the codomain or image of f . Similarly
we call f(a) the image of a and say that b ∈ B has a preimage under f if there exists
an a ∈ A with f(a) = b. A function is injective if a 6= a′ implies f(a) 6= f(a′) for all
a, a′ ∈ A and it is surjective if every b ∈ B has a preimage. If a function is injective and
surjective, it is bijective.

If not stated otherwise we extend a function f : A→ B directly to sequences a1 . . . an ∈
A∗ by f(a1 . . . an) = f(a1) . . . f(an) and to tuples 〈a1, . . . , an〉 ∈ An by f(a1, . . . , an) =
〈f(a1), . . . , f(an)〉.

2.1.4. Quasi-Orders and Well-Quasi-Orders
Well-structured transition systems extensively use the theory of well-quasi-orders and
upward-closed sets, as defined below.

Definition 2.2 (Quasi-order and partial order). A quasi-order � ⊆ A×A is a transitive,
reflexive relation. A partial order is a quasi-order which is also antisymmetric.

Note that quasi-orders are sometimes also called preorders.

Definition 2.3 (Well-quasi-order). A quasi-order � is a well-quasi-order (wqo) if for
any infinite sequence a1, a2, a3, . . . of elements of A, there exist indices i < j with ai � aj .

Well-quasi-orders give rise to interesting properties, especially with respect to upward-
closed sets.

10

2.1. Basic notation

Definition 2.4 (Upward and downward closure). Let A be a set and let � be a quasi-
order on A. The upward closure of a set B ⊆ A is the set ↑B = {a ∈ A | ∃b ∈ B : b � a}.
We call a set B upward-closed if B = ↑B. A basis of an upward-closed set B is a set C
such that B = ↑C.
Analogously, the downward closure of a set B ⊆ A is the set ↓B = {a ∈ A | ∃b ∈

B : a � b}. We call B downward-closed if B = ↓B. Finally, a basis of a downward-closed
set B is a set C such that B = ↓C.

Due to Higman, a multitude of properties and definitions equivalent to Definition 2.3
exist.

Proposition 2.5 ([Hig52]). Let A be a set and let � be a quasi-order on A. The
following statements are equivalent:

(i) Every upward-closed subset of A has a finite basis, also called the finite basis prop-
erty.

(ii) For any infinite ascending sequence of upward-closed sets I1 ⊆ I2 ⊆ I3 ⊆ . . . there
exists an index k ∈ N such that Ii = Ii+1 for all i ≥ k.

(iii) If B is a subset of A, then there exists a finite set B0 such that B0 ⊆ B ⊆ ↑B0.

(iv) Every infinite sequence of elements of A has an infinite ascending subsequence.

(v) The quasi-order � is a well-quasi-order.

(vi) There exists neither an infinite strictly descending sequence of elements of A,
nor an infinite sequence of pairwise incomparable elements of A (a so-called anti-
chain).

In the literature case (vi) can often be found as an alternative definition of well-quasi-
orders. Of special interest are the cases (i) and (ii) which we will exploit later to obtain
decidability results for various problems.
There are two consequences of the properties above which are also of interest for this

work. The first is a generalization of Dickson’s Lemma and states that the lifting of a
collection of wqos to a quasi-order on tuples is also a wqo. This was proven for natural
numbers and ≤ by Dickson in [Dic13], but directly extends to general wqos.

Lemma 2.6. Let Ai with 1 ≤ i ≤ k be a (finite) family of sets and let �i ⊆ Ai×Ai with
1 ≤ i ≤ k be a family of well-quasi-orders. Then � is a well-quasi-order on A1× . . .×Ak
where 〈a1, . . . , ak〉 � 〈b1, . . . , bk〉 if and only if ai �i bi for all 1 ≤ i ≤ k.

11

Chapter 2. Transition Systems

This lemma can be easily proven by using case (iv) of Proposition 2.5. Let s =
a1, a2, a3, . . . be an infinite sequence, where ai = 〈ai,1, . . . , ai,k〉 for every i. We can
form the sequence a1,1, a2,1, . . . by taking only the first component of every tuple. Since
�1 is a wqo, there is an infinite ascending subsequence aj1,1 �1 aj2,1 �1 . . . leading to an
infinite sequence s1 = aj1 , aj2 , . . ., which is a subsequence of s and increasing in the first
component. This step can be repeated for every component proving that s has an infinite
ascending subsequence and which in turn shows that � is a wqo by Proposition 2.5.

Another interesting result is that sequences of well-quasi-ordered elements can also be
well-quasi-ordered by a “disconnected subsequence” relation. This generalizes Higman’s
Lemma [Hig52] which states the result for languages over a finite alphabet.

Lemma 2.7. Let � be a well-quasi-order on a set A. The order �∗ is a well-quasi-order
on A∗, where a1 . . . ak �∗ b1 . . . b` with k ≤ ` if and only if there are j1 < j2 < . . . < jk
such that ai = bji for 1 ≤ i ≤ k.

This lemma can be proven by the same ideas used for the previous lemma. The proof
and additional similar properties can be found in [SS12].

2.2. General Transition Systems
A transition system is generated naturally when modelling state-based systems, such as
algorithms or protocols. Our main focus lies on the analysis of infinite state systems, for
which we will address reachability problems.

Definition 2.8 (Transition system). A transition system is a pair 〈S,⇒〉, where S is a
(possibly infinite) set of states and ⇒ ⊆ S × S is the transition relation.

In the following we will often be interested in arbitrary (but finitely) long sequences of
transitions. For this we use ⇒∗ to denote the transitive closure of ⇒, i.e. s⇒∗ s′ if and
only if there exists a sequence of transitions s ⇒ s1 ⇒ · · · ⇒ sn ⇒ s′. Moreover, as an
extension of ⇒ to sets of states, we introduce successor and predecessor sets. For any
I ⊆ S the set Succ(I) = {s′ ∈ S | s ∈ I ∧ s ⇒ s′} is the set of direct successors of I
and Pred(I) = {s′ ∈ S | s ∈ I ∧ s′ ⇒ s} is the set of direct predecessors of I. Finally,
we denote the sets of indirect successors and predecessors by Succ∗(I) = {s′ ∈ S | s ∈
I ∧ s ⇒∗ s′} and Pred∗(I) = {s′ ∈ S | s ∈ I ∧ s′ ⇒∗ s}, respectively. The problem of
computing indirect successors is often called the reachability problem.

Definition 2.9 (Reachability problem). Let 〈S,⇒〉 be a transition systems. The reach-
ability problem is the question whether, given two states s, s′ ∈ S, does s ⇒∗ s′ hold,
i.e. is s′ ∈ Succ∗({s})? If such a sequence of transitions exist we say that s′ is reachable
from s, or s can reach s′.

12

2.3. Well-Structured Transition Systems

A problem similar to reachability is the coverability problem, where the state s′ need
not be reachable, but some other state “containing” s′. Effectively we want to check if
some state of a set of states is reachable instead of just a particular state. This set of
states is modelled by a quasi-order in the sense that a state is in the set if and only if it
is larger than s′ according to the order.
Definition 2.10 (Coverability problem). Let 〈S,⇒〉 be a transition systems and let
� ⊆ S × S be a quasi-order. The coverability problem is the question whether, given
two states s, s′ ∈ S, does there exist a state s′′ with s⇒∗ s′′ and s′ � s′′? If such an s′′
exists, we say that s′ is coverable by s, or s can cover s′.
Reachability and coverability are crucial problems in the context of verification of safety
properties in different formalisms, such as Petri nets [Mur89], the π-calculus [Mil82;
SW01] or graph transformation systems [Roz97].
The reachability problems is decidable for basic Petri nets as first shown by Mayr

in [May81] and revisited by Leroux in the context of vector addition systems [Ler11].
The decidability of the coverability problem has been shown by Karp and Miller [KM69]
for Petri nets and by Rackoff for vector addition systems [Rac78]. In fact, Dufourd et
al. showed that this result also holds for Petri nets with reset and transfer arcs, where
reachability is undecidable, but both problems are undecidable if inhibitor arcs are used
[DFS98].
Since the general π-calculus and unrestricted graph transformation systems are Turing-

complete, reachability and coverability are both undecidable. For depth-bounded pro-
cesses, a restriction of the π-calculus, Meyer showed the decidability of coverability
[Mey09], in this context called control reachability problem. In this work we will show
similar decidability results for fragments of graph transformation systems.
The majority of the results above come from the fact that the described systems, or

fragments thereof, are so called well-structured transition systems. These systems nat-
urally possess necessary properties for the existence of an algorithm for the coverability
problem. Note that there are other interesting verification problems such as termina-
tion or boundedness for which the theory of well-structured transition systems may be
used as well. However, this work will focus on the coverability problem and only briefly
discuss extensions to other problems.

2.3. Well-Structured Transition Systems
In this section I will present the theory of well-structured transition systems as intro-
duced independently by Finkel and Schnoebelen [FS01] as well as Abdulla et al. [AČ+96].
These well-structured transition systems equip a transition system with a well-quasi-
order and require the transition system to be monotonic wrt. the wqo. Larger states
have to be able to simulate smaller states in the sense that every transition from the
smaller state can be imitated by a sequence of transitions from the larger state.

13

Chapter 2. Transition Systems

Definition 2.11 (Well-structured transition system). Let S be a set of states and let
� be a quasi-order. A well-structured transition system (WSTS) is a transition system
〈S,⇒,�〉, where the following conditions hold:

Ordering: � is a well-quasi-order.

Compatibility: For all s1 � t1 and transitions s1 ⇒ s2, there exists
a sequence t1 ⇒∗ t2 of transitions such that s2 � t2.

t1 t2

s1 s2

� �

*

Example 2.12. Petri nets [Mur89] are one of the most well-known formalisms for mod-
elling concurrent systems and a widely used example of a well-structured transition
system. It is easy to see that ≤ is a well-quasi-order on N0, since every upward-closed
set of natural numbers has exactly one minimal element (see Proposition 2.5). By Dick-
son’s Lemma (Lemma 2.6) it immediately follows that the usual order on markings is
also a well-quasi-order. The compatibility condition is satisfied due to the even stronger
monotonicity of Petri nets by which adding tokens to a marking does not deactivate a
previously active transition. In fact, the transition fired in the step s1 ⇒ s2 can be fired
from the marking t1 to obtain a valid t2 in just one step. This still holds when reset and
transfer arcs are used, but inhibitor arcs violate the compatibility condition [DFS98],
since they can be used to model negative application conditions.

2.3.1. A Backward Search for Solving Coverability
The two properties of Definition 2.11 can be used to obtain decidability for several
problems. The most important wrt. to this work is the coverability problem and we will
state necessary conditions for a backward algorithm to exist for this problem.
We observe that due to � being a well-quasi-order the finite basis property holds,

i.e. every upward-closed set is finitely representable by its minimal elements (see Propo-
sition 2.5 case (i)). Let S′ ⊆ S be an upward-closed set of states and let S′f be a finite
basis of S′, i.e. ↑S′f = S′. Although Pred(↑S′f) is not necessarily an upward-closed set,
we can prove that ↑Pred(↑S′f) ⊆ Pred∗(↑S′f). For every t ∈ ↑Pred(↑S′f) there is an
s ∈ Pred(↑S′f) with s � t and s ⇒ s′ for some s′ ∈ ↑S′f , thus, by the compatibility
condition there exists a t′ with t ⇒∗ t′ and s′ � t′. By transitivity t′ is an element of
↑S′f implying t ∈ Pred∗(↑S′f). In fact, by using this argument inductively we can show
that Pred∗(↑S′f) itself is upward-closed for every set S′f .
This proves that the set of direct predecessors is finitely representable. However, for

a backward algorithm to exist the predecessors have to be computable as well, i.e. a
so-called effective pred-basis must exist.

Definition 2.13 (Effective pred-basis). A WSTS has an effective pred-basis if there
exists an algorithm accepting any state s ∈ S and returning pb(s), a finite basis of
↑Pred(↑{s}).

14

2.3. Well-Structured Transition Systems

As shown by Finkel and Schnoebelen as well as Abdulla et al. the existence of an effective
pred-basis is one of two conditions which are together sufficient for the coverability
problem to be decidable.

Theorem 2.14 ([FS01; AČ+96]). The coverability problem is decidable for WSTS with
an effective pred-basis and a decidable wqo �.

The decision procedure implied by Theorem 2.14 is an iterative backward search for
which the correctness is guaranteed by the compatibility condition and termination is
guaranteed by � being a wqo.

Algorithm 2.15 (General backward search for WSTS).
Input: A well-structured transition system T = 〈S,⇒,�〉 with an effective pred-basis
pb() and a finite set of states S′ ⊆ S.
Output: A finite basis of the set of all states from which a state of S′ is coverable.
1: Wold ← ∅
2: Wnew ← S′

3: while ↑Wold 6= ↑Wnew do
4: Wold ←Wnew
5: for all s ∈Wold do
6: Wnew ←Wnew ∪ pb(s)
7: end for all
8: end while
9: return Wold

We observe that all steps in Algorithm 2.15 are computable, because the involved sets
Wnew , Wold , S′ and pb(s) are always finite. The condition in line 3 is decidable as well,
since it is satisfied if and only if: for all s ∈ Wold there is an s′ ∈ Wnew with s′ � s
and for all s ∈ Wnew there is an s′ ∈ Wold with s′ � s. Note that this requires � to be
decidable.
The termination of the algorithm is guaranteed by the fact that � is a wqo. In every

iteration of the while-loop a new Wnew is computed, which is larger or equal to the
previous Wnew (stored in Wold). Effectively, a sequence of working sets W1,W2,W3, . . .
is computed where W1 = S′ and Wi+1 = Wi ∪ pb(Wi) (we extended pb() to sets of
states in the straight-forward way). The sequence ↑W1, ↑W2, ↑W3, . . . is increasing and
becomes stationary due to case (ii) of Proposition 2.5 at some index k ∈ N, thus, the
condition in line 3 will be violated after at most k iterations.
A simple argument can be used to prove the correctness of this algorithm. We observe

that if a state t1 can cover a state t ∈ S′, then there exists a sequence t1 ⇒ t2 ⇒ . . .⇒ tm
with t � tm, i.e. t1 can cover t in m steps. Since pb(t) is a finite basis of ↑Pred(↑{t})
and tm−1 ∈ Pred(↑{t}), we know that tm−1 ∈ ↑pb(t). By iterating this argument we can

15

Chapter 2. Transition Systems

show that t1 will be in the upward closure of a computed working set after at most m
steps, thus, being also represented by the final working set.
On the other hand, for every state s′0 ∈ ↑W∗, where W∗ is the working set returned

by Algorithm 2.15, there is a sequence of backward steps generating states s sn
sn−1 . . . s1 with s1 � s′1 (see Figure 2.1). We use si+1 si to denote a backward
step, i.e. si ∈ pb(si+1) holds. For every 1s ≤ i ≤ n it is guaranteed that there is an
s′i+1 with si ⇒ s′i+1 and si+1 � s′i+1, where sn+1 = s and s′n+1 = s′. By applying the
compatibility condition at each backward step, we can show the existence of an s′′ with
s′1 ⇒∗ s′′ and s � s′′, as shown in Figure 2.1. Hence, s′1 can cover s.

s1 s2 sn s

s′1 s′2 s′n s′

� � � �

s′′2 s′′n s′′*
* *

� � �

Figure 2.1.: Shows how the compatibility condition ensures the correctness of the back-
ward search

Note that if we want to solve the coverability problem for some specific s ∈ S, we can
stop the algorithm as soon as s ∈ ↑Wi for some i. Since ↑Wi ⊆ ↑Wi+1 it is guaranteed
that s ∈ ↑W where W is the result returned by the algorithm.

Complexity of the Backward Search

The exact complexity of Algorithm 2.15 depends highly on the concrete WSTS to which
it is applied. Although this field is not extensively researched yet, there are results
of Schmitz and Schnoebelen [SS13] showing non-primitive recursive upper-bounds for
termination and coverability and even some non-primitive recursive completeness results.
However, in specific WSTS the complexity may be better, e.g. for vector addition systems
[BG11]. Despite these results we will show in Chapter 7 that the runtimes in practice
are better than expected.

2.3.2. Forward Approaches to Coverability
This work focuses mainly on the backward approach to solve coverability, which is pleas-
ant because of its simplicity, but forward search based algorithms also exist. One of the
first was the Karp and Miller algorithm for Petri nets [KM69], which introduces limit
elements and accelerates paths in the reachability tree to achieve termination. The idea
was extended to general well-structured transition systems in the form of the Expand,
Enlarge and Check (EEC) algorithm [GRV06]. One problem of the forward algorithm is

16

2.4. Q-Restricted Well-Structured Transition Systems

that it uses not just upward-closed sets of states, but also downward-closed sets, which
are not necessarily finitely representable, even for WSTS. This problem is solved by
the introduction of a so-called adequate domain of limits, which have to be found for
each concrete WSTS. However, there are approaches of Finkel and Goubault-Larrecq
to determine these limits by ideal completion [FG09a; FG09b]. These algorithms have
already been applied to the π-calculus [WZH10] and even to graph transformation sys-
tems [BK+13], but these techniques are currently still incomplete in the sense that they
either do not guarantee termination or are approximating.
It is worth noting that the forward and backward algorithms are not fully comparable.

The backward algorithm computes the upward-closed set of all states from which a given
state is coverable, yielding a stronger result that just solving the coverability problem
as defined in Definition 2.10. The analogous result of the forward algorithm would be
the covering set, the downward-closed set of states which are coverable from a given set
of states. However, this covering set is not necessary computable, even if coverability is
decidable, as shown for depth-bounded systems [BK+13].

2.4. Q-Restricted Well-Structured Transition Systems
In Chapters 5 and 6 we will observe that the basic definition of well-structured transition
systems, as described in the previous section, is not sufficient for defining a general
framework for graph transformation systems. The problem is that we use different
orders, which are not necessarily a wqo on the complete set of states, but only on a
restricted set. We cannot simply restrict ourselves to these sets of states, since this
would likely violate the compatibility condition. Thus, we introduce a weaker definition
of Q-restricted well-structured transition systems in [KS14a; KS14b] and studied the
decidability of coverability in this new setting.

Definition 2.16 (Q-Restricted well-structured transition system). Let S be a set of
states, let � ⊆ S×S be an quasi-order on S and let Q be a downward-closed subset of S
wrt. �, where membership is decidable. A Q-restricted well-structured transition system
(Q-restricted WSTS) is a transition system 〈S,⇒,�〉, where the following conditions
hold:

Ordering: � is a quasi-order on S and a wqo on Q.

Compatibility: For all s1 � t1 and transitions s1 ⇒ s2, there exists
a sequence t1 ⇒∗ t2 of transitions such that s2 � t2.

t1 t2

s1 s2

� �

*

We use ⇒Q to denote the restricted transition relation ⇒Q = (⇒∩Q×Q).

These Q-restricted WSTS are a generalization of WSTS and are identical to classical
WSTS if Q = S. We will show that decidability results differ, but that Algorithm 2.15

17

Chapter 2. Transition Systems

can still be applied if some necessary conditions are met.
We observe that for Q-restricted WSTS there are two coverability problems of interest.

In this context we will call the coverability problem as defined in Definition 2.10 the
general coverability problem to distinguish it from the restricted coverability problem,
which is the question whether a state s can be covered only by transitions within Q.

Definition 2.17 (Restricted coverability problem). Let 〈S,⇒,�〉 be a Q-restricted
WSTS. The restricted coverability problem is the question whether, given two states
s, s′ ∈ Q, does there exist a state s′′ ∈ Q with s⇒∗Q s′′ and s′ � s′′? If such an s′′ exists,
we say that s′ is coverable within Q by s.

Both coverability problems are undecidable in the general case. For the general coverabil-
ity problem this follows from the fact that the problem corresponds to the coverability
problem of general transition systems if Q = ∅, which is undecidable for instance for
graph transformation systems. The restricted coverability problem is undecidable, be-
cause it is possible to encode inhibiting conditions by using the restricting set Q. Even
if inhibiting conditions are not directly expressible by the transition system, one can en-
sure that an inhibiting condition is violated if and only if a state not in Q was reached.
We show how this can be done for graph transformation systems in Proposition 5.18.
For any I ⊆ Q the restriction to Q gives rise to a new notion of a Q-restricted direct

successor set SuccQ(I) = Succ(I) ∩ Q = {s′ ∈ Q | s ∈ I ∧ s ⇒Q s′} and a Q-restricted
indirect successor set Succ∗Q(I) = {s′ ∈ Q | s ∈ I ∧ s ⇒∗Q s′}. Note that Succ∗(I) ∩ Q
and Succ∗Q(I) are not necessarily equal, since Succ∗Q(I) only contains states which are
reachable by a sequence of transitions where every intermediate state reached is an
element of Q.
We also introduce the notion of a Q-restricted direct predecessor set, but in a slightly

different way as PredQ(I) = Pred(I) ∩ Q = {s′ ∈ Q | s ∈ I ∧ s′ ⇒ s} for I ⊆ S. We
will see that this more general definition is necessary for transferring results for WSTS
to Q-restricted WSTS. It is worth pointing out that ↑PredQ(I) usually contains states
not in Q, but is still finitely representable – even if ↑Pred(I) is not – because � is a
wqo on Q. Effectively, in our algorithms we will not restrict our state space to Q, but
only require that the minimal elements to represent upward-closed sets are elements of
Q. This also gives rise to the so-called effective Q-pred-basis, which is a strictly stronger
effective pred-basis.

Definition 2.18 (Effective Q-pred-basis). A Q-restricted WSTS has an effective Q-
pred-basis if there exists an algorithm accepting any state q ∈ Q and and returning
pbQ(q), a finite basis of ↑PredQ(↑{q}).

In the following lemma we show that Definition 2.18 is really a stricter condition than
Definition 2.13.

Lemma 2.19. Let T be a Q-restricted WSTS. If T has an effective pred-basis pb(), it
also has an effective Q-pred-basis pbQ() with pbQ(q) = pb(q) ∩Q for q ∈ Q.

18

2.4. Q-Restricted Well-Structured Transition Systems

Proof. Let pbQ(q) = pb(q) ∩ Q for q ∈ Q. Since membership is decidable for Q and
pb() is effective, pbQ() is effective as well. Thus, we only have to show that pb() finitely
represents the restricted predecessors, i.e. ↑PredQ(↑{q}) = ↑pbQ(q) holds for every q ∈ Q.
We can show that pbQ(q) is a subset of ↑PredQ(↑{q}) by the following implications,

using mainly the downward closure of Q and the properties of pb().

x ∈ pbQ(q) =⇒ x ∈ pb(q)
=⇒ x ∈ ↑pb(q)
=⇒ x ∈ ↑Pred(↑{q})
=⇒ ∃x′ : (x′ � x ∧ x′ ∈ Pred(↑{q}))
x∈Q=⇒ ∃x′ : (x′ � x ∧ x′ ∈ PredQ(↑{q}))
=⇒ x ∈ ↑PredQ(↑{q})

Furthermore, the same argument can be used for the other direction, finally proving
↑PredQ(↑{q}) = ↑pbQ(q).

x ∈ ↑PredQ(↑{q}) =⇒ ∃x′ ∈ Q : (x′ � x ∧ x′ ∈ PredQ(↑{q}))
=⇒ ∃x′ ∈ Q : (x′ � x ∧ x′ ∈ Pred(↑{q}))
=⇒ ∃x′ ∈ Q : (x′ � x ∧ ∃x′′ : (x′′ � x′ ∧ x′′ ∈ pb(q)))
x′∈Q=⇒ ∃x′ ∈ Q : (x′ � x ∧ ∃x′′ : (x′′ � x′ ∧ x′′ ∈ pbQ(q)))
=⇒ ∃x′ ∈ Q : (x′ � x ∧ x′ ∈ ↑pbQ(q))
=⇒ x ∈ ↑pbQ(q)

We can apply Algorithm 2.15 to Q-restricted WSTS in two different variants. If an
effective pred-basis exists, the unchanged algorithm can be used to solve the general
coverability problem. However, it is not guaranteed to terminate, but is correct if it
terminates. On the other hand, if an effective Q-pred-basis exists, we can apply the
algorithm while calling pbQ() instead of pb() in line 6 of the algorithm. We can prove
that the algorithm will terminate, although it only partially solves the general and the
restricted coverability problem.

Lemma 2.20. Let T be a Q-restricted WSTS with an effective Q-pred-basis pbQ() and
let F ⊆ Q be a finite set. Algorithm 2.15 terminates for the input T and F , if pbQ() is
used instead of an effective pred-basis.

Proof. Let W1 = F , then Algorithm 2.15 computes the sequence W1,W2,W3, . . . with
Wi+1 = Wi ∪ pbQ(Wi) for i ∈ N. Since � is a wqo on Q, it is guaranteed that the
increasing sequence (↑W1 ∩ Q) ⊆ (↑W2 ∩ Q) ⊆ (↑W3 ∩ Q) ⊆ . . . becomes stationary,

19

Chapter 2. Transition Systems

i.e. ↑Wn ∩Q = ↑Wn+1 ∩Q for some n ∈ N. We can use this to show that the sequence
↑W1 ⊆ ↑W2 ⊆ ↑W3 ⊆ . . . becomes stationary as well. Assume ↑Wn 6= ↑Wn+1, more
precisely ↑Wn ⊂ ↑Wn+1. Then there is a q ∈Wn+1 which is not in ↑Wn. Without loss of
generality due to the upward closure we can assume that q is a minimal element ofWn+1
(otherwise we could take the minimal element which is smaller). By definition pbQ(Wi) ⊆
Q and therefore Wn+1 ⊆ Q and q ∈ Q. However, this violates our assumption, since
q /∈ (↑Wn ∩ Q) 6= (↑Wn+1 ∩ Q) 3 q and the first sequence would not have become
stationary at the index n. Thus, the sequence ↑W1 ⊆ ↑W2 ⊆ ↑W3 ⊆ . . . becomes
stationary and the termination condition of Algorithm 2.15 is satisfied at some point.

Using the non-terminating variant of Algorithm 2.15 and the terminating variant existing
according to Lemma 2.20 we can state partial decidability results for both coverability
problems.

Theorem 2.21 (Coverability problems). Let T = 〈S,⇒,�〉 be a Q-restricted WSTS
with a decidable order �.

(i) If T has an effective pred-basis and S = Q, the general and restricted coverability
problems coincide and both are decidable.

(ii) If T has an effective Q-pred-basis, the restricted coverability problem is decidable
if Q is closed under reachability.

(iii) Let Q′ ⊆ Q be a finite set. If T has an effective Q-pred-basis and applying Al-
gorithm 2.15 to Q′ using the effective Q-pred-basis returns the set W , then: if
s ∈ ↑W , then s can cover a state of Q′ in ⇒ (general coverability). If s /∈ ↑W ,
then s can not cover a state of Q′ in ⇒Q (no restricted coverability).

(iv) Let S′ ⊆ S be a finite set. If T has an effective pred-basis and Algorithm 2.15
applied to S′ terminates and returns the set W , then: a state s can cover a state
of S′ if and only if s ∈ ↑W .

Proof. Case (i) is just a reformulation of the decidability results for WSTS in Theo-
rem 2.14.
Case (ii) is similar, since the restricted coverability problem corresponds to the cover-

ability problem of the transition system TQ = 〈Q,⇒Q,�∩Q×Q〉. Because T is closed
under reachability, TQ satisfies the compatibility condition and is in fact a WSTS.
We now consider case (iii) where Q is not required to be closed under reachability.

Let W1,W2,W3, . . . with Q′ = W1 be the sequence computed by Algorithm 2.15 using
pbQ() and let n ∈ N be the smallest index such that ↑Wn = ↑Wn+1, which is guaranteed
to exist due to Lemma 2.20. Assume that s ∈ ↑Wn. By induction we show the existence
of a sequence of transitions leading from s to some state in ↑W1. Obviously there is an
qn ∈ Wn with qn � s and by definition either qn ∈ Wn−1 or there is a qn−1 ∈ Wn−1

20

2.4. Q-Restricted Well-Structured Transition Systems

and a q′n−1 ∈ S with qn ⇒ q′n−1 and qn−1 � q′n−1. In the latter case, because of the
compatibility condition there is a q′′n−1 ∈ S with s ⇒∗ q′′n−1 and qn−1 � q′n−1 � q′′n−1,
i.e. s can reach an element of ↑Wn−1. Since this argument holds for q′′n−1 as well, the
state s can ultimately reach a state q′′1 ∈ ↑W1. Note that it is possible that s = q′′1 , but
it is not guaranteed that q′′i ∈ Q for every i.
For the other statement assume that s /∈ ↑Wn and assume that there exists a path

s = q1 ⇒Q q2 ⇒Q . . .⇒Q qk ∈ ↑W1. Note that the second assumption is trivially false,
if s /∈ Q. We can show by induction and by definition of pbQ() that qi ∈ ↑Wk−i and
hence q1 ∈ ↑Wk ⊆ ↑Wn, which leads to a contradiction.
The proof of case (iv) is straightforward by observing that the set W is an exact

representation of all predecessors of S′.

21

Chapter
3

Graph Transformation Systems

Graphs have established themselves as an intuitive and powerful modelling language for
concurrent or distributed systems and have been used for very different topologies. The
introduction of graph transformations enables the modelling of dynamic changes to the
topology or the system in general. This induces a transition system, where states are
graphs and state changes are modelled by transformation rules of some kind. These
transformation systems are usually finite, although their induced transition system may
be infinite, as we will see later.
Over the years several different notions of graph transformations have been defined.

The algorithmic approaches such as [Nag79; Göt88] directly define how rules are applied,
while algebraic approaches such as [EPS73; Ros75] or [BC87] (using also logical concepts)
focus on generalized rewriting definitions applied to graphs. There are also purely logical
approaches where graphs are modelled by predicates [Cou90]. In many approaches edge
labels – besides the graph structure itself – play an important role for defining which
transformations are possible (e.g. hyperedge replacement systems [Hab92]), but there
are also so-called node-label controlled graph grammars [ER97]. A good overview is
given in the Handbook of Graph Grammars and Computing by Graph Transformation
series [Roz97; EE+99; EK+99] with the latter two volumes focusing on applications and
concurrency.
In this thesis I use an algebraic approach based on categorical constructions [EE+06]

as foundation of graph transformation, the so-called single pushout approach [EH+97].
I will first introduce the necessary categorical notions (Section 3.1) and then concretize
the constructions for our notion of graphs (Section 3.2).

23

Chapter 3. Graph Transformation Systems

3.1. Category Theory
Category theory aims to generalize concepts and to provide a high-level description in
which properties are proved. The results can then be used in any concrete category
(satisfying the necessary properties).

Definition 3.1 (Category). A category C consists of:

• a class of C-objects,

• a class of C-arrows (later called morphisms),

• two functions dom and cod assigning to each C-arrow f : A → B the domain
dom(f) = A and the codomain cod(f) = B, which are both C-objects,

• a composition operator ◦ assigning to each two C-arrows f and g with cod(f) =
dom(g) the composed C-arrow g ◦ f : dom(f)→ cod(g) satisfying the following:
– for every three C-arrows f : A → B, g : B → C and h : C → D it holds that
h ◦ (g ◦ f) = (h ◦ g) ◦ f and,

– for every two C-object A, B there are identity C-arrows idA : A → A and
idB : B → B such that for every C-arrow f : A→ B it hold that idB ◦ f = f
and f ◦ idA = f .

For two C-objects we use C(A,B) to denote the class of all C-arrows f with dom(f) = A
and cod(f) = B.

Example 3.2. One of the simplest categories is the category Set where the objects
are sets and the arrows are total functions. It is easy to show that Set satisfies the
properties of Definition 3.1. The domain and codomain of each arrow are the domain
and codomain of the function and the composition operator is the standard composition
of functions.
A more complex category it the category of hypergraphs which we will introduce in

Section 3.2.

A special kind of arrows, which we will often use, are isomorphisms. These can be
formalized for arbitrary categories in the following way.

Definition 3.3 (Isomorphism). Let C be a category and let f : A → B be an arrow.
We call f an isomorphism if there exists an arrow g : B → A such that f ◦ g = idB and
g ◦ f = idA.

Also important for this work is the notion of commuting diagrams in a category. In fact,
in our proofs we will extensively show and use that specific diagrams commute.

24

3.1. Category Theory

Definition 3.4 (Diagram). A diagram in a category C is a subclass of C-objects O
and a subclass of C-arrows A, where for every f ∈ A it holds that dom(f) ∈ O and
cod(f) ∈ O.
We say that the (whole) diagram commutes if for every two sequences of compositions

f1◦. . .◦fn and g1◦. . .◦gm of arrows of A with dom(fn) = dom(gm) and cod(f1) = cod(g1)
it holds that f1 ◦ . . . ◦ fn = g1 ◦ . . . ◦ gm.

Example 3.5. An example of a diagram can be seen in Figure 3.1. The diagram
commutes if and only if f1 = f4 ◦ f3 ◦ f2 = f6 ◦ f5 holds.

A B

C D

E

f2

f1 f3
f4

f5

f6

Figure 3.1.: A diagram consisting of objects {A,B,C,D,E} and arrows {f1, . . . , f6}

A special form of diagram is the pushout diagram which will later serve as the base
construction for rewriting a graph. A pushout is especially suitable for this purpose,
since it generalizes the disjoint union of the codomain of two arrows.

Definition 3.6 (Pushout). Let C be a category and let f : A→ B, g : A→ C be arrows
of C as shown in Figure 3.2. The pushout of f and g is the triple 〈D, f ′, g′〉 consisting
of the pushout object D and two arrows f ′ : C → D, g′ : B → D such that the following
conditions are satisfied:

• the diagram commutes, i.e. g′ ◦ f = f ′ ◦ g, and

• for every other object D′ with arrows f ′′ : C → D′ and g′′ : B → D′ such that
g′′ ◦ f = f ′′ ◦ g there is a unique arrow h : D → D′ (up to isomorphism) such that
the diagram commutes, i.e. f ′′ = h ◦ f ′ and g′′ = h ◦ g′.

A pushout defines a unique way to “close” a diagram. Requiring the existence of h, in
the following often called mediating arrow, guarantees that the pushout is unique up to
isomorphism if it exists. It also ensures that D is more universal than any other object
D′ which is part of a commuting square (but no pushout).
There are a few general properties of pushouts (in any category) which we will use

frequently in proofs in later chapters. These results are well-known (see [Mac78; Pie91;
LS04]), but due to their importance we restate them in Lemma 3.7.

Lemma 3.7 ([LS04]). Let C be a category and let A,B,C,D,E, F be objects with arrows
as given in the diagram in Figure 3.3. The following two statements are true:

25

Chapter 3. Graph Transformation Systems

A B

C D

f

g g′

f ′

A B

C D

D′

f

g g′

f ′

f ′′

g′′

h

Figure 3.2.: A pushout square (on the left) including the mediating morphism (on the
right)

• If 〈E, f ′, g′〉 is the pushout of f , g (left square) and 〈F, j′, g′′〉 is the pushout of j,
g′ (right square), then 〈F, j′ ◦f ′, g′′〉 is the pushout of j ◦f and g (outer rectangle).

• If 〈E, f ′, g′〉 is the pushout of f , g (left square), 〈F, j′◦f ′, g′′〉 is the pushout of j ◦f
and g (outer rectangle) and the diagram commutes, then 〈F, j′, g′′〉 is the pushout
of j, g′ (right square).

A B C

D E F

f j

g g′ g′′

f ′ j′

Figure 3.3.: Diagram showing all arrows of Lemma 3.7

The previous lemma leads to a third property we will need in our proofs.

Lemma 3.8. Let C be a category and let A,B,C,D, F be objects with the arrows
f, j, g, g′′ as shown in the diagram in Figure 3.3 and the arrow k : D → F , such that
〈F, k, g′′〉 is the pushout of j ◦f and g (outer rectangle). If the pushout of f and g exists,
then there is a unique way to split k into morphisms f ′ and j′ such that 〈E, f ′, g′〉 is the
pushout of f , g (left square) and 〈F, j′, g′′〉 is the pushout of j, g′ (right square).

Proof. Let 〈E, f ′, g′〉 be the pushout of f and g (which is unique). Since g′′ ◦ j ◦f = k ◦g
commutes, by Definition 3.6 there is a unique mediating arrow j′ : E → F , commuting
with the diagram. By Lemma 3.7 the right square is a pushout, since the left square
and the outer rectangle are both pushouts.

26

3.2. Category of Graphs

Another important concept for graph rewriting is the notion of pushout complements.
These are especially important for applying rules backwards and thus essential for com-
puting Algorithm 2.15.

Definition 3.9 (Pushout complement). Let C be a category and let f : A → B and
g′ : B → D be two arrows (as shown in Figure 3.2). A pushout complement of f and g′
is the triple 〈C, g, f ′〉 with arrows g : A → C and f ′ : C → D such that 〈D, f ′, g′〉 is a
pushout of f and g.

Neither the existence nor the uniqueness of pushout complements is guaranteed, even in
categories where both holds for pushouts, but we will state sufficient conditions for it to
exists in the category of graphs.

3.2. Category of Graphs
The hypergraphs used in this thesis are a generalization of directed graphs. They consist
of a set of (unlabelled) nodes which are connected by labelled hyperedges. A hyperedge
can be connected to an arbitrary large, but finite, number of nodes and can also be
connected to the same node multiple times. This class of graphs is very suitable for
modelling, since not just binary but also n-nary relations can be modelled directly by
corresponding hyperedges. Furthermore, many decidability results for directed graphs
can be extended to hypergraphs.

Definition 3.10 (Hypergraph). Let Λ be a finite set of (edge) labels and let ar : Λ →
N0 be a function that assigns an arity to each label. A (Λ-)hypergraph is a tuple
〈VG, EG, cG, lG〉 where VG is a finite set of nodes, EG is a finite set of edges, cG : EG → V ∗G
is a connection function and lG : EG → Λ is the labelling function for edges. We require
that |cG(e)| = ar(lG(e)) for each edge e ∈ EG.

We say that an edge e is incident to a node v (and vice versa) if v occurs at least once
in cG(e). We call two nodes adjacent if there is an edge incident to both and we call two
edges adjacent if there is a node incident to both.

As abbreviation we will write x ∈ G instead of x ∈ VG ∪ EG and will use V , E, c and l
when the corresponding graph is unambiguously determined. Additionally, we will refer
to hypergraphs simply as graphs, since the main results of this thesis are all stated for
hypergraphs. In some places we also use directed graphs, which are hypergraphs, where
every edge has the arity two, i.e. |ar(`)| = 2 for every label ` ∈ Λ. However, we will use
directed graphs also to denote hypergraphs where every arity is at most two, since edges
with arity zero or one can be easily modelled by loops.
In the following we will often refer to the class of all graphs with a fixed label set Λ

and denote this by G(Λ).

27

Chapter 3. Graph Transformation Systems

Example 3.11. A visual representation of some graphs is shown in Figure 3.4. In
general we depict edges of arity at least three (e.g. the A-labelled edge) by a rounded
rectangle containing the label and a numbered connection to all incident nodes, showing
their position in the node sequence. In examples we will often use binary edges (e.g. the
B-labelled edge), which we draw for simplicity by an arrow pointing from the first
element in the node sequence to the second element. Unary and zero edges are drawn
as shown by the C- and D-labelled edges respectively. For visual clarity we may omit
the numberings of nodes, if they are of little interest for the specific example.

A

1 2

3 4

B B
C

D

Figure 3.4.: Visual representation of a hypergraph, containing general hyperedges (A),
binary edges (B), unary edges (C) and zero edges (D)

Hypergraphs will serve as objects in the category we use for graph rewriting. As arrows
we use structure preserving mappings between graphs, so-called graph morphisms. The
structure preserving properties include the preservation of edge labels and a compatibility
condition for node and edge mappings. If an edge is mapped by a morphism, its incident
nodes must be mapped to the nodes incident to the image of the edge.

Definition 3.12 (Graph morphism). LetG, H be (Λ-)graphs. A partial graph morphism
(or simply morphism) f : G H consists of a pair of partial functions 〈fV : VG ⇀
VH , fE : EG ⇀ EH〉 such that for every e ∈ EG it holds that lG(e) = lH(fE(e)) and
fV (cG(e)) = cH(fE(e)) whenever fE(e) is defined. Furthermore, if a morphism is defined
on an edge e ∈ EG, it must be defined on all nodes incident to e. We use f(x) for x ∈ G
to refer to fV (x) or fE(x), as appropriate, and write f(G) to denote the subgraph of H
where every element has a preimage in G. We compose two morphisms f : G H and
g : H I by composing both partial functions, i.e. g ◦ f = 〈gV ◦ fV , gE ◦ fE〉.

A morphism f is total, if it is defined for every x ∈ G. A morphisms is injective, if for
every x1, x2 ∈ G on which f is defined, it holds that f(x1) = f(x2) =⇒ x1 = x2. A
morphisms is surjective, if for every x ∈ H there is an x′ ∈ G such that f(x′) = x. We
denote total morphisms by the arrow and total, injective morphisms by the arrow

.

Note that we will often use the extension of fV to a sequence of nodes, as defined in
Section 2.1.3.

Example 3.13. Figure 3.5 shows an example of a graph morphism. We normally
represent the two mappings fV and fE either by numbers (as seen in the figure) or

28

3.2. Category of Graphs

by position. The morphism is not total, since the B-labelled edge has no image, not
injective, since two nodes are mapped to the same node in H, and not surjective, since
the lower A-labelled edge (in H) has no preimage in G.

G H1 2

3 4

A5 A 6

B 1, 2

3 4

A5 A 6

A

f

Figure 3.5.: Example of a graph morphisms which is neither total, nor injective, nor
surjective

We can easily prove that the composition, as defined in Definition 3.12, is well-defined.

Lemma 3.14. The composition of two graph morphisms is a graph morphism and pre-
serves totality, injectivity and surjectivity.

Proof. Let f : G H and g : H I be two graph morphisms. Obviously gV ◦ fV and
gE ◦ fE exist and it remains to be shown that the additional restrictions for morphisms
are satisfied.
By using that f and g are morphisms we obtain lI(gE(fE(e))) = lH(fE(e)) = lG(e)

and gV (fV (cG(e))) = gV (cH(fE(e))) = cI(gE(fE(e))) for all e ∈ EG. Furthermore, if
g(f(e)) is defined, then all nodes of f(e) and ultimately g(f(e)) have an image under
g ◦ f . Morphisms preserve totality, injectivity and surjectivity, since functions preserve
totality, injectivity and surjectivity.

Using the notion of graph morphisms we can define the category of graphs used as basis
for our rewriting approach. In fact, we define two categories, one with total morphisms
and one with partial morphisms. Since the constructions of pushouts and pushout com-
plements are more involved for partial morphisms, we first define them for total mor-
phisms and then extend them to work for partial morphisms.

Definition 3.15 (Category of graphs). We use Λ-HGp to denote the category of all
Λ-hypergraphs and partial graph morphisms and Λ-HGt to denote the category of Λ-
hypergraphs and total graph morphisms.

As already shown in Lemma 3.14, the composition is well-defined and it is easy to see that
it satisfies the necessary conditions. The commutativity follows from the commutativity
of the functions fE , fV and the identity morphism of a graph consists of two identities
on the node and edge sets respectively.

29

Chapter 3. Graph Transformation Systems

3.3. Graph Transformation Systems
There are two major algebraic approaches to graph transformation using category theory,
the single pushout approach (SPO) [EH+97] and the double pushout approach (DPO)
[CM+97]. In the SPO approach a rewriting step is performed by one pushout in the
category Λ-HGp, while the DPO approach uses a pushout and a pushout complement
in Λ-HGt. The main difference between the two approaches lies in their handling of
conflicts, e.g. when a rule should delete a node incident to an edge, which is not specified
to be deleted. In the SPO approach all such edges are implicitly deleted as well, while
in the DPO approach the rule would not be applicable. Since the handling in the DPO
approach resembles a negative application condition, the SPO approach is more suitable
for WSTS, where negative conditions usually interfere with the compatibility condition
of Definitions 2.11 and 2.16. We therefore base our general framework on the SPO
approach.

Definition 3.16 (Rule and match). A rewriting rule is a partial morphism r : L R.
A match of the rule r in some graph G is a total morphism m : L G. We say that
a match m is conflict-free wrt. r if for every two x1, x2 ∈ L with m(x1) = m(x2), the
images r(x1) and r(x2) are either both defined or both undefined. A rule is applicable
to a graph G if there exists at least one match in G.

In this work we will mainly use conflict-free matches or injective matches. Note that
every injective match is naturally conflict-free, but conflict-free matches may be non-
injective. The application of a rule is performed by the computation of a pushout of the
rule and the match.

Definition 3.17 (Graph rewriting). Let r : L R be a rule and let m : L G be a
match to some graph G. A rewriting step is obtained by taking the pushout of m and
r in the category Λ-HGp. Then G is rewritten to the pushout object H (written as
G

r,m⇒ H or simply G⇒ H).

Example 3.18. The application of a rule can change a graph G in three different ways,
of which two are shown in Figure 3.6. For every element in L for which r is undefined,
in this case the node 2 and the edges 4 and 5, its match in G is deleted. Note that
this implicitly deletes the B-edge incident to the deleted node 2 in G. Furthermore, all
elements of R which have no preimage in L, here just a single A-edge, are added by the
rule application. Finally, if the rule is non-injective, the images in G of elements in L
with the same image in R, are merged.

It has been shown that in the categories Λ-HGt and Λ-HGp pushouts exist for arbitrary
morphisms [EH+97], thus a rewriting step is always possible if a match exists. Moreover,
the pushout of two total morphisms is the same in both categories. We show this also
in Section 3.4 by giving a construction for pushouts of partial and total morphisms

30

3.3. Graph Transformation Systems

L R

G H

1
2

3A

4

A

5
1 3A

1
2

3A

4

A

5

A A

B B B

1 3A

A A

B B

r

m m′

r′

Figure 3.6.: Example of an application of the rule r using the match m

respectively. In the following we will refer to the morphism m′, as shown in the previous
example, as the co-match.
The graph transformation systems (GTS) used in this thesis are simply a set or rules,

not necessarily associated with initial graphs, since these are not required for our analysis
(but can be used for premature termination). Given a class of graphs G, these GTS
give rise to a transition system on G. If G is infinite, the induced transition system is
also infinite – except for some artificial examples – and the GTS is effectively a finite
representation of the transition system.

Definition 3.19 (Graph transformation system). A graph transformation system (GTS)
T is a finite set of rules.
Let G be a class of graphs. A graph transition system on G generated by T is a pair
TG = 〈G,⇒〉, where G is the set of states and a transition G ⇒ G′ exists if and only if
G,G′ ∈ G and G can be rewritten to G′ using a rule of T . We write T i

G for the transition
system induced by using only injective matches and we write T c

G for the transition system
induced by using only conflict-free matches.

Ideally we want G to be the class of all graphs, since analysing a larger transition system
yields a stronger result. However, at some point we will have to restrict G to ensure the
termination of our analysis. In contexts where G is either fixed or not relevant, we will
use graph transformation systems and graph transition systems synonymously and say
that a transformation system has a property if its generated transition system (on G)
has the property.
Our analysis makes it necessary to apply a rule backwards. This backward application

can be done by computing the pushout complement, that is, given a rule and a co-
match we compute G and a match m such that G is rewritten to H via m. However,
contrary to pushouts, pushout complements in Λ-HGt and Λ-HGp do not necessarily

31

Chapter 3. Graph Transformation Systems

exist and are not necessarily unique if they exist. In Λ-HGt the number of pushout
complements is always finite, but in Λ-HGp two morphisms may have infinitely many
pushout complements, as shown in Example 3.20. For simplification we only cover the
computation of pushout complements in Λ-HGp where the co-match is total. This is
sufficient for the backward application of rules, as we will show in Chapter 6.

Example 3.20. Figure 3.7 shows a rule r and a co-match m′ for which the number
of pushout complements is infinite. The graphs G1 and G2 are two of these pushout
complements. The deletion of node 1 causes all incident edges (even if not matched) to
be deleted, such that both graphs are rewritten to H. More precisely, every pushout
complement of r and m′ can be obtained by adding an arbitrary large number of edge
to G1, as long as every such edge is incident to node 1 (including unary edges and edges
of higher arity).

L R

G1

G2

H

1 2 2

1
2

A

1
2

A A

A
2 A

r

m′

Figure 3.7.: Two morphisms for which the number of pushout complements is infinite
and two of those pushout complements

For the existence of pushout complements two well-known conditions exist for total
morphisms, together called the gluing condition [CM+97]. These conditions are also
sufficient for partial morphisms if the co-match is total.

Proposition 3.21 (Existence of pushout complements). Let r : L R be a partial
morphisms and let m′ : R H be a total morphism. There exists a pushout complement
〈G, r′,m〉 in Λ-HGp with r′ : G H and m : L G if and only if:

• there exists no edge e ∈ EH with e /∈ m′(R) which is incident to a node m′(v) for
some v ∈ R with v /∈ r(L) (dangling condition) and,

• for every x1, x2 ∈ R with x1 6= x2 and m′(x1) = m′(x2) it holds that x1, x2 ∈ r(L)
(identification condition).

32

3.3. Graph Transformation Systems

If r is total, there exists a pushout complement in Λ-HGt if and only if the previous two
conditions hold.

Proof. That the dangling condition and identification condition are necessary and suffi-
cient in Λ-HGt is a well-known result [CM+97]. If both conditions are satisfied, we show
that at least one pushout complement exists by giving a construction in Propositions 3.30
and 3.33 in Section 3.5. So it remains to be shown that no pushout complement exists
if one of the conditions is not satisfied.

L L′ R

G G′ H

r

rp rt

m n m′

r′p r′t

r′

Figure 3.8.: Diagram showing all arrows of the proof of Proposition 3.21

Let r be a rule, let m′ be a co-match and let 〈G,m, r′〉 be a pushout complement
(in Λ-HGp) as shown in Figure 3.8. We assume that at least one condition does not
hold and will derive a contradiction. Obviously we can split r into morphism rp, rt with
rt ◦ rp = r, where rt is total and rp is injective, surjective and partial, i.e. rp is effectively
the identity for every element for which it is defined. According to Lemma 3.8 there is a
unique way to split r′ such that 〈G′, r′p, n〉 is the pushout of rp, m, and 〈H, r′t,m′〉 is the
pushout of rt, n. Since m′ ◦rt = r′t ◦n and rt, m′ are total, n must be total as well. Since
a pushout of two total morphisms in Λ-HGp is the same as their pushout in Λ-HGt,
we now that r′t is total as well. This implies that G′ is a pushout complement of rt and
m′ in Λ-HGt. However, if one of the conditions is violated for r, m′, it is also violated
for rt, m, since for every x ∈ R it holds that x ∈ r(L) if and only if x ∈ rt(rp(L)). Thus,
no pushout complement G′ can exist.

Both conditions of Proposition 3.21 are a direct consequence of Definition 3.6. Due to
the universality, every element in the pushout has to have a preimage in R or G (or
both). Thus, an edge e /∈ m′(R) has to have a preimage in G and therefore all its
incident nodes have to have a preimage in G as well. Again because of universality, if
two elements x1, x2 in R have the same image in H, they have to have preimages in L.
If this would not be the case, then there would be another commuting diagram, where
x1 and x2 are not merged, but there is no mediating morphism from H to the diagram.
The construction of pushout complements is covered in Section 3.5 in greater detail.

33

Chapter 3. Graph Transformation Systems

3.4. Construction of Pushouts
Pushouts for graphs can be computed by performing pushouts on the set of nodes and
edges. If all involved morphisms are total and injective, the pushout of two morphisms
f : G H and g : G I is the union of H and I, merging elements which have
a common preimage in G and being otherwise disjoint. If f or g (or both) are non-
injective or partial, this will result in additional mergings or deletions, respectively. We
will now first construct pushouts in Λ-HGt and then extend the construction to Λ-HGp.

Proposition 3.22 (Pushout in Λ-HGt). Let G,H, I be graphs with pairwise disjoint
node and edge sets1 and let f : G H, g : G I be total graph morphisms. Let ∼ be
the relation on VH ∪ VI ∪ EH ∪ EI , where f(x) ∼ g(x) and g(x) ∼ f(x) for all x ∈ G
and let ∼ be the equivalence closure of ∼. The pushout object J = 〈VJ , EJ , cJ , lJ〉 can be
constructed as follows:

• VJ = (VH ∪ VI)/∼,

• EJ = (EH ∪ EI)/∼,

• cJ : EJ → V ∗J where cJ([e]∼) = [v1]∼ . . . [vk]∼ and v1 . . . vk =
{
cH(e) if e ∈ EH
cI(e) if e ∈ EI

• lJ : EJ → Λ where lJ([e]∼) =
{
lH(e) if e ∈ EH
lI(e) if e ∈ EI

The resulting morphisms are f ′ : I J , g′ : H J with

f ′(x) = [x]∼ g′(y) = [y]∼

for x ∈ I and y ∈ H, respectively. The object J together with the morphisms f ′, g′ is the
pushout of f, g.

Proof. See Appendix B.1.

Example 3.23. An example of a pushout for two morphisms f and g can be seen in
Figure 3.9. Both morphisms are non-injective: nodes 1 and 2 are merged via f , while
the nodes 2 and 3 are merged via g. Due to the equivalence closure ∼, all three nodes
are merged in J , although 1 and 3 are neither merged by f nor by g. Note that this
merging is necessary for the diagram to commute. The two C-labelled edges in H and
I are not merged in J , since they do not share a common preimage in G.

1Disjointness can be easily achieved by renaming.

34

3.4. Construction of Pushouts

G
H

I
J

1
2

3A

4

B

5 1, 2
3

B

5

C

A4

1
2, 3

A

4

C

B5

1, 2, 3
C

C

A4

B5

f

g g′

f ′

Figure 3.9.: Shows the pushout J of f and g in Λ-HGt

The pushout for partial morphisms can be computed with a similar construction. Merg-
ings as well as new nodes and edges are handled as in the total case, with the exception
that some equivalence classes must be deleted. More precisely, a class has to be deleted
if it contains a element f(x) which should be equivalent to g(x), but g(x) is undefined
(or vice versa).

Proposition 3.24 (Pushouts in Λ-HGp). Let G,H, I be graphs with pairwise disjoint
node and edge sets and let f : G H, g : G I be partial graph morphisms. Let ∼ be
the relation on VH ∪VI ∪EH ∪EI , where f(x) ∼ g(x) and g(x) ∼ f(x) for all x ∈ G for
which f(x) and g(x) are both defined and let ∼ be the equivalence closure of ∼.
We say that an equivalence class on nodes is valid if and only if it does contain no

element f(x) for which g(x) is undefined and no element g(x) for which f(x) is undefined.
An equivalence class on edges is valid, if the previous condition holds for the class and
the equivalence class of every incident node is valid as well.
We can construct the pushout J by the same means as Proposition 3.22 with the

exception that VJ and EJ contain only the valid equivalence classes and f ′(x), g′(x) are
undefined if the equivalence class of x is not valid.

Proof. See Appendix B.1.

Example 3.25. An example of pushouts in Λ-HGp is shown in Figure 3.10. The nodes
2, 3 in I and 2 in H are in the same equivalence class, since they have the common
preimage 2 in G. However, since 3 is also a preimage of 2, 3 in G, the equivalence class
is not valid and must be deleted in J . Note that this means that the node 2 must be
deleted as well, although it has an image under f as well as g. It becomes evident that
this must be done when assuming that 2, 3 has an image under f ′. In this case the node

35

Chapter 3. Graph Transformation Systems

3 has an image under f ′ ◦ g but not under g′ ◦ f , i.e. the diagram does not commute.
The A-labelled edge is incident to a node with a non-valid equivalence class, i.e. 2, and
must be deleted as well. Thus, the node 1 is the only remaining element of the pushout.

G H

I J

1
2

3
1 2A

1 2, 3 1

f

g g′

f ′

Figure 3.10.: Shows the pushout of two morphism f and g of which one is partial

3.5. Construction of Pushout Complements
The construction of pushout complements is considerably more difficult than the con-
struction of pushouts. This is also due to the fact that pushout complements are not
unique if they exist and for partial morphisms there may even be infinitely many. For
total, possibly non-injective morphisms we published a construction in [HJ+10] which I
will restate in the following. Based on this I will also present the construction for par-
tial morphisms we used in [JK08; KS14b]. However, since for the backward analysis all
pushout complements must be computed, we are bound to compute a finite subset which
is sufficient wrt. some order. We will therefore revisit this construction in Chapter 6,
where we introduce the backward analysis for graph transformation systems.
Similar to the pushout construction, the construction below uses equivalences and

equivalence closure as a core concept. Intuitively the construction works as follows. We
first copy G and add a copy of every element in J that has no preimage in H. Then
we compute two equivalence relations, ≡f relating all elements merged by f and ≡f
relating all elements merged by g′ ◦ f . As a last step we are searching for equivalences
≡, relating all elements merged by g, such that the equivalence closure of ≡ and ≡f is
≡f . By factoring through ≡ we assure that g merges exactly those elements necessary
for the pushout to be J .

Proposition 3.26 (Pushout complements in Λ-HGt). Let f : G H and g′ : H J
be total morphisms as shown in Figure 3.11. We construct a pushout complement I with
morphisms g : G I and f ′ : I J as follows:

1. Construct a graph J̃ as follows:

36

3.5. Construction of Pushout Complements

• For every node v ∈ VJ that is not in the range of g′, add a copy of v to J̃ .
The copy of v will be denoted by vc.
• For every edge e ∈ EJ that is not in the range of g′, add a copy of e with the
same arity, incident to fresh nodes, to J̃ . The copy of e will be denoted by ec
and the fresh nodes by 〈ec, i〉 for 1 ≤ i ≤ ar(lJ(e)).

This means that J̃ is a collection of disconnected nodes and edges.

2. Now construct G] J̃ , the disjoint union of G and J̃ , with morphisms g : G
G] J̃ , f : G] J̃ J as follows:

g(x) = x

f(x) =


g′(f(x)) if x ∈ G

y if x = yc
cJ(e)[i] if x = 〈ec, i〉

Clearly f ◦ g = g′ ◦ f .

3. Define two equivalences on elements of G] J̃ :
• x ≡f y if and only if f(x) = f(y).
• x ≡f y if either x = y or x, y ∈ G and f(x) = f(y).

It can easily be seen that ≡f is a refinement of ≡f , i.e., x ≡f y implies x ≡f y.

4. Now let ≡ be an equivalence on G] J̃ such that ≡f = ≡ ∪ ≡f and whenever
e1 ≡ e2 for two edges e1, e2 we require that cG]J̃(e1)[i] ≡ cG]J̃(e2)[i] for all 1 ≤
i ≤ ar(lG]J̃(e1)) = ar(lG]J̃(e2)). We construct the pushout complement I = (G]
J̃)/≡ with morphisms g : G I, f ′ : I J as specified below:

g(x) = [g(x)]≡ f ′([x]≡) = f(x)

Note that f ′ is well-defined since ≡ refines ≡f .

Proof. See Lemmas 3.28 and 3.29.

Example 3.27. Let the morphisms f : G H and g′ : H J be given as shown
in Figure 3.12. In J there is a single A-labelled edge and the mappings are indicated
by numbers. On nodes we have the equivalences ≡f and ≡f , represented by their
equivalence classes:

• ≡f : {1, 2, 3, 4, 〈ec, 1〉, 〈ec, 2〉}

• ≡f : {1, 2}, {3, 4}, {〈ec, 1〉}, {〈ec, 2〉}

37

Chapter 3. Graph Transformation Systems

G H

I J

G] J̃

f

g g′

f ′g

f

Figure 3.11.: Pushout complement diagram for the construction in Proposition 3.26

G

H

G] J̃
J

1

2

3

4

1, 2

3, 4

1

2

3

4
〈ec, 1〉 〈ec, 2〉

A
ec 1, 2, 3, 4

A

f

g g′

f

Figure 3.12.: Given morphisms f and g′, shows the first two steps of Proposition 3.26

Every possible equivalence ≡ has to “connect” equivalence classes of ≡f if and only if
they are contained in the same equivalence class of ≡f . This is done by relating at least
one node of each such equivalence class with a node of another class until all classes are
(indirectly) connected. In this case we have to relate at least one element of {1, 2} with
one of {3, 4} and both nodes 〈ec, 1〉 and 〈ec, 2〉 have to be related to one of the nodes
1, 2, 3 or 4. For instance the following three equivalences ≡ are all permissible and the
pushout complements induced by them are shown in Figure 3.13:

• {1, 3}, {2, 〈ec, 1〉}, {4, 〈ec, 2〉}

• {1, 3, 〈ec, 1〉, 〈ec, 2〉}, {2}, {4}

• {1, 2, 3, 4, 〈ec, 1〉, 〈ec, 2〉}

But there are many more possibilities. In order to enumerate them more systematically
we can first consider all 15 equivalences on the set {1, 2, 3, 4}, given by equivalence classes.
The ones that do not satisfy the requirement above are crossed out.

38

3.5. Construction of Pushout Complements

1, 3

2, 〈ec, 1〉 4, 〈ec, 2〉
A
ec

(a) The POC induced by the first equiva-
lence

1, 3, 〈ec, 1〉, 〈ec, 2〉

2

4

A ec

(b) The POC induced by the second equivalence

1, 2, 3, 4, 〈ec, 1〉, 〈ec, 2〉 A ec

(c) The POC induced by the third equivalence

Figure 3.13.: The three pushout complements induced by the equivalences of Exam-
ple 3.27

{1, 2, 3, 4} {1}, {2, 3, 4} {2}, {1, 3, 4} {3}, {1, 2, 4} {4}, {1, 2, 3}
{1, 2}, {3, 4} {1, 3}, {2, 4} {1, 4}, {2, 3} {1, 2}, {3}, {4} {1, 3}, {2}, {4}
{1, 4}, {2}, {3} {2, 3}, {1}, {4} {2, 4}, {1}, {3} {3, 4}, {1}, {2} {1}, {2}, {3}, {4}

Now for k equivalence classes there are k2 possibilities to associate 〈ec, 1〉 and 〈ec, 2〉 to
these equivalence classes. Hence, in total there are 1+6·22+4·32 = 61 equivalences. Note
that although some of the resulting pushout complement objects might be isomorphic,
none of these isomorphisms commutes with the diagram. The pushout complements,
including the two morphisms g and f ′, are therefore not isomorphic.

Before we extend the previously shown construction to partial morphisms, we will first
prove the correctness of Proposition 3.26. Due to its length we split the proof into
Lemma 3.28 stating the soundness and Lemma 3.29 stating the completeness.

Lemma 3.28. Let f : G H and g′ : H J be two morphisms satisfying the condi-
tions of Proposition 3.21, i.e. at least one pushout complement exists. Then every equiv-
alence relation ≡ created by the construction in Proposition 3.26 generates a pushout
complement.

Proof. See Appendix B.2.

Lemma 3.29. Assume that f : G H and g′ : H J are given. Then every pushout
complement 〈I, g : G I, f ′ : I J〉 of f , g′ can be obtained via the construction
of Proposition 3.26. Furthermore two isomorphic pushout complements which commute
with the isomorphism give rise to the same equivalence ≡.

Proof. See Appendix B.2.

39

Chapter 3. Graph Transformation Systems

The fact that two isomorphic pushout complements give rise to the same equivalence
means that the number of generated equivalences is exactly the number of different
pushout complements. However, if we consider only isomorphisms on the pushout object
I – without requiring commutativity of the triangles consisting of morphisms j, g1, g2 and
j, f ′1, f

′
2 – there will usually be fewer different pushout complements.

The construction of pushout complements in Λ-HGp is more complex than in Λ-HGt.
We will therefore restrict ourselves to the computation of pushout complements where
f is partial and g′ is total. This setting is sufficient, since in Chapter 6 we will only use
total co-matches. However, this does not bound the number of pushout complements,
such that we will additionally need to define (and compute) a finite representation of all
pushout complements. This representation will be introduced in Chapter 6 and depend
on which order is used.
In this more restricted setting we can compute pushouts by first splitting the rule

into two morphisms, a total one and a partial one, satisfying certain conditions. We
can ensure that the partial morphism is injective as well as surjective and will show in
Proposition 3.30 how a pushout complement for such an morphisms can be computed.
By using the construction of Proposition 3.26 we will then extend this approach to a
construction for arbitrary partial morphisms (still using a total co-match) in Proposi-
tion 3.33.
The construction in Proposition 3.30 works in three steps. First we generate a copy

of J and add all elements of G for which f is undefined. In a second step choose an
equivalence that merges some of the elements added from G. This is necessary to cover
all possible conflict-free matches. In the last step we add an arbitrary number of edges
which are incident to at least one node which will be deleted when forming the pushout,
since such edges will be implicitly deleted as well.

Proposition 3.30 (Pushout complements in Λ-HGp I). Let f : G H be a injective
and surjective, partial morphism and let g′ : H J be a total morphism such that f and
g′ satisfy Proposition 3.21, i.e. a pushout complement exists. We can compute a pushout
complement 〈I, g, f ′〉 with g : G I and f ′ : I J as follows (see also Figure 3.14):

1. Generate J̃ by taking a copy of J and adding a copy vc for every v ∈ VG for which
f(v) is undefined. Then add a copy ec for every e ∈ EG for which f(e) is undefined
with lJ̃(ec) = lG(e) and

cJ̃(ec)[i] =
{
g′(f(cG(e)[i])) if f(cG(e)[i]) is defined

vc with v = cG(e)[i] if f(v) is undefined

for 1 ≤ i ≤ ar(lJ̃(ec)).

40

3.5. Construction of Pushout Complements

We define the morphisms g̃ : G J̃ and f̃ ′ : J̃ J as follows:

g̃(x) =
{
g′(f(x)) if f(x) is defined
xc if f(x) is undefined

f̃ ′(x) =
{

x if x ∈ J
undefined else

2. Now let ≡ be any equivalence on J̃ , where
• if x ≡ y, then either x, y ∈ VJ̃ or x, y ∈ EJ̃ ,
• if x ≡ y and f̃ ′(x) is defined, then x = y holds, and
• if x ≡ y for x, y ∈ EJ̃ , then cJ̃(x)[i] ≡ cJ̃(y)[i] for 1 ≤ i ≤ ar(lJ̃(x)) =

ar(lJ̃(y)).

3. We obtain a pushout complement I by taking a copy of J̃/≡ and adding an arbitrary
(but finite) number of edges. For each such edge e there has to be an index i such
that f ′(cI(e)[i]) is undefined. The morphisms g and f ′ are defined as follows:

g(x) = [g̃(x)]≡

f ′(x) =
{

f̃ ′(x′) if x = [x′]≡ ∈ J̃/≡
undefined else

If we do not add any edges in step 3, this construction generates only finitely many
pushout complements.

G H

I

J̃ J

f

g̃
g

g′

f ′

f̃ ′

Figure 3.14.: Pushout complement diagram for the construction in Proposition 3.30

Proof. See Appendix B.2.

The construction presented in Proposition 3.30 does not generate all pushout comple-
ments, but only pushout complement where the morphism g is conflict-free wrt. f . Since

41

Chapter 3. Graph Transformation Systems

in our analysis matches will always be conflict-free, or even injective, these pushout com-
plements are a sufficient subset. Before we can state the completeness of the construc-
tion wrt. this criteria in Lemma 3.32, we have to prove that injectivity is preserved by
pushouts in the sense that f ′ is injective, if f is. Note that in any category monomor-
phisms are preserved in this sense, but monomorphisms in Λ-HGp are all morphisms
which are injective and total.

Lemma 3.31. Let f : G H be a partial, injective morphism and let g : G I be any
partial morphism. The morphism f ′ of the pushout 〈J, f ′, g′〉 is injective.

Proof. See Appendix B.2.

Using this lemma we can finally state the completeness result of the construction of
Proposition 3.30.

Lemma 3.32. Let f : G H be a injective and surjective, partial morphism and let
g′ : H J be a total morphism. Every pushout complement 〈I, g, f ′〉 with g : G I
and f ′ : I J where g is conflict-free wrt. f can be obtained by the construction of
Proposition 3.30.

Proof. See Appendix B.2.

Using previous results we can now state a procedure for the construction of pushout
complements (where the match is conflict-free) for arbitrary rules and total co-matches.

Proposition 3.33 (Pushout complements in Λ-HGp II). Let f : G H be a partial
morphism and let g′ : H J be a total morphisms, as shown in Figure 3.15. We can
construct every pushout complement I ′ with morphisms k : G I and f ′ : I J where
k is conflict-free wrt. f as follows:

1. Split f into two morphisms f1 : G G′ and f2 : G′ H with f = f2 ◦ f1 where
f1 is injective and surjective, and f2 is total.

2. Use the construction of Proposition 3.26 to compute 〈I ′, g, f ′2〉, a pushout comple-
ment of f2, g′ with g : G′ I ′ and f ′2 : I ′ J .

3. Use the construction of Proposition 3.30 to compute 〈I, k, f ′1〉, a pushout comple-
ment of f1, g with k : G I and f ′1 : I I ′.

4. We define f ′ as the composition f ′ = f ′2 ◦ f ′1.

This construction will generate finitely many pushout complements if and only if the
construction of Proposition 3.30, will compute finitely many pushout complements.

Proof. See Appendix B.2.

42

3.5. Construction of Pushout Complements

G HG′

I ′I J

f

f1 f2
k g g′

f ′2f ′1

f ′

Figure 3.15.: Pushout complement diagram for the construction in Proposition 3.33

43

Chapter
4

Decidability Results for Graph
Transformation

Although the decidability of classical verification problems, e.g. reachability, has not
been studied as extensively for graph transformation systems as it has been done for
related formalism like Petri nets [DFS98], some results exist. Unfortunately, due to the
fact that graph transformation systems are Turing-complete, many interesting problems
are undecidable. However, some of these problems can become decidable by imposing re-
strictions on the rules or graphs. In this chapter I will present some possible restrictions
and show their effect on the decidability of the reachability and coverability problems.
Note that all these restrictions can still generate infinite state systems. For the cover-
ability we use the subgraph ordering, i.e. a graph G1 is smaller than a graph G2, if G1
can be obtained by deleting nodes and edges of G2 (where a node can only be deleted if
all incident edges are deleted as well). We cover this and alternative orders in Chapter 5
in greater detail.
Most of the results of this chapter were previously published in a survey paper at

RTA ’12 [BD+12b; BD+12a]. However, the proofs were only for injective matches
and have been extended in this chapter to general and conflict-free matches, whenever
possible. Note that for any transition system induced by a GTS using general or conflict-
free matches, we can define a GTS inducing the same transition system when using
injective matches. The effect of non-injective matches can be encoded into the rule
set. Unfortunately, we cannot automatically use this encoding to infer results for all
types of matches, since it does not guarantee that the resulting GTS satisfies the same
restrictions the original system does.

45

Chapter 4. Decidability Results for Graph Transformation

4.1. Restrictions on the Deletion and Creation of Nodes
General graph transformation systems are more expressive than Petri nets [BC+10] (see
Appendix A.1 for a brief introduction to Petri nets). We can for instance model a Petri
net by a graph using edges labelled with place names [BCM05]. The graph contains one
edge labelled with a place p for each token in p. A GTS simulating the Petri net can
be obtained by adding one transformation rule for each transition t. The rule deletes a
p-labelled edge for each token t consumes from p and creates a p-labelled edge for each
token t creates in p. For basic P/T nets the edges need not be incident to any nodes,
i.e. the encoding needs no nodes at all. For more complex nets, such as nets with transfer
or reset arc, we can simulate a place by a single node which has on incident unary edge
for each token in the place. By merging or deleting the incident nodes, we can transfer
or delete all tokens of a place respectively. It is straightforward to show that a rule
behaves the same as the transition it represents and that a finite net and marking are
represented by a finite graph and GTS.
The main reason why GTS are more expressive than Petri nets lies in the structure

of graphs and the ability to freely change this structure by rule applications. A vital
element is the deletion, creation and fusion of nodes. Inspired by [BCM05] we can obtain
GTSs which can be simulated by Petri nets, if we introduce restrictions on how rules
may handle nodes. If the number of nodes is fixed, then there are only finitely many
possibilities for edges to be incident to these nodes (there are only finitely many labels
and each has a fixed arity). We can use this to introduce a place for each possibility
and mark the existence of edges by tokens in the corresponding places. Transitions can
adequately model graph transformation rules in this setting.

Proposition 4.1 (GTS without node deletion or creation). Let T be a graph trans-
formation systems where every rule morphism r ∈ T is a bijection on nodes. Then
the reachability problem and the coverability problem are both decidable for the induced
transition systems TG(Λ), T c

G(Λ) and T i
G(Λ).

Proof. Let G be the initial graph (for the reachability or coverability problem). In this
setting VG remains unchanged by any graph rewriting step and only the edges may
change. To reduce reachability and coverability for GTS to reachability and coverability
for Petri nets, we construct a Petri net from the GTS as described below. We will
assume that every match is injective and later extend this proof to general and conflict-
free matches.

The places of the Petri net are defined as P = {〈`, s〉 ∈ Λ × V ∗G | |s| = ar(`)}, where
Λ is the label set of G. A token in a place 〈`, s〉 represents an edge e with l(e) = ` and
c(e) = s. Note that P is finite since the label set is finite and the arity of each label
is fixed. The initial graph can be transformed straightforwardly into a marking of the
Petri net by adding one token in the appropriate place for each edge in the graph.

46

4.1. Restrictions on the Deletion and Creation of Nodes

To simulate the graph transformation system, we need to simulate the rule application
mechanism by transitions. For each rule r : L R we need to take every possible match
of r to any possible graph with |VG| nodes into account. In fact, to cover all such matches
it is sufficient to search for matches into a complete graph with |VG| nodes. However,
this graph needs to contain parallel edges if L contains parallel edges.

Let k be the largest number of parallel edges in L and let n be the number of nodes of
G. We define a complete graph Kn,k on the nodes of G which has every possible edge up
to k times (in parallel), i.e. Kn,k = 〈VG, EK , cK , lK〉 with EK = {〈`, s, i〉 ∈ Λ×V ∗G×N0 |
|s| = ar(`) ∧ 0 ≤ i < k} where an edge is connected and labelled by cK(〈`, s, i〉) = s
and lK(〈`, s, i〉) = `, respectively. Note that this means that a node v may for instance
be incident to 3 · k different binary A-edge, k times as the source (only), k times as the
target (only) and k times as the source and target. We can now simulate the application
of r by computing all injective matches of r to Kn,k and adding one transition to the
Petri net for each match. No graph larger than Kn,k needs to be considered, since for
any match to a larger graph there is a match to Kn,k generating the same transition.
We generate the transition as follows.
Let m : L Kn,k be a injective match and let 〈H, r′ : Kn,k H,m′ : R H〉

be the pushout of r and m (see Figure 4.1). For any place p = 〈`, s〉 of the Petri
net we define noe(p,X) as the number of edges in X with are represented by p, i.e.
noe(〈`, s〉, X) = |{e ∈ EX | c(e) = s ∧ l(e) = `}|. We now add the transition tr,m to the
Petri net which, for each place p, consumes noe(p,m(L)) tokens from p and generates
noe(p,m(L)) − noe(p′,Kn,k) + noe(p,H) tokens in p. Note that for noe(p,H) we use
VH = VG, which we can safely assume since r is bijective on nodes.
The transition tr,m consumes all matched edges, making sure that the concrete,

matched graph contains at least enough edges for the match to be valid. On the other
hand by definition the exact number of edges deleted by the rule (with this specific
match) is deleted from the corresponding places as well. Thus, the Petri net precisely
simulates the GTS.

L R

L R

Kn,k H

r

r

r′

m m′

m m′

Figure 4.1.: Shows the two pushout squares used in the proof of Proposition 4.1

In general a GTS using non-injective matches can be simulated by a GTS using in-
jective matches by a simple extension of the rule set. For each original rule r : L R
and every total surjective morphism m : L L to any graph L, as seen in Figure 4.1,

47

Chapter 4. Decidability Results for Graph Transformation

we add r to the new rule set, where 〈R, r,m′〉 is the pushout of r and m. Any match
from L to Kn,k can be split into m,m such that the non-injective part of the match is
encoded into the rule r. Note that m′ may be partial, but is total on nodes, since r and
m are. Thus, every rule r is a bijection on nodes and r can be simulated according to
the previous part of this proof. The same approach is possible for conflict-free matches,
taking all conflict-free m.
Hence, since coverability and reachability are decidable for P/T nets, we obtain the

same for this variant of GTS, regardless of the types of matches used.

Example 4.2. An example of the encoding used in the proof of Proposition 4.1 is
shown in Figure 4.2. The GTS consists of only one rule r shown in Figure 4.2a and we
assume that the initial graph has (exactly) two nodes and consists only of A-labelled
edges. There are four possibilities for A-labelled edges to be incident to these two nodes
(in the following named 1 and 2) and each possibility is represented by its own place in
Figure 4.2b. The initial graph is unambiguously defined by a marking where the number
of tokens of a place is the number of parallel edges of the graph with the corresponding
sequence of incident nodes.
To simulate the application of r we add four transitions, each representing a different

matching of the rule into a graph with two nodes. Note that the two left transitions
are only added if we allow non-injective matchings. In that case we would first generate
a second rule r′ identical to r with the exception that the two nodes in the left and
right-hand sides are merged, and then compute injective matches for both r and r′. For
graphs with more than two nodes this encoding works in the same way, but the necessary
number of places and transitions will depend exponentially (or worse) on the number of
nodes.

If we allow node fusion and node deletion (including the deletion of incident dangling
edges) while recreating the same number of nodes, we are equivalent in expressiveness to
Petri nets with transfer arcs. This allows us to prove the decidability of coverability, but
reachability is undecidable. Contrary to the previous proposition we restrict ourselves
to injective matches to ensure that a rule does not accidentally increase the number of
nodes by using a non-injective match.

Proposition 4.3 (GTS with a constant number of nodes). Let T be a graph transforma-
tion systems where every rule morphism (r : L R) ∈ T satisfies |VL| = |VR|. Then the
reachability problem is undecidable for the class of all T i

G(Λ), but the coverability problem
is decidable.

Proof. Injective matches ensure that the number of nodes of a graph stays constant
during rewriting, thus we can use an encoding of GTS into Petri nets similar to the
one in the proof of Proposition 4.1. In order to deal with partial morphisms (i.e. node
deletion) and non-injective ones (i.e. node fusion), we introduce transitions with transfer

48

4.1. Restrictions on the Deletion and Creation of Nodes

L R1 2A 1 2A
r

(a) Rule used in Example 4.2

1

A

2

A
1 2A 1 2A

(b) Exemplary encoding of the rule in Figure 4.2a into a Petri net

Figure 4.2.: Example of encoding GTS into Petri nets

arcs that can transfer all tokens contained in a given set of places into another place.
Reset arcs [DFS98] are a special case in which the transferred tokens are moved to a
sink place (which only deletes its tokens).
Node deletion and subsequent recreation can be simulated via reset arcs. Whenever

a node v ∈ G is deleted, all places 〈`, αvβ〉 of the encoding shown in the proof of
Proposition 4.1 have to be reset, where α, β are any sequences of nodes. These are all
the places that represent edges incident to v. Note that from some of the places reset
by a transition we may still need to ensure the existence of a certain number of tokens
to ensure that enough edges exist for the corresponding match to be valid.
Similarly, node fusion can be simulated by transfer arcs. Let N be a set of nodes

which are merged and choose any v ∈ N to merge the other nodes into. We need to
transfer the tokens of all places 〈`, αv′β〉 for any v′ ∈ N with v 6= v′, where α, β are
any sequences of nodes, to places 〈`, αvβ〉. This effectively changes all edges incident to
any v′ at an index i to an edge incident to v at the same index and with an otherwise
unchanged node sequence.
Hence we can encode all GTS conforming to the restrictions into transfer nets, inher-

iting the decidability result from coverability of transfer nets. On the other hand, every
reset net can be encoded into a GTS with the above restrictions (see [BCM05]). Hence
reachability is undecidable for this class of GTS.

Note that already for conflict-free matches it is not guaranteed that a rule preserves the
number of nodes of a graph, even if the rule satisfies |VL| = |VR|. In fact, it may increase
the number of nodes if the match is non-injective on a set of nodes which are merged by
the rule. General matches may also decrease the number of nodes whenever there is a

49

Chapter 4. Decidability Results for Graph Transformation

conflict.

Example 4.4. Assume we have a graph with two nodes and only binary A-labelled
edges, as in Example 4.2 and let the rule r be given, as shown in Figure 4.3a. The
rule merges two nodes and generates a new one with an incident A-labelled loop, such
that the overall number of nodes remains constant. Note that if we would use a match
where both nodes of the left-hand side are mapped to the same node, the application
of this rule would actually increase the number of nodes, thus we restricted to injective
matches.

L R1 2 1, 2 A
r

(a) Rule used in Example 4.4

1

A

2

A
1 2A 1 2A

(b) Exemplary encoding of the rule in Figure 4.3a into a Petri net

Figure 4.3.: Example of encoding GTS with node fusion and deletion into Petri nets

The Petri net simulating this rule by using the encoding of Proposition 4.3 is shown
in Figure 4.3b. The transition merges node 2 into node 1 by transforming all edges
incident to node 2 to edges incident to node 1. Thus, we need three transfer arcs each
transforming a different kind of edge incident to node 2. Note that after the transfer
arcs removed all edges incident to node 2 (i.e. node 2 is no longer part of the old graph
encoding), we can “reuse” node 2 to store the loop incident to the newly created node.

For r a total of two injective matches exist to a graph with two nodes. The transition
added for the second match is symmetric to the shown one, i.e. all tokens are transferred
to the second place and then one token is added to the first place.

4.2. Non-Deleting Graph Transformation Systems
Now consider GTS that are non-deleting, i.e. every rule morphism r is total and injective.
This means that every rule application either increases the rewritten graph in size (nodes

50

4.2. Non-Deleting Graph Transformation Systems

or edges), regardless of the match types used, or r is an isomorphism. Since isomorphisms
need not be applied – they do not change the graph – we obtain a monotonicity that
causes the reachability problem to be decidable.

Proposition 4.5 (Reachability for non-deleting GTS). Let T be a non-deleting GTS.
The reachability problem for TG(Λ), T c

G(Λ) and T i
G(Λ) is decidable.

Proof. In this setting reachability is decidable, due to the monotonicity of the rules.
Let r : L R be a rule, let m : L G be a (possibly non-injective) match and let
〈H, r′,m′〉 be the pushout of r and m. Since pushouts preserve monomorphism, r′ is
total and injective as well. This means that H contains a subgraph isomorphic to G,
namely the image of r′. Thus, H contains at least as much nodes and edges as G.
Now let G0 be the initial graph and let Gf be the graph we want to reach from G0.

We start with G0 and apply all (finitely many) rules to derive all possible graphs. We
drop every graph which is larger that Gf , i.e. has more nodes or more edges, and we
apply all rules to reached graphs, which are still smaller. We stop either if we reach the
desired graph Gf or if can no longer derive graphs smaller than Gf . The last condition
will be satisfied at some point, since the number of graphs smaller than Gf is finite (up
to isomorphism).

Interestingly, the monotonicity used in the previous proof has no effect on coverability
and we can show that coverability is in fact undecidable, although it is often considered
easier than reachability.

Proposition 4.6 (Coverability for non-deleting GTS). The coverability problem is un-
decidable for the classes of all TG(Λ), T c

G(Λ) and T i
G(Λ), respectively, where Let T is a

non-deleting GTS.

Proof. We will prove this proposition by encoding a Turing machine into a non-deleting
GTS, such that the Turing machine holds if and only if a certain graph is coverable in
T i
G(Λ). We will then see that this encoding can also be used to show the undecidability for
TG(Λ) and T c

G(Λ). For this let a deterministic Turing machine (TM) with the initial state
z0, the input word w = w1 . . . wn and the blank symbol 2 be given (see Appendix A.2 for
a brief definition of a Turing machine). We define the initial graph G0 for the coverability
problem as shown in Figure 4.4.

2

L2

z0

w1

w2 wn

2

R2

Figure 4.4.: Initial graph for the Turing machine encoding

51

Chapter 4. Decidability Results for Graph Transformation

The GTS consist of so-called δ-rules simulating the TMs transition function and some
auxiliary rules. We add a δ-rule for every input of the TMs transition function δ(z, α) =
〈z′, α′, β〉 where Γ is the tape alphabet, as shown in Figure 4.5.

β = L
γ ∈ Γ 1 2 3

γ

4

z
5

α
6

1 2 3
γ

4

z
5

α
6

L N R

z′

γ α′

β = N
1 2

z
3

α
4

1 2

z
3

α
4

L R

z′

α′

β = R
γ ∈ Γ 1 2 3

γ

6

z
4

α
5

1 2 3
γ

6

z
4

α
5

L N R

z′

γα′

Figure 4.5.: Shows δ-rules added for each input δ(z, α) of the transition function

Each application of a δ-rule adds a new level to the generated graph, later resulting
in a grid-like structure, where higher levels have edges labelled L, R or N pointing to
lower levels. To generate an arbitrary number of blanks at both ends of the tape as well
as to copy a tape edge (edges labelled with a tape symbol) from a lower level to a higher
level, we introduce auxiliary rules (so-called copy rules) as shown in Figure 4.6.
We now prove that the reduction is correct by first showing that if the TM reaches a

final state, an edge labelled with a final state is coverable in the GTS. Without loss of
generality we can assume that all used matches are injective and we will later show that
non-injective matches in fact do not exist.
We define the level of a tape edge to be zero if it belongs to the initial graph or is a

52

4.2. Non-Deleting Graph Transformation Systems

1 2
L2

3 1 2

2

L2

L2

3

1 2
R2

3 1 2

2

R2

R2

3

α ∈ Γ

1

2 3

L 4

α
5

1

2 3

L 4

α
5

L

α

α ∈ Γ

1

2 3

R4

α
5

1

2 3

R4

α
5

R

α

Figure 4.6.: Copy-rules are added to generate an empty tape and copy tape symbols
from lower levels to higher levels

2-edge parallel to a R2 or L2-labelled edge (i.e. was generated by one of the first two
copy rules). If the edge was generated by any other rule application, the level is one
higher than the level of any tape edges connected by outgoing edges labelled with L, R
or N . Taking into account the structure of the δ- and copy-rules it can be shown by
induction over the levels that any two adjacent tape edges have the same level.
Assume the TM reaches a final state. Then there exists a sequence of transition

function applications leading to the final state. Because there is a GTS rule for any
transition rule of the TM, this sequence has a corresponding sequence of rule applications
in the GTS. However, copy rules have to be used to copy the tape to higher levels between
each step of the TM computation. Hence an edge labelled with a final state is generated
by the last rule application and is therefore coverable.
We now show that if an edge labelled with a final state is coverable in the GTS, the

TM reaches a final state.
Let R be set of GTS rules and G0 the initial graph. Moreover let G be the graph

covering the final state zf , generated out of G0 by the set of rule applications A. A rule
application a ∈ A is represented by a tuple a = 〈ρa, `a, ra〉, where (ρa : La Ra) ∈ R

53

Chapter 4. Decidability Results for Graph Transformation

is a rule and `a : La G, ra : Ra G are total, injective morphisms. Note that these
morphism are total and injective (and exist) because the rules are non-deleting. For two
rule applications a, b we call b directly dependent on a if ra(Ra) \ `a(La) ∩ `b(Lb) 6= ∅.
We define 6 to be the smallest partial order satisfying a 6 b if b directly depends on a
and call b (indirectly) dependent on a if a 6 b holds.
Let af be the rule application generating zf . Without loss of generality we assume

that A is minimal, i.e. for all rule applications a ∈ A it holds that a 6 af . Although
the initial graph is a directed path, a tape generated by the GTS may be a so-called
multipath, as shown in Figure 4.7. However, we can prove that if A is minimal, no
multipath is generated. This especially implies that two branches of a multipath do not
both contribute to the Turing machines simulation, i.e. the generation of at least one
branch was superfluous.

α

α

z

β

γ

γ

α

α

z z

β γ

κ

κ

Figure 4.7.: Path-like structures (multipaths) generated by the given GTS; dashed edges
indicate where state edges can be

On higher levels, depending on the rule, a δ-rule application generates one (upper
graph) or two (lower graph) connected tape edges with one state edge attached (either
on the left or right middle edge) in the centre. Multiple applications of the last two copy
rules can then generate branching tree-like structures to the left and right. Different
edges at the same depth of a tree have the same label, i.e. different paths within the
multipath are labelled equally. It is important to remark that in the lower case in
Figure 4.7 neither β nor γ can be copied multiple times to the current level because
the middle node is connected to the lower level through an N -labelled edge. Multiple
applications of δ-rules will lead to more than one multipath tape at the same level,
however these tapes do not intersect and cannot be connected by any rule.

The given GTS rules are defined such that two rule applications a, b ∈ A where the
matches intersect on edges, i.e `a(La)∩`b(Lb)∩EG 6= ∅, apply the same rule (i.e. ρa = ρb).
This is clear for different δ-rules, because the TM is deterministic and by definition there
is exactly one δ-rule applicable on any tape containing exactly one state-edge. Also the
match of a copy rule cannot intersect with that of a δ-rule, because copy rules can only
copy tape edges to a higher level which were not already copied by a δ-rule application.

54

4.2. Non-Deleting Graph Transformation Systems

We will now show that A contains no rule applications where matches intersect on
edges, because whenever two rule applications a, b ∈ A intersect on edges, either a 6 af
or b 6 af does not hold (possibly none holds). This is the case for two δ-rule applications,
as seen in Figure 4.8a, because they generate two unconnected tapes and existing tapes
cannot be connected by any rule, i.e. the dotted edges cannot exist.

γ

α β

(a) Two α or β generated from γ, cannot belong
to the same tape

α
β

β

N R
R

R

α β

(b) Two β’s generated by copy rules do not in-
teract

Figure 4.8.: Both situations in this figure can only occur in non-minimal rule application
sets A

The application of two copy rules leads to a branching in the tape (see Figure 4.8b),
but tape edges of different branches cannot be part of the same match because no rule has
tape edges directed in this way. The branching can be copied to higher levels, but this is
not a problem as long as no δ-rule is applied to edges in different branches. However, any
δ-rule applied to one of the copied edges generates an N -labelled edge which blocks the
other copied edge from being copied to the tape just created, as illustrated by Figure 4.9.
None of the two copy rules in question is applicable, because none can match the N -
labelled edge. The second (lower) β-labelled edge could, however, be copied to a higher
level by the application of aδ-rule, creating a second tape or multi-path, but this does
not interfere with the first tape. Hence the minimal set A contains no branching and its
application will result in a structure similar to one depicted in Figure 4.10.

α
β

z′

L N R

α′

z
β

β

Figure 4.9.: N -labelled edges block adjacent tape-edges from being copied to higher levels

55

Chapter 4. Decidability Results for Graph Transformation

c
z2

2

L N R

z1

c
2

L R R

a
z1

b
2

L N R R

2

L2

z0

a
b

2

R2

Figure 4.10.: Example of an initial graph after computing some steps of the simulation

The TM computation can be obtained from a minimal set of rule applications A by
ordering the δ-rule applications by dependence. The TM will therefore reach a final
state if the final state is coverable in the GTS.

Finally, it remains to be shown that the assumption that all matches are injective is
valid even for TG(Λ) and T c

G(Λ). Since no left-hand side of a rule contains parallel edges
with the same label, a non-injective match must be non-injective on nodes. For all but
one rule such a match requires the existence of a loop or directed circle in the graph
representing the Turing machines computation. However, the initial graph does not
contain such structures and no rule can generate them. The only possibility to apply a
rule non-injectively without generating a loop or directed circle is by using the left copy
rule (see Figure 4.6) and matching the nodes 1 and 2 (only) to same target. In this case
however, the graph would need to have an edge parallel to an L-labelled edge, which is
also never the case. Thus, the type of matches used does not affect this reduction.

4.3. General Graph Transformation Systems with Minor Rules
It is a well-known result, that reachability and coverability are undecidable for general
graph transformation systems. In this chapter we will prove that this still holds for some
restricted classes of GTS, namely those containing a strict subset of what we call minor
rules. A minor rule is a rule that either deletes a node, deletes an edge (without deleting
the nodes) or contracts an edge, i.e. delete the edge and merge some of the incident
nodes. At first this result seems to be unnecessary, but as a consequence of results we
will prove in Chapters 5 and 6, we will see that reachability as well as coverability are

56

4.3. General Graph Transformation Systems with Minor Rules

decidable for GTS containing all minor rules, but undecidable if they contain only a
strict subset of these rules.

Definition 4.7. Let r : L R be a rule. We say that r is an edge contraction rule if
L consists of a single edge as well as its incident nodes, r is surjective, r is undefined on
the edge and total as well as non-injective on nodes, i.e. there are two different nodes
which have the same image under r. We call r an edge deletion rule, if r satisfies the
conditions of an edge-contraction rule, but is injective on nodes. Finally, r is a node
deletion rule if L is a single node and R is the empty graph.
Let T be a graph transformation system. We say that T is

• edge-contracting if the set of rules contains all edge contraction rules for each edge
label,

• edge-deleting if the set of rules contains edge deletion rules for each edge label, and

• node-deleting if the set of rules contains a node deletion rule.

Example 4.8. An example of a edge deletion rule is shown in Figure 4.11a and an
example of an edge contraction rule is shown in Figure 4.11c. In both cases the left-
hand side is connected and contains (exactly) one edge, and the right-hand side consists
only of nodes. Note that the only difference between these two rule types is the injectivity
on nodes. Since we do not used node labels, Figure 4.11b shows the only node deletion
rule possible.

1 2C 1 2

(a) Example of an edge deletion rule (b) Example of a node deletion rule

1 2

3 4

P

1, 2

3, 4

(c) Example of an edge contraction
rule

Figure 4.11.: Examples of minor rules

All these minor rules appear quite naturally when modelling lossy systems. For in-
stance the edge deletion rule could model the connection loss in a network and the node
deletion rule could model the exiting of a machine or process from the network.

57

Chapter 4. Decidability Results for Graph Transformation

Even when a GTS satisfies any two of the conditions of the previous definition, the
reachability problem remains undecidable, since it is still possible to encode a two counter
machine into such a GTS.

Proposition 4.9. The reachability problem is undecidable for the classes of all TG(Λ),
T c
G(Λ) and T i

G(Λ), respectively, where T is either

• edge-deleting and node-deleting,

• edge-contracting and node-deleting, or

• edge-deleting and edge-contracting.

Proof. We prove this proposition by encoding a Minsky machine (a two counter ma-
chine) into a graph transformation system, such that a configuration is reachable by the
machine if and only if a graph representing the configuration is reachable in the GTS
(see Appendix A.3 for a brief definition of a Minsky machine). We will do the encoding
such that the addition of either edge deletion and node deletion rules, edge contraction
and node deletion rules, or edge deletion and edge-contraction rules will not affect the
reduction. Furthermore, we define the rules in such a way that only injective matches
are applicable to valid configurations. The undecidability of reachability for two counter
machines [Min67] then implies the undecidability of reachability for the three classes of
GTS.

Let 〈Q,∆, 〈q0,m, n〉〉 be a Minsky machine, where Q is the set of states, ∆ ⊆ Q ×
Cmd × Q is the set of instructions and 〈q0,m, n〉 defines the initial state and counter
values. For the GTS we use the label set Q ∪ {c1, B1, E1, c2, B2, E2}. As shown in
Figure 4.12 a graph representing a configuration contains (exactly) one zero-edge with
a label in Q and two connected components representing the two counters. For each
counter the number of ci edges represents its value, Bi marks the beginning and Ei
marks the end of the counter.

q B1 c1 c1 E1

B2 c2 E2

Figure 4.12.: Encoding of a Minsky machine in state q, where the value of c1 is 2 and
the value of c2 is 1

The rules of the GTS are shown in Figure 4.13. For each 〈q, cmd, q′〉 ∈ ∆ we add one
rule to the GTS. Note that the rules for incrementation and decrementation are dual in
the sense that the increment rule can be obtained from the decrement rule by swapping
the left and right rule sides (and inverse the morphism), and vice versa.

58

4.3. General Graph Transformation Systems with Minor Rules

〈q, ci−−, q′〉:
q

1 2
Bi ci

q′

1 2
Bi

〈q, ci++, q′〉:
q

1 2
Bi

q′

1 2
Bi ci

〈q, ci=0?, q′〉:
q

1 2 3
Bi
4

Ei
5

q′

1 2 3
Bi
4

Ei
5

Figure 4.13.: Shows the rules for decrement, increment and zero test

We will now prove the correctness of this encoding. First if we assume that a configu-
ration 〈q′, k′, l′〉 is reachable in the Minsky machine from an initial configuration 〈q, k, l〉
then it is easy to see that the graph encoding 〈q′, k′, l′〉 is reachable from the graph
〈q, k, l〉 in the graph transformation system described in Figure 4.13. We can simply
mimic the used instructions, since if the instructions are applicable, the counters have
sufficient values and the rules are applicable as well. For this we need not apply edge
deletion, node deletion or edge contraction rules. Hence this direction of the proof holds
for the three classes of graph transformation systems described in the statement of this
proposition.
The other way is also straightforward, since we can also convert a sequence of rule

applications to the instructions from which the corresponding rules where generated. The
left-hand side of the decrement rule ensures that the counter has at least the value 1 and
the zero test rule only matches if beginning and end markers of a counter are adjacent,
i.e. the counter has the value zero. However, we also need to take node deletion, edge
deletion and edge contraction rules into account. In the following we will prove the
correctness of this proposition for all the three cases separately and prove each time,
that as soon as a node deletion, edge deletion or edge contraction rule is applied, a valid
configuration can no longer be reached. For the later two cases we will need to modify
the GTS slightly. Before we prove the three cases, we need to emphasize some properties
of the rules.

General observations. The number of edges labelled by an element of Q or Bi, Ei is
invariant wrt. all rules. This means that a valid configuration graph has exactly one edge

59

Chapter 4. Decidability Results for Graph Transformation

labelled by an element of Q and exactly one edge for each of the labels B1, B2, E1 and
E2. Furthermore, a valid configuration contains neither loops nor directed circles and
every non-injective match requires the existence of such structures. A valid configuration
consists of three (weakly) connected components and no rule of the GTS can connect
elements of two different components. This also holds for node deletion, edge deletion
and edge contraction rules.

Node and edge deletion. Now suppose that the graph Gf encoding a configuration
〈q′, k′, l′〉 of the Minsky machine is reachable from the graph G0 encoding a configuration
〈q, k, l〉 in the graph transformation system described in Figure 4.13 extended with node
deletion and edge deletion rules. Clearly, if an edge deletion rule removes an edge labelled
by an element of Q or by Bi, Ei, we obtain an invalid configuration, which will remain
invalid for the rest of the computation (the deleted edge cannot be added again). If a ci-
labelled edge is deleted, the component containing the Bi- and Ei-labelled edges is split
into two components each containing one of those edges. This two components cannot
be connected again and the configuration will remain invalid. If a node deletion rule is
used, by construction at least one edge is deleted resulting in an invalid configuration as
shown above. Thus, a valid configuration can only be reached if neither node deletion
nor edge deletion rules where used.

〈q, ci−−, q′〉:
q ĉi

1 2
Bi ci

q′

1 2
Bi

Figure 4.14.: Variant of the decrement rule for node-deleting and edge-contracting GTS

Node deletion and edge contraction. Now let the graph Gf encoding a configuration
〈q′, k′, l′〉 of the Minsky machine be reachable from the graph G0 encoding a configura-
tion 〈q, k, l〉 in the graph transformation system described in Figure 4.13 extended with
node deletion and edge contraction rules. As with edge deletion rules, the contraction of
an edge labelled with an element of Q or Bi, Ei leads to an invalid configuration. How-
ever, contracting an ci-labelled edge does not. We therefore modify the increment and
decrement rules slightly by adding a ĉi-labelled edge without incident nodes (extending
the label alphabet as well) as shown in Figure 4.14. The number of ĉi-labelled edges
in a valid configuration is always the same as the number of ci-labelled edges (they are
simultaneously incremented and decremented). If we now contract a ci-labelled edge,
the ĉi-labelled edge remains unchanged. Note also that edge contraction rules can by
definition not be used to delete edges with an arity of less than two. Contracting a
ci-labelled edge will therefore irreversibly cause the numbers of ci and ĉi to differ. By
adding the same number of ĉi-labelled edges as there are ci-labelled edges to the initial

60

4.3. General Graph Transformation Systems with Minor Rules

and final configuration, we ensure that no contraction rules can be applied in a valid
computation. For node deletion rules the same argument holds as in the previous case.

〈q, ci−−, q′〉:
q ĉi

1 2
Bi ci

q′

1 2
Bi

Figure 4.15.: Variant of the decrement rule for edge-deleting and edge-contracting GTS

Edge deletion and contraction. Now let the graph Gf encoding a configuration 〈q′, k′, l′〉
of the Minsky machine be reachable from the graph G0 encoding a configuration 〈q, k, l〉
in the graph transformation system described in Figure 4.13 extended with edge deletion
and edge contraction rules. Again we modify the increment and decrement rules as shown
in Figure 4.15 to counter the problem of edge contractions. Note that the change we
have done in the node deletion and edge contraction case shown in Figure 4.14 is not
sufficient, since an ĉi-labelled edge without incident nodes can simply be deleted by an
edge deletion rule. In this case the ĉi-labelled edge can still be deleted, but the node
cannot, resulting in an invalid configuration. By the same argument as in the first case,
no other edges may be deleted in a valid computation. Note that in this case a node
incident to a ĉi-labelled edge may be matched non-injectively to one of the other nodes
without requiring a directed circle, but this requires a ĉi-labelled edge to be adjacent to
a ci-, Bi- or Ei-labelled edge, which is no the case in a valid configuration.

Thus, we have proven that our GTS simulated a Minsky machine even when adding
node deletion and edge deletion rules, node deletion and edge contraction rules or edge
deletion and contraction rules. This holds regardless of the types of matches used.

Concluding remark. The reduction used in this proof is not directly transferable to
directed graphs, since we use edges without incident nodes especially the case with
node deletion and edge contraction rules. In [BD+12a] we published a more complex
proof which only uses binary edges. However, this proof could be extended by using a
modification for the node deletion and edge contraction case similar to the one shown in
Figure 4.15. Instead of adding and deleting the nodes incident to ĉi-labelled edges, we
need to have one designated node to which we add and remove both ĉ1- and ĉ2-labelled
edges. This node also needs to be incident to the state-edge (which then has an arity of
one). In this way, if we remove ĉi-labelled edges by a node deletion rule, we also delete
the state-edge, permanently invalidating the configuration.

The existence of edge contraction rules is sufficient for the coverability problem to be
decidable, as we will show in Chapters 5 and 6. On the other hand, even with node
deletion and edge deletion rules, coverability is undecidable.

61

Chapter 4. Decidability Results for Graph Transformation

Proposition 4.10. The coverability problem is undecidable for the classes of all TG(Λ),
T c
G(Λ) and T i

G(Λ), respectively, where T is a node-deleting and edge-deleting GTS.
Proof. In this proof we use the same encoding as in the proof of Proposition 4.9 for
node-deleting and edge-deleting GTS, but use the control state reachability problem
for reduction (which is also undecidable [May03; Sch10]). This problem is the ques-
tion whether, given an initial configuration 〈q, k, l〉 and a final state q′, a configuration
〈q′, k′, l′〉 is reachable for any values of k′, l′. We will show that a state q′ is reachable if
and only if the graph consisting only of a q′-labelled edge (without nodes) is coverable
by the GTS.
Clearly, if a configuration 〈q′, k′, l′〉 is reachable, it can also be reached in the GTS.

The graph representing 〈q′, k′, l′〉 contains a q′-labelled edge and, thus, q′ is coverable.
Obviously this also holds when we add node deletion and edge deletion rules.
On the other hand, a sequence of rule applications covering q′ might contain applica-

tions of node or edge deletion rules. However, by removing all such applications from
the sequence we obtain a valid sequence which also covers q′. This comes from a mono-
tonicity which we will cover in Chapter 5 in greater detail: if we can cover a graph G
from a graph G0, we can also cover G from any graph larger than G0. By not applying
deletion rules, we automatically obtain a larger graph and thus q′ is coverable in the
GTS if and only if it is reachable by the Minsky machine.

4.4. Relabelling Rules
The rewriting formalism we defined in Chapter 3 only allows “relabelling” of edges by
deleting and recreating them. This is normally not a problem, since deletion and creation
of edges has no side effects. However, some formalisms also label nodes for which the
deletion and recreation will implicitly delete all incident edges.

For the DPO approach there are formalisms which allow unlabelled elements in rules
[HP02; Ros75]. An element of the graph is relabelled if its corresponding preimage in
the rule is unlabelled and the rule specifies its label to be set. Alternatively there are
approaches which use ordered label sets to restrain the relabelling process by a partial
order [PEM87]. We also used this approach in [SW14a; SW14b] for rewriting complex
label structures of coloured Petri nets.
Unfortunately, not many extensions of SPO exist that are capable of relabelling. We

will therefore define a simple extension in this section which is only capable of relabelling,
but not changing the graph structure. Note that for general GTS with relabelling the
undecidability results in the previous sections still hold. We also introduce node labels
(in addition to edge labels) for more flexibility and will see that in some cases node and
edge labels cannot be simulated by each other.
Definition 4.11 (Doubly-labelled hypergraph). Let Λe and Λn be two disjoint, finite
sets of labels. A 〈ΛV ,ΛE〉-hypergraph G is a tuple 〈VG, EG, cG, lVG , lEG〉, where VG is the set

62

4.4. Relabelling Rules

of nodes, EG is the set of edges, cG : EG → V ∗G is the connection function, lVG : VG → ΛV
is the node labelling function and lEG : EG → ΛE is the edge labelling function.

Example 4.12. Figure 4.16 shows how a relabelling rule for doubly-labelled graph may
be used for modelling. In this case the nodes are machines or processes in a network and
edges are network connections. Each element is labelled with its current state. Currently,
data is send from the left machine and received (rec) by the right machine. Intuitively,
when this rule is applied, the network connection is freed (free), the left machine starts
to wait for other connections and the right machine processes the data (pro). Note that
the actual morphism can easily be indicated by position, since the rule does not change
the graphs structure.

send rec
used

wait work
free

Figure 4.16.: Shows a network connection being freed after data has been transferred

For our relabelling approach we only use total morphism, since we need not change
the structure of graphs. However, for rules we have to drop the restriction that mor-
phisms preserve labels. This makes it necessary to distinguish between label-preserving
morphisms and relabelling morphisms.

Definition 4.13 (Relabelling morphisms). Let G, H be 〈ΛV ,ΛE〉-graphs. A relabelling
morphism f : G H consists of two total functions 〈fV : VG → VH , fE : EG → EH〉
such that fV (cG(e)) = cH(fE(e)) hold for all e ∈ EG.

We call a relabelling morphism label-preserving if lVG(v) = lVH(fV (v)) and lEG(e) =
lEH(fE(e)) hold for all v ∈ VG and e ∈ EG.

We use 〈ΛV ,ΛE〉-HGtr to denote the category of 〈ΛV ,ΛE〉-hypergraphs (in the following
only called graphs) and relabelling morphisms. It is easy to see that in 〈ΛV ,ΛE〉-HGtr
pushouts always exist and are (by definition) unique up to isomorphism. However, in
this category two graphs are isomorphic if they have the same structure, regardless of
their labels! To obtain a relabelling formalism we have to require that the match as well
as the co-match are label-preserving. Furthermore, we restrict to bijective rules (not
necessarily label-preserving) to ensure that the graph structure remains unchanged and
restrict to injective matches to prevent relabelling conflicts.

Definition 4.14 (Relabelling formalism). A relabelling morphism r : L R is called a
relabelling rule if r is a bijective (but not necessarily label-preserving). A node or edge x
is said to be relabelled by r if lL(x) 6= lR(r(x)). A match of a relabelling rule is a total,
injective and label-preserving morphism.

63

Chapter 4. Decidability Results for Graph Transformation

We say that a graph G can be relabelled to a graph H if there is a match m : L G,
〈H, r′,m′〉 is a pushout of r,m, the co-match m′ : R H is label-preserving and for all
x ∈ G, if lG(x) 6= lH(r′(x)), then x ∈ m(L).

Example 4.15. Figure 4.17 shows an application of the rule in Figure 4.16. We compute
H by the standard pushout construction. However, any graph with the structure of H
(regardless of labels) is a pushout. To obtain unique rewriting, Definition 4.14 states
two special conditions. The co-match m′ must be label-preserving, which ensures that
the part of G matched by m is in fact relabelled. The second condition ensures that any
part of G not matched bym is not relabelled. Note that this two conditions are sufficient
for a rewriting step to be unique up to the standard definition of graph isomorphisms.

send rec
used

wait work
free

send rec

wait

used

free
free

wait work

wait

free

free
free

r

m m′

r′

Figure 4.17.: An exemplary application of the rule in Figure 4.16

In the following we will use T i
G(Λ) to denote the transition system induced by T (we

restricted to injective morphisms already), where G(Λ) is the class of all graphs with
node labels ΛV and edge labels ΛE .
Clearly, both reachability and coverability from a fixed initial graph are decidable in

this setting, since the set of derivable graphs is finite. However, by not fixing the initial
graph, we obtain an existential coverability problem, which is interesting in its own right.

Definition 4.16. Let T be a relabelling graph transformation system and let IV , IE be
two subsets of the node and edge labels, respectively. The existential coverability problem
is the following: given a graph Gf , is there a graph G0 labelled only by elements of IV ,
IE and a graph H, such that G0 ⇒∗ H and Gf is a subgraph of H?

The existential coverability is of interest when analysing distributed systems with a
static network structure and where every component has a finite internal state. By
modelling an algorithm for a distributed system using a GTS, one effectively obtains a
relabelling GTS because the systems topology remains unchanged during execution of

64

4.4. Relabelling Rules

the algorithm. When Gf represents an error configuration, the existential coverability
problem transforms to the question: is there a distributed system where the modelled
algorithm produces the specified error? A slightly different approach using node labels is
pursued in [CMZ04], where the set of labels may be infinite and problems more specific
for distributed systems are studied.
We first examine the existential coverability problem for relabelling GTS with only

edge labels, i.e. the set of node labels is a singleton. It turns out that the problem can
be solved by a very simple algorithm.

Proposition 4.17 (Edge Relabelling). Let T be a relabelling GTS with the set of node
labels ΛV . The existential coverability problem is decidable for T i

G(Λ) if ΛV is a singleton,
i.e., |ΛV | = 1.

Proof. We will show that the existential coverability problem can be decided by a simple
fixed-point computation which determines the set of “reachable” edge labels. Intuitively
a label is reachable if it occurs on the right-hand side of a rule, where all labels in the
left-hand side are reachable or initial.

Let R be the rule set, H the graph to cover and I the set of initial (edge) labels. We
define Lab(G) to be the set of all labels the edges of a graph G are labelled with. Let
the label sets Labi with i ∈ N0 be recursively defined as follows:

Lab0 = I

Labi+1 = Labi ∪ {` ∈ Lab(R) | ∃(ρ : L R) ∈ R : (Lab(L) ⊆ Labi)}

Because the set of labels is finite, there is some n ∈ N0 such that the sequence becomes
stationary, i.e. Labm = Labm+1 for all m ≥ n. We will use Lab∗ to denote this limit of
the sequence. We now show that the graph H is existentially coverable by the GTS if
and only if Lab(H) ⊆ Lab∗.
If H is coverable, then there is an initial graph G0, a graph Gf larger than H and a

sequence of rule applications leading from G0 to Gf . Because G0 contains only initial
labels, every rule applied to generate Gf satisfies the condition of Labi for some i ∈ N0,
hence Lab(H) ⊆ Lab(Gf) ⊆ Lab∗ holds.
Now assume Lab(H) ⊆ Lab∗ holds, hence Lab(H) ⊆ Labi for some i ∈ N0. By

induction we show that any graph G satisfying Lab(G) ⊆ Labi for some i, is coverable.
The idea is, that if we can derive a graph covering a single edge by a sequence of rule
applications (for instance Figure 4.18a), we can do this multiple times on an arbitrary
large initial graph (see Figure 4.18b) to cover graphs with more than one edge. For each
edges in H we derive a graphs and compose all such graphs to cover H.

This holds for i = 0, because any graph containing only initial labels is coverable
without applying any rules (G0 is not fixed). Let G be a graph with Lab(G) ⊆ Labi+1
and assume Labi 6= Labi+1. By definition of Labi+1 there is a rule ρ` : L R for every
label ` ∈ Labi+1 \ Labi, where Lab(L) ⊆ Labi and ` ∈ Lab(R) ⊆ Labi+1. We construct

65

Chapter 4. Decidability Results for Graph Transformation

i
i

i

a

b
c

(a) A relabelling rule, or composition of rela-
belling rules

H Gf G0

a b a

b

c

b
a

c

i
i

i
i

i

i
⊆ *

(b) By composing graphs we can cover larger target graphs

Figure 4.18.: We can use rules (Figure 4.18a) to build larger graphs (Figure 4.18b) which
cover any graph with reachable labels

a graph G′ with Lab(G′) ⊆ Labi+1 by adding sufficient nodes and edges to G such
that ρ` can be applied backwards matching any occurrence of a label ` in G. After
all backwards applications we obtain a graph G′′ with Lab(G′′) ⊆ Labi, hence G′′ is
coverable by the induction hypothesis. By application of the rule ρ` to G′′ we obtain G′,
hence its subgraph G is coverable.

The situation is similar for GTS which use only node labels and we can even use the
same algorithm.

Proposition 4.18 (Node Relabelling). Let T be a relabelling GTS with the set of edge
labels ΛE. The existential coverability problem is decidable for T i

G(Λ) if ΛE is a singleton,
i.e., |ΛE | = 1.

Proof. The proof for this proposition is analogous to the proof of Proposition 4.17. The
sets Labi are defined in the same way, while Lab(G) is now the set of node labels of
G. Let H be the graph to be covered. Again by induction it can be shown that, an
α-labelled node is coverable if α ∈ Labi. If Lab(H) ⊆ Lab∗, we can generate one graph
Hv for each node v ∈ VH such that Hv can be reached from a graph Gv consisting only
of initial labels, and there is a node v̂ ∈ VHv and lVH(v) = lVHv

(v̂). Note that v̂ is also an
element of Gv, since rules are bijective. Thus, we can generate an initial graph which
covers H by first forming the disjoint union of all Gv and then adding an edge incident
to v̂1 . . . v̂n for each edge of H incident to v1 . . . vn. The correctness of this follows from
the fact that any match of a rule is still applicable after adding nodes and edges.

66

4.4. Relabelling Rules

Now assume that we use node and edge labels and both can be modified. Interestingly, it
turns out that the existential coverability problem is undecidable, since we can no longer
disregard the graph structure (which is a prerequisite of the proofs of Propositions 4.17
and 4.18). We can now use both labels to encode a Turing machine into the relabelling
system.

Proposition 4.19 (Node and Edge Relabelling). The existential coverability problem is
undecidable for the class of all T i

G(Λ), where T is an (unrestricted) relabelling GTS.

Proof. We encode a Turing Machine into a node and edge relabelling GTS, such that
the Turing machine halts if and only if the GTS covers an edge labelled with a final
state (see Appendix A.2 for a brief definition of a Turing machine).
Let ΛV = {In, L,R, F} be the set of node labels and ΛE = {Ie} ∪ ((Z ∪ {x})× Γ) be

the set of edge labels, where Z is the set of states and Γ is the tape alphabet of the TM
with blank symbol 2. Only the labels In and Ie are initial. With the exception of Ie
the edge labels denote the head position (where z ∈ Z denotes the presence and x the
absence of the head) as well as the current state of the TM and the tape symbol for each
cell of the tape. Before the GTS can simulate the TM, we need to extract a tape out of
the initial graph by applying the rules shown in Figure 4.19.

In In
Ie

L R
〈z0,2〉

R In
Ie

F R
〈x,2〉

In L
Ie

L F
〈x,2〉

Figure 4.19.: Rules for creating a valid tape for the Turing machine

The first rule is used to start the extraction of a tape out of the initial graph (z0 is
the initial state of the TM) and the next two rules are used to extend the tape to the
left and right. Note that the labels L and R mark the left and right end of the tape,
and the labels F marks the middle nodes blocking any extension of the tape there. This
ensures that the extracted tape on which the Turing machine is simulated, although it
might be connected to its own or other nodes by Ie-labelled edges, is always a path. On
a (possibly partially) extracted tape we can then apply the rules shown in Figure 4.20.
These rules are a direct translation of the Turing machines transition function.

It is possible that the initial graph has an insufficient size and the simulation is blocked
at some point. However, if there is a terminating computation of the Turing machine,
there will be a graph of sufficient size to contain the Turing machines tape. Furthermore

67

Chapter 4. Decidability Results for Graph Transformation

δ(z, α) = 〈z′, α′, R〉:

F F F
〈z, α〉 〈x, β〉

F F F
〈x, α′〉 〈z′, β〉

δ(z, α) = 〈z′, α′, N〉:

F F
〈z, α〉

F F
〈z′, α′〉

δ(z, α) = 〈z′, α′, L〉:

F F F
〈x, β〉 〈z, α〉

F F F
〈z′, β〉 〈x, α′〉

Figure 4.20.: A direct translation of the Turing machines transition function

this construction can generate multiple tapes, but these tapes can only be connected by
Ie-labelled edges and there is exactly one state in each tape.

We arrive at the surprising conclusion that while for edge or node relabelling existential
coverability is easily decidable, their combination results in an undecidable problem.
The fact that graphs with edge and node labels can be encoded into graphs with edge
labels or node labels only, does not help, since the encoding is not surjective. Thus, the
corresponding relabelling problems cannot be reduced to each other: there could always
be a graph outside of the image of the encoding from which we can cover the given
subgraph.

4.5. Overview
The decidability results for reachability and coverability (excluding the relabelling cases)
we have shown in this chapter are summarised in Figure 4.21. The solid lines show which
lower classes of GTS are subclasses of which upper classes. With the exception of the
node deletion and recreation case, we could show that these results hold independent of
the match types used. Coverability for bounded path graphs is decidable if all reachable
graphs have bounded paths, as we will show in Chapters 5 and 6. Unfortunately this
cannot be ensured by a syntactic restriction of the rules.

All results in this chapter are for the SPO approach defined in Chapter 3. Another
possibility would be to use double-pushout (DPO) rewriting [CM+97]. In DPO a node
cannot be deleted if it is connected to edges that are not explicitly deleted. This imposes
a form of negative application condition and indeed affects the decidability results. The

68

4.5. Overview

general

context-free*

edge contr. edge del. node del.

edge del.
& contr.

node del. &
edge contr.

node &
edge del.

with all
minor rules*

with
bounded
paths*

node del. &
recreation

no node
creation finite state

non-deleting

ReachabilityCoverability

Figure 4.21.: Decidability and undecidability boundaries; we prove the cases marked
with * in Chapters 5 and 6

relation between Petri nets and DPO GTS has been studied in [BCM05], where the
encoding of nets into GTS deletes and recreates nodes in order to simulate the effects of
inhibitor arcs from which we get undecidability of reachability and coverability even for
rules which leave the number of nodes always constant.
In Chapters 5 and 6 we will extensively study how the theory of well-structured tran-

sition systems can be used to achieve decidability for the coverability problem. A few
of the results are already shown in Figure 4.21 (marked by *). We will see that even if
the general problem is undecidable, partial decidability results can be achieved. More
precisely, we will present an algorithm which can compute whether a given graph is
coverable in the class of all graphs or not coverable within a restricted class of graphs,
but not the respective negated statements. To show that these results are not just of
theoretical interest, we present an implementation and case studies in Chapter 7.

69

Chapter
5

Well-Structured Graph Transformation
Systems

In Chapter 2 we introduced the theory of well-structured transition systems and there
have been some approaches which use this theory in the context of graph transformation
systems, mostly for the verification of protocols or distributed systems. In [AB+08]
well-structured graph rewriting is used to verify programs with dynamic heaps, but they
have to restrict to graphs with at most one outgoing edge – which is enough to represent
heaps – to achieve well-structuredness. As ordering they use a variant of the minor order
we present later in this section. In [BK+13] the authors consider the subgraph ordering,
but use a forward algorithm to solve weakly fair termination (not coverability) for depth
bounded systems. Finally, in [DSZ10] well-structured GTS are use for the verification
of broadcast protocols, which are not directly expressible by the formalism we defined
in Chapter 3. They use the induced subgraph ordering, a finer order than the standard
subgraphs ordering, since it seems to be more suitable for broadcast rules.
The approach we pursue in this chapter is to transfer the generalization of WSTS,

as introduced in Chapter 2, to graph transformation systems. The motivation of this
generalization was to be able to use orders which are well-quasi-orders only on a restricted
set of states. For this we consider three different orders, the minor ordering examined by
Robertson and Seymour [RS04; RS10], the subgraph ordering and the induced subgraph
ordering. Each order is a well-quasi-order, but possibly on a restricted class of graphs.
An advantage of using multiple orders is that each order gives rise to a different notion
of coverability. A class of graphs may be upward-closed according to one order, but not
to another. Furthermore, we will see in this chapter that there is a trade-off: a coarser
order is usually a well-quasi-order on a larger class of graphs, while a finer order is
usually well-structured with a larger class of transformation systems. In addition to the
three main orders, we will also briefly discuss other possible orders, such as the induced

71

Chapter 5. Well-Structured Graph Transformation Systems

or topological minor orderings covered in [FHR09; FHR12].
We published the majority of the results in this chapter in [KS14b; KS14a]. The

backwards algorithm described in these papers is covered in Chapter 6, where we also
state necessary and sufficient conditions for compatible orders.
In most orders a smaller graph can be obtained from a larger graph by deleting or

merging nodes and edges, possibly with constraints on this operations. Since this can
easily be done by partial graph morphisms, we can use classes of morphisms to represent
orders. This enables us to describe rewriting and the orders in a unified categorical
setting, which greatly simplifies our proofs. Although not all orders may be represented
in this way, we do not consider this a strong restriction, and in fact all orders we examined
so far satisfy this property.

Definition 5.1 (Representable by morphisms). Let � be a quasi-order on graphs that
is antisymmetric up to isomorphism, i.e. for graphs G1, G2 both G1 � G2 and G2 � G1
hold if and only if G1 and G2 are isomorphic.

We call � representable by morphisms if there is a class of (partial) morphisms M�
such that for two graphs G1, G2 it holds that G2 � G1 if and only if there is a morphism
µ : G1 G2 inM�. Furthermore, for (µ1 : G1 G2), (µ2 : G2 G3) inM� it holds
that µ2 ◦ µ1 is also contained inM�, i.e.M� is closed under composition. Finally we
require that for every graph G there are only finitely many µ ∈M�, up to isomorphism,
with the domain G. We call such morphisms µ order morphisms.

5.1. Minor Ordering
The first order we consider is the minor ordering. It is the coarsest order of the three
orders we consider and it was shown by Robertson and Seymour in a seminal result that
the minor ordering is a wqo on the set of all graphs [RS04], even for their variant of
hypergraphs [RS10]. We will extend their results to our minor ordering, a slight variant
of their definition for hypergraphs, and will show that case (i) of Theorem 2.21 applies,
i.e. the general coverability problem is decidable for every GTS which is well-structured
wrt. the minor ordering. The minor ordering was first used for well-structured GTS by
Joshi and König in [JK08; JK12], but not yet as part of a more general framework.

Definition 5.2 (Minor). A graph G1 is a minor of a graph G2 (written G1 v G2), if G1
can be obtained from G2 by a sequence of deletions of nodes (including all incident edges)
and contractions of edges. An edge contraction deletes an edge, chooses an arbitrary
equivalence relation on the nodes incident to the edge and merges all nodes in each
equivalence class. This includes edge deletion as a special case.

Example 5.3. Let the graph G be given as shown in the middle of Figure 5.1. Both the
left and the right graphs are minors of G. The left graph can be obtained by contracting
one B-labelled edge and deleting the other B-labelled edge. The right graph can be

72

5.1. Minor Ordering

obtained by contracting the A-labelled edge, merging the incident nodes 1, 2 and 3, 4
respectively. Note that using any other partition on these four nodes would also result
in a valid contraction of the A-labelled edge.

A

1 2

3 4

B BA
1

2

3
4

B Bv w

Figure 5.1.: Shows a graph (middle) and two of its minors (left and right)

The minor ordering was originally used to classify a class of graphs by forbidden minors,
i.e. given a class of graphs G we can define G′ as the class of all graphs which do not
contain a graph of G as a minor. By proving that the minor ordering is a wqo, Robertson
and Seymour also showed that for every downward-closed G′ there is a finite class G of
forbidden minors generating G′. Although the problem of checking if a given graph G1
is a minor of another given graph G2 is NP-complete [LR80], they could show that the
problem can be solved in polynomial time if G1 is fixed [RS95], a bound that was reduced
to quadratic time in [KKR12]. Together with the previous result this implies that for
every class of graphs that can be characterized by forbidden minors the membership
problem is decidable in polynomial time.

In this thesis, however, we will only use the dual property, that every class of graphs
which is upward-closed wrt. the minor ordering can be characterized by its finitely many
minimal elements. We define minor morphisms to represent the minor ordering.

Definition 5.4 (Minor morphism). We call a partial morphism µ : G1 G2 a minor
morphism (written µ : G1 G2) if it is surjective (on nodes and edges), injective on
edges and, whenever µ(v) = µ(w) = z for some v, w ∈ VG1 and z ∈ VG2 , there exists an
undirected path between v and w in G1 where all nodes on the path are mapped to z
and µ is undefined on every edge of the path.

Note that this definition does not explicitly require that two paths used to merge nodes
are node or edge disjoint. However, for v1, v2, w1, w2 with µ(v1) = µ(w1) 6= µ(v2) =
µ(w2) the two paths for v1, w1 and v2, w2 are implicitly node disjoint, since all nodes
of the first path are mapped to µ(v1) and all nodes of the second path are mapped to
µ(v2). On the other hand, the paths need not be edge disjoint, in fact, an edge of higher
arity can be used in multiple paths as shown by the right minor in Figure 5.1. There
the A-labelled edge merges by contraction the upper two and the lower two nodes and
thus contributes to two different (node-disjoint) paths.
We prove that the class of all minor morphisms in fact represents the minor ordering

by the following lemma.

73

Chapter 5. Well-Structured Graph Transformation Systems

Lemma 5.5. The minor ordering is representable by minor morphisms (cf. Defini-
tion 5.1).

Proof. We first show that minor morphisms are closed under composition. Let µ : G1
G2, µ′ : G2 G3 be two minor morphisms. Obviously the composition µ′◦µ is surjective
and injective on edges. It remains to show that the third property is also satisfied.
So let v, w be two nodes of G1 with µ′(µ(v)) = µ′(µ(w)) = z. Since µ′ is a minor

morphism there exists a path v′0, e′1, v′1, . . . , e′n, v′n between µ(v) = v′0 and µ(w) = v′n in
G2, where e′i is incident to nodes v′i−1, v′i for 0 < i ≤ n. Furthermore all nodes v′i are
mapped to z by µ′ and the image of all edges is undefined.
The morphism µ is surjective, hence there exist edges e1, . . . , en in G1 such that

µ(ei) = e′i, where ei is incident to nodes vi−1, wi (i.e. vi−1, ei, wi is a path) with µ(vi) =
v′i = µ(wi). Since µ is a minor morphism, vi and wi (for 0 < i < n) are connected by
a path xi0, f

i
1, x

i
1, . . . , f

i
mi
, ximi

in G1 where wi = xi0 and vi = ximi
. Furthermore, since

µ(v0) = v′0 = µ(v) there exists a path x0
0, f

0
1 , x

0
1, . . . , f

0
m0 , x

0
m0 from v = x0

0 to v0 = x0
m0

and analogously a path xn0 , f
n
1 , x

n
1 , . . . , f

n
mn
, xnmn

from wn = xn0 to w = xnmn
. Also, the

image of all these edges under µ is undefined. So the combined path

x0
0, f

0
1 , . . . , f

0
m0 , x

0
m0 , e1, x

1
0, f

1
1 , . . . , f

n−1
mn−1 , x

n−1
mn−1 , en, x

n
0 , f

n
1 , . . . , f

n
mn
, xnmn

connects v and w and it satisfies all the requirements of Definition 5.4.
It remains to be shown that a minor morphisms µ : G2 G1 exists if and only if

G1 v G2. Assume G1 v G2, then G1 can be obtained from G2 by deleting nodes and
contracting edges as specified in Definition 5.2. Clearly each of these operations can be
separately specified by a minor morphism. If such operations are applied repeatedly, the
result follows from the fact that minor morphisms are closed under composition.
Conversely, let µ : G2 G1 be a minor morphism. Now perform the following op-

erations on G2. First, determine all nodes in G1 which have more than one preimage
under µ. Since all preimages have to be connected by paths in G2, where µ is undefined
on the edges in the paths, we can contract all such edges, resulting in a graph G′ with
a minor morphism µ′ : G2 G′, where nodes are merged by µ′ if and only if they are
merged by µ. Afterwards, if an edge in G2 has no image under µ and was not already
deleted by µ′, we can delete it from G′ to obtain an G′′ with µ′′ : G′ G′′. Then we can
delete every node without an image under µ and obtain G1. Note that all nodes deleted
in the last step are isolated, since a node may only be undefined under a morphisms if
all incident edges are undefined. Thus, all incident edges have been deleted already in
one of the first two steps. Since we have restricted ourselves to edge contractions, edge
deletions and node deletions, it is clear that G1 is a minor of G2.

Although their notions of minors are slightly different, we can transfer the results of
Robertson and Seymour to our setting

Proposition 5.6 ([RS10]). The minor ordering is a wqo on the class of all graphs.

74

5.1. Minor Ordering

Proof. We can obtain this result as a corollary of the results in [RS10], but we have to
translate between the two settings. In Proposition 1.6 of [RS10] Robertson and Seymour
use hypergraphs where nodes are ordered with respect to an edge (as in our case), but
where edges can only be incident to the same node once, i.e., the sequence of nodes
incident to an edge does not contain duplicates. This difference can be remedied by
replacing edges which are incident to some node more than once with new edges of lower
arity (and a new label). We will now first do this translation and then use Proposition 1.6
of [RS10] to show that our ordering is a wqo.
Assume that we have a sequence G1, G2, G3, . . . of graphs. In order to make sure that

the nodes incident to an edge are all distinct, we transform graphs as follows: let Λ be
the label alphabet and for each label ` ∈ Λ with ar(`) = k we enumerate all partitions on
the set {1, . . . , k}. For each such partition we fix an arbitrary order on the equivalence
classes. The new label set Λ′ now consists of pairs 〈`, E1 . . . En〉 where E1 . . . En is one
of the chosen sequences of equivalence classes. We set ar(〈`, E1 . . . En〉) = n. Now
transform a graph G into a graph G′ by replacing every edge with label ` of arity k by a
corresponding edge e′ with label 〈`, E1 . . . En〉, where n is the number of distinct nodes
incident to e. Here E1, . . . , En are the equivalence classes induced by the equivalence
i ≡ j ⇐⇒ cG(e)[i] = cG(e)[j]. The new edge e′ is incident to a node sequence v′1 . . . v′n,
where v′i = cG(e)[j] for an arbitrary index j ∈ Ei. Note that two graphs G,H are
isomorphic if and only if their transformed graphs G′, H ′ are isomorphic.

Concerning the second requirement (well-quasi order on the labels): since we have
only finitely many labels in Λ the set Λ′ is finite as well and we can choose the identity
as well-quasi order.
We now consider the sequence G′1, G′2, G′3, . . . of transformed graphs. According to

Proposition 1.6 there exists indices i < j such that there is a collapse of G′j to G′i. More
precisely, there exists a function η with domain VG′i ∪ EG′i such that:

1. If v ∈ VG′i , then η(v) is a non-empty connected subgraph of KVG′
j

(where KV is
the undirected complete graph on the node set V) and the graphs η(u), η(v) are
pairwise disjoint for distinct u, v ∈ VG′i .

2. η(e) ∈ EG′j for all e ∈ EG′i and η is injective on edges and label-preserving.

3. For e ∈ EG′i if cG′i(e) = v1 . . . vn, then cG′j (η(e)) = u1 . . . un and ui is contained in
the subgraph η(vi) for every i ∈ {1, . . . , n}.

4. For each v ∈ VG′i and each (undirected) edge f in η(v), connecting x, y ∈ VG′j ,
there exists an edge e ∈ EG′j which is incident to x, y. Furthermore e is not in the
image of η. (The latter can be assumed since our label alphabet is finite and each
label is associated with an arity. Hence every edge is bounded, i.e., has a finite
neighbourhood.)

75

Chapter 5. Well-Structured Graph Transformation Systems

Now define a minor morphism µ : G′j G′i as follows:

• An edge e′ of G′j is mapped to e in G′i whenever η(e) = e′. If no such edge exists
µ(e) is undefined. This is well-defined since η is injective on edges (Condition 2).
Furthermore µ is injective and surjective on edges.

• Whenever a node v′ ofG′j is contained in a subgraph η(v) we map v′ to v. Otherwise
µ(v′) is undefined. Clearly due to Condition 1 the µ obtained in this way is well-
defined and surjective on nodes.

We now verify that µ is a partial morphism. Assume that µ(e′) = e with cG′i(e) =
v1 . . . vn and cG′j (e′) = u1 . . . un: then η(e) = e′ and ui is contained in η(vi) (Condition 3).
Hence ui is mapped to vi, which means that the image of all nodes is defined and the
map µ is structure-preserving.

Finally assume that µ(v′) = µ(w′) = z. This means that v′, w′ are both contained in
η(z). Since the subgraph η(z) is connected there exists a path from v′ to w′ in η(z).
Let us denote this path by v′0, f1, v

′
1, . . . , v

′
n−1, fn, v

′
n with v′ = v′0 and w′ = v′n. Without

loss of generality we assume that the path is minimal. By Condition 4 we can require
that there exists edges e′k ∈ EG′j , which are not in the image of η and adjacent to
v′k−1, v

′
k. This implies the existence of a path v′0, e′1, v′1, . . . , v′n−1, e

′
n, v
′
n such that µ(e′k) is

undefined and µ(v′k) = z (since all nodes v′0, . . . , v′n are within the subgraph η(z) and are
hence mapped to z). Note that we can assume that all edges e′l are pairwise non-equal,
since otherwise there is a shorter path connecting v′ and w′. In this case we can safely
assume that η(z) is complete in the following sense: if there is an edge g incident to
nodes x, x′, x′′ ∈ η(z), then there are three edges in η(z) connecting {x, x′}, {x, x′′} and
{x′, x′′}. Thus, if the path contains {x, x′} and {x′, x′′}, we can shorten the path by
using {x, x′′} instead.
This means that µ : G′j G′i is a minor morphism. It is easy to see that the existence

of µ also implies the existence of a minor morphism ν : Gj Gi.
Note that the collapse relation of [RS10] is finer than the minor ordering of Defini-

tions 5.2 and 5.4. Especially a minor morphism might map straight edges to loops,
which is not allowed in the collapse. However, this only means that we might “miss”
some pairs of related graphs, but we will always find one.

Since the minor ordering is a well-quasi-order on all graphs, we can use it not just for
Q-restricted WSTS, but also for general WSTS. Unfortunately, since the minor ordering
is so coarse, it does not form a WSTS with all graph transformation systems, since the
compatibility condition of Definition 2.11 is not automatically satisfied.

Lossy Systems
A large class of systems for which the compatibility condition is often satisfied, are lossy
systems [FS01], e.g. lossy counter machines [May98; Sch10]. Lossy versions of different

76

5.1. Minor Ordering

formalisms are often used for the verification of safety properties of protocol [AC+04] and
can also be used for model checking [BM99]. Even in the context of probabilistic systems
lossyness may be used for verification [Sch04; AB+05] and model checking [BS03].
In the setting of graph transformation a system is lossy when it contains edge contrac-

tion rules for every label (rules deleting an edge and merging its incident nodes according
to some partition). In fact, it is sufficient to have contraction rules for edges of arity
larger than one. These rules can be used to rewrite a graph to a minor to make rules
applicable, thus the compatibility condition is satisfied. If a GTS does not contain these
rules, they can be added, but this affects the induced transition system and results in
an over-approximation of the original GTS.

Proposition 5.7 (WSTS wrt. the minor ordering). Let T be a GTS that contains edge
contraction rules for every edge label of arity larger than one. More precisely, for ` ∈ Λ
with ar(`) > 1 we require rules that delete this edge and contract the incident nodes
according to every possible partition, disregarding only the trivial partition where each
node is only equivalent to itself.
Then the transition systems TG(Λ), T c

G(Λ) and T i
G(Λ) induced by T on the class of all

graphs using general, conflict-free and injective matches, are all WSTS.

Proof. Assume that G2 is a minor of G1, witnessed by a minor morphism µ, and there
exists a total match m : L G2 of a rule r : L R as shown in Figure 5.2.

G1 L

G2

µ m

G1 L

G2

G′
*
m′

µ′

µ m

Figure 5.2.: If r is applicable to a minor of G1 (left) we need to contract edges to generate
a graph to which the rule is applicable (right)

Then, by mimicking the edge contractions performed by µ (but not the edge and node
deletions), we can rewrite G1 to G′ via the contraction rules in T and we obtain the
situation in the right of Figure 5.2. Note that G2 is a subgraph of G′, m′ is conflict-free
whenever m is conflict-free and analogously m′ is injective if m is injective.

The pushout square can be split into two pushouts (see Lemma 3.8) as shown in
Figure 5.3. We can show that µ′′ is a minor morphism. First of all, according to
Lemma 3.31 µ′′ is injective since µ′ is injective and thus, trivially a path exists whenever
nodes are merged. Since surjectivity is also preserved by pushouts, µ′′ is also surjective.
Since µ′ does not contract any edges, the deletions performed by µ′ are either done by

77

Chapter 5. Well-Structured Graph Transformation Systems

L R

G′

G2 H2

r

m′

µ′

m

L R

G′

G2 H2

H ′

r

m′

µ′

m

µ′′

Figure 5.3.: Shows how rewriting G2 via m results in a minor of H ′, the graph obtained
from rewriting G′ via m′

the rule (e.g. as dangling edges) or are performed by µ′′. In fact, H2 is again a subgraph
of H ′.
Hence, if G2 can be rewritten to H2, we can first rewrite any larger G1 in possibly

multiple step to G′ and then rewrite G′ in one step to H ′, with H2 v H ′. Since the
minor ordering is a wqo on all graphs, TG(Λ), T c

G(Λ) and T i
G(Λ) are all WSTS. Note that

matches of edge contraction rules are always conflict-free, since no nodes are deleted and
there is only one edge. In the case of T i

G(Λ) we need to add edge contraction rules with
partially merged left-hand sides, i.e. we merge nodes of the left-hand side according to
any partition and adjust the rule and right-hand side accordingly. In this way we ensure
that edge contraction is always possible, even when edges are incident to the same nodes
multiple times.

1 2A 1 2A A

(a) Spawning a new active process

1
2

3A

4

P 1
2

3A

4

A

(b) Passive process is being reactivated

1 2A 1 2P

(c) Active process becomes passive

1 2A 1, 2

(d) Active process leaves

1 2P 1, 2

(e) Passive process leaves

Figure 5.4.: Rules for a simple system of processes in a ring structure

78

5.1. Minor Ordering

Example 5.8. An example of a lossy system is shown in Figure 5.4. There we have a
ring of active (A) and passive (P) processes, where each edge corresponds to a process.
An active process can spawn new active processes (Figure 5.4a), reactivate a subsequent
passive process (Figure 5.4b) or become passive itself (Figure 5.4c). Both active and
passive processes can choose to leave the ring (Figures 5.4d and 5.4e). Note that all rules
maintain the ring structure. Due to the last two rules, the GTS satisfies the conditions
of Proposition 5.7 and therefore induces a WSTS. The rule set is also sufficient when
using injective matches, since a rule contracting an A- or P -labelled loop is effectively a
deletion rule and therefore not necessary for the well-structuredness.

Context-Free Graph Transformation Systems
Another class of well-structured graph transformation systems (wrt. the minor order-
ing) are context-free GTS. These GTS are the result of transferring the well-known
classification for string grammars by Chomsky to graph grammars – graph transforma-
tion systems with initial graphs – and base upon work of Courcelle about recognizable
(i.e. regular) languages [BC87; Cou90]. The context-free graph grammars in this setting
are better known as hyperedge replacement systems which where introduced by Habel
and Kreowski [DKH97] and extensively studied in Habels PHD thesis [Hab89; Hab92].
In hyperedge replacement systems the left-hand side of a rule consists of a single hyper-
edge with a distinct sequence of nodes and a rule may replace this hyperedge by any
graph. However, a rule neither deletes nor merges nodes.
Hyperedge replacement systems are usually used for language generation, distinguish-

ing between terminal and non-terminal edge labels. Words of the grammar (which are
graphs in this case) are generated by applying rules beginning with a single edge with a
designated non-terminal label until the word contains only edges with terminal labels.
The membership problem of context-free graph grammars corresponds to the reacha-
bility problem when fixing the initial graph. In the following we will not distinguish
between terminal and non-terminal labels, since these have no effect on the decidability
result.

Definition 5.9 (Context-free graph transformation system). Let r with r : L R be
are rule. We say that r is context-free if it satisfies the following restrictions:

• The left-hand side L has the form L = 〈{v1, . . . , vn}, {e}, cL, lL〉 with cL(e) =
v1 . . . vn, i.e., L consists of a single hyperedge, which is incident to a duplicate-free
sequence of nodes.

• The rule r is defined and injective on v1, . . . , vn. Furthermore r is undefined on e.

A graph transformation system T is called context-free if every rule r ∈ T is context-free.

79

Chapter 5. Well-Structured Graph Transformation Systems

Example 5.10. Examples of context-free rules are shown in Figure 5.5. In a context-
free grammar one would declare A a non-terminal and B a terminal label and would be
interested in the graphs generated by the grammar which contain only B-labelled edges.
A graph transformation system consisting of the rules r1 and r2 will generate all trees
with B-labelled edges. A graph transformation system consisting of the rules r2 and r3
will only generate all binary trees.

1

A

1

A A

B

r1

(a) Rule adding one B-labelled edge

1

A

1

r2

(b) Rule removing A-labelled edges

1

A
1

A

A

B

B

r3

(c) Rule adding two B-labelled edges

Figure 5.5.: Example of three context-free rules

Although context-free GTS do not necessarily satisfy the conditions of Proposition 5.7,
we can still show that they satisfy the compatibility condition wrt. the minor ordering.

Proposition 5.11. Let T be a context-free GTS. Then TG(Λ), T c
G(Λ) and T i

G(Λ) are all
WSTS wrt. the minor ordering.

Proof. We can prove this proposition similar to Proposition 5.7 with the difference that
just one rule application is necessary.

Let r : L R be a (context-free) rule and let m : L G2 be a match. Since the
rule does not delete nodes and there is just one edge in the left-hand side (which cannot
be matched non-injectively), every match m is automatically conflict-free. Now let G1
be a graph with G2 v G1, i.e. there is a minor morphism µ : G1 G2, as shown in
Figure 5.6. We first show that there is an m′ : L G1 with m = µ ◦m′ for any m, µ.

Let e ∈ L be the edge of L. Since µ is surjective and injective on edges, there is exactly
one e′ ∈ G1 with µ(e′) = m(e). We define m′ as m′(e) = e′ and m′(cL(e)[i]) = cG1(e′)[i]
for 1 ≤ i ≤ ar(l(e)). Since L only consists of e and its incident nodes,m′ is obviously well-
defined and we only need to show thatm = µ◦m′. By definition µ(m′(e)) = µ(e′) = m(e)
and for the nodes we obtain

µ(m′(cL(e))) = cG2(µ(m′(e))) = cG2(µ(e′)) = cG2(m(e)) = m(cL(e)).

80

5.2. Subgraph Ordering

L R

G1

G2 H2

r

m′

µ

m

r′′

L R

G1

G2 H2

H1

r

m′

µ

m

r′′

r′

µ′

Figure 5.6.: For any µ, the match m can be split into µ ◦m′

Thus, the morphisms commute. Note that m′ is automatically conflict-free and m′ is
injective if m is injective, since both are total. It only remains to be shown that µ′ is a
minor morphism.
Since µ is injective on edges and injectivity is preserved by pushouts, µ′ is injective

on edges as well (see Lemma 3.31). The same argument also holds for surjectivity, so
only the last condition remains to be shown. Assume there are two nodes v1, v2 ∈ H1
with v1 6= v2 and µ′(v1) = µ′(v2). There must be preimages v′1, v′2 ∈ G1 of v1, v2, since
otherwise theses nodes cannot be merged in the pushout (the graph not merging them
would be more general). Note that r is by definition injective, implying that r′ and r′′ are
injective as well. This means that due to commutativity not just r′′(µ(v′1)) = r′′(µ(v′2)),
but also µ(v′1) = µ(v′2) holds and the images of v′1 and v′2 under µ are defined. By
definition there must be a path x0, e1, x1, . . . , en, xn in G1 with v′1 = x0 and v′2 = xn.
Since µ(ei) is undefined for all i, none of the ei can be e′ and thus r′(ei) is defined.
Analogously, r′(xi) is also defined for all i, since both r and m′ are total on nodes.
Hence, the path r′(x0), r′(e1), r′(x1), . . . , r′(en), r′(xn) with r′(x0) = v1, r′(xn) = v2
exists in H1 and due to commutativity µ′(r′(ei)) is undefined and µ′(r′(xi)) = µ′(v1) for
all i. Thus, the last condition for minor morphisms is satisfied.

This means that G2 v G1 impliesH2 v H1 and the compatibility condition is satisfied.

Habel already showed the decidability of reachability for context-free graph transfor-
mation systems in her PHD thesis [Hab89]. In later work they could show that the
problem is NP-complete [DKH97]. More precisely: there are context-free graph gram-
mars for which the membership problem is NP-complete (in the size of the graph to
be reached). Our result in Proposition 5.11 suggests that coverability wrt. the minor
ordering is decidable and we will show that a backward algorithm exists in Chapter 6.

5.2. Subgraph Ordering
An order even more commonly used than the minor ordering is the subgraph ordering.
It is similar to the minor ordering, but does not allow edge contraction, which obviously

81

Chapter 5. Well-Structured Graph Transformation Systems

causes the subgraph ordering to be finer. It was already used for instance by Meyer for
the π-calculus [Mey09] or by Bansal et al. for deciding weakly fair termination [BK+13].
Unfortunately, since it is finer, the subgraph ordering is not a well-quasi-order on the
class of all graphs, but going back to a result of Ding [Din92] we will be able to show that
it is a wqo when bounding the length of paths by a constant. We first used this order
in a general survey about decidability of graph transformation [BD+12b; BD+12a] and
integrated it into our general framework in [KS14b; KS14a].

Definition 5.12 (Subgraph). Let G1, G2 be graphs. We say that G1 is a subgraph of
G2 (written G1 ⊆ G2) if G1 can be obtained from G2 by a sequence of deletions of edges
and isolated nodes.

Note that G1 ⊆ G2 implies G1 v G2, but not vice versa. Just like the minor ordering,
we can represent the subgraph ordering by morphisms.

Definition 5.13 (Subgraph morphism). We call a partial morphism µ : G1 G2 a
subgraph morphism (written µ : G1 G2) if and only if it is injective on all elements
on which it is defined and surjective.

Obviously every subgraph morphisms is also a minor morphisms, which allows us to
transfer some of the properties of minor morphisms.

Lemma 5.14. The subgraph ordering is representable by subgraph morphisms (cf. Def-
inition 5.1).

Proof. Let G,G′ be two graphs with G ⊆ G′, then by definition G can be obtained from
G′ by a sequence of node and edge deletions of length n. W.l.o.g. we can assume that
we first delete all edges and then all (isolated) nodes. For each deletion we can define
a subgraph morphism µi : Gi Gi+1, where µi is undefined on x – the node or edge
deleted by the i-th deletion in the sequence – and the identity on all other elements.
We can then compose all morphisms µ = µn ◦ . . . ◦ µ1 with G1 = G′ and Gn+1 = G.
Since injectivity and surjectivity are preserved by composition, µ : G′ G is again a
subgraph morphism.
Let µ : G′ G be a subgraph morphism. Since µ is surjective and injective, the

inverse of µ is a total, injective morphism µ−1 : G G′. The image of µ−1 is therefore
isomorphic to G and a subgraph of G′, thus G ⊆ G′ holds.

We will show that the subgraph ordering is a wqo on the class of all graphs where the
longest path is bounded. For this we first generalize the notion of undirected paths for
hypergraphs.

Definition 5.15 (Undirected path). Let G be a graph. An (elementary) undirected path
of length n in G is an alternating sequence v0, e1, v1, . . . , vn−1, en, vn of nodes and edges

82

5.2. Subgraph Ordering

(i.e. ej ∈ EG and vj ∈ VG) such that for every index 1 ≤ i ≤ n the nodes vi−1 and vi are
incident to ei and the undirected path contains all nodes and edges at most once.
We use Gn to denote the class of all graphs, where the longest undirected path has

length n.

Note that there is no established notion of directed paths for hypergraphs, but our
definition gives rise to undirected paths in the setting of directed graphs (which are a
special form of hypergraphs). Since we will not use any notion of direction in paths, we
will simply speak of paths instead of undirected paths.
Using a result from Ding [Din92] we can show that the class Gn is well-quasi-ordered by

the subgraph relation. A similar result was shown by Meyer for depth-bounded systems
in [Mey09]. Note that we bound undirected path lengths instead of directed path lengths.
For the class of graphs with bounded directed paths there exists a sequence of graphs
violating the wqo property (a sequence of circles of increasing length, where the edge
directions alternate along the circle). This violating sequence will still be violating for
any proper generalization of directed paths to hypergraphs.

Proposition 5.16. The subgraph ordering is a wqo on the class Gn for every natural
number n.

Proof. In [Din92] Ding showed that this proposition holds for undirected, simple graphs
with node labels. We will now give an encoding f of hypergraphs to such graphs satis-
fying the following conditions:

• There is a function g : N0 → N0 such that, if the longest undirected path in a
hypergraph G has length n, then the longest undirected path in f(G) has length
g(n).

• For every two hypergraphs G1, G2 if f(G1) ⊆ f(G2) then G1 ⊆ G2.

If these two properties hold, every infinite sequence G1, G2, . . . of hypergraphs with
bounded undirected paths can be encoded into an infinite sequence f(G1), f(G2), . . . of
undirected graphs with bounded paths. Since Ding has shown that there are indices
i < j such that f(Gi) ⊆ f(Gj), the same holds for the original sequence, i.e. Gi ⊆ Gj
holds, and ⊆ is a wqo on Gn. Note that Ding measures the length of paths by the number
of nodes. However, in this proof we measure path lengths by the number of edges, both
for hypergraphs as well as undirected graphs.
Let G = 〈V,E, c, l〉 be a Λ-hypergraph. We define its encoding as an undirected graph

f(G) = G′ = 〈V ′, E′, l′〉 where E′ consists of subsets of V ′ with (exactly) two elements

83

Chapter 5. Well-Structured Graph Transformation Systems

and l′ : V ′ → Λ′ where the components are defined as follows:

V ′ = V ∪ E ∪ {〈v, i, e〉 ∈ V × N× E | c(e)[i] = v}
E′ = {{x, y} | x = 〈v, i, e〉 ∈ V ′ ∧ (y = v ∨ y = e)}
Λ′ = Λ ∪ {N} ∪ {m ∈ N | ∃` ∈ Λ : (m ≤ ar(`))}

l′(x) =


N if x ∈ V
l(x) if x ∈ E
i if x = 〈v, i, e〉

Note that we assume that N /∈ Λ and Λ∩N = ∅ (we could easily fix this by renaming).
An example of such an encoding can be seen in Figure 5.7, where the hypergraph on the
left is encoded in the graph on the right-hand side.

A B

1 2

3 4

1 2

3

N N

N N

A

N

B

1 2

3 4

1 2

3

Figure 5.7.: Shows the encoding of hypergraphs into node-labelled, undirected graphs

We now show that the encoding satisfies the two necessary properties. First we ob-
serve, that every (undirected) graph generated by this encoding can be transformed back
to a unique hypergraph, up to isomorphism.
Now let G be a hypergraph, where the longest undirected path is bounded by n, we

show by contradiction that in f(G) there can not be a path of length 4n+ 10 or longer.
Assume there is such a path in f(G). Apart from the first and last node, all nodes
labelled with N or ` ∈ Λ on this path are adjacent to (exactly) two nodes labelled
with m ∈ N and all nodes labelled with m ∈ N are adjacent to (exactly) one node
labelled with N and one node labelled with ` ∈ Λ (this can again be violated in the
start and end of the path). We now take the longest subpath which starts and ends
with nodes labelled with N . Since this possibly shortens the path by 3 at both ends,
the new path has at least length 4n + 4. This new path can be translated back to a
sequence v0, e1, v1, . . . , vn, en+1, vn+1 since every node labelled with N is a node of (the
hypergraph) G and every node labelled with ` ∈ Λ is an edge of G. Since the path in
f(G) does not contain a node twice, the corresponding path in G does not contain nodes
or edges twice. This violates our assumption, that the longest undirected path of G is
bounded by n, thus, there is no path of length 4n+ 10 or longer in f(G).

Let G1, G2 be hypergraphs such that f(G1) ⊆ f(G2). Then there is a total, injective
morphism µ : f(G1) f(G2). Since f(Gi) contains (as nodes) all nodes and edges of Gi

84

5.2. Subgraph Ordering

(for i ∈ {1, 2}), we can restrict µ to VG1 ∪EG1 and construct a total, injective morphism
µ′ : G1 G2. The nodes of f(Gi) labelled with natural numbers, ensures the morphism
property on the hypergraphs. By inverting µ′ we obtain an injective and surjective, but
partial morphism from G2 to G1, i.e. a subgraph morphism. Hence G1 ⊆ G2 according
to Lemma 5.14.

The fact that the subgraph ordering is finer than the minor ordering causes it to be a
wqo only on a restricted class of graphs. However, it also causes more GTS to satisfy
the compatibility condition. In fact, any GTS without any form of negative application
condition satisfies the compatibility condition wrt. the subgraph ordering. Any GTS we
use (according to Definition 3.19) satisfies this property.
Proposition 5.17 (WSTS wrt. the subgraph ordering). Let T be an arbitrary GTS
and let G be any downward-closed class of graphs on which the subgraph ordering is a
wqo. The systems TG(Λ), T c

G(Λ) and T i
G(Λ) are all G-restricted WSTS wrt. the subgraph

ordering.
Proof. We have to show that whenever G ⇒ H and G ⊆ G′, there exists H ′ with
G′ ⇒∗ H ′ (here even G′ ⇒ H ′) and G′ ⊆ H ′.

Let r : L R be a rule and m : L G a matching that is such that G is rewritten
to H, i.e. the upper square in Figure 5.8 is a pushout. Furthermore, let µ : G′ G
be a subgraph morphism (i.e. G ⊆ G′), then the inverse morphism µ−1 is total and
injective. Let H ′ be the pushout object of r′ and µ−1, i.e. the lower square in Figure 5.8
is a pushout. According to Lemma 3.7 the outer square is a pushout as well and thus,
we can use r to rewrite G′ with the matching mµ = µ−1 ◦ m (which is total) to H ′.
Furthermore, since µ−1 is injective and total, mµ is conflict-free if m is conflict-free and
mµ is injective if m is injective.

L R

G H

G′ H ′

r

m
r′
m′

µ−1

r′′
ν

Figure 5.8.: Using the inverse of a subgraph morphism µ, we can show that any GTS
satisfies the compatibility condition wrt. the subgraph ordering

Also, µ−1 is a monomorphism and therefore preserved by pushout construction, i.e. ν
is total and injective (see also Lemma 3.31). This means that the inverse of ν is a
subgraph morphism and H ⊆ H ′ holds. Thus, the compatibility condition holds, and
since by definition ⊆ is a wqo on G, the systems TG(Λ), T c

G(Λ) and T i
G(Λ) are G-restricted

WSTS wrt. the subgraph ordering.

85

Chapter 5. Well-Structured Graph Transformation Systems

Since we already showed in Proposition 5.16 that ⊆ is a wqo on the class Gn, we obtain
Gn-restricted-WSTS wrt. the subgraph ordering.
Unfortunately, both the general and the restricted coverability problems are unde-

cidable. For the general coverability problem (cf. Definition 2.10) this follows from our
results in Chapter 4. We can show the undecidability of restricted coverability (cf. Def-
inition 2.17), even for Gn, by a simple reduction from the control state reachability
problem for two-counter machines. Although we cannot directly simulate the zero test,
i.e. negative application conditions are not possible, we can make sure that the rules sim-
ulating the zero test are applied correctly if and only if the bound n was not exceeded.
A state in the two-counter machine is then reachable if and only if an appropriate graph
is coverable without leaving Gn.

Proposition 5.18. Let n ≥ 2 be a natural number. The restricted coverability prob-
lem for the Gn-restricted WSTS TG(Λ), T c

G(Λ) and T i
G(Λ) wrt. the subgraph ordering, is

undecidable.

Proof. We reduce the control state reachability problem of Minsky machines (see Ap-
pendix A.3 for a brief definition) to the restricted coverability problem using the sub-
graph ordering on the set of graphs G2, where the length of the longest undirected path
is less than or equal to two. Let 〈Q,∆, 〈q0,m, k〉〉 be the Minsky machine, where Q is
the set of states, ∆ ⊆ Q× Cmd ×Q is the set of instructions with the set of command
Cmd and 〈q0,m, k〉 defines the initial state and counter values. We define a GTS using
{q, qB | q ∈ Q}∪ {c1, c2, X} as the set of labels. The initial graph is shown in Figure 5.9
and illustrates how configurations of the Minsky machine are represented as graphs.

q0 c1

X

X
m c2

X

X
k

Figure 5.9.: The initial configuration 〈q0,m, k〉 of the Minsky machine represented by a
graph

For each transition rule of the Minsky machine, we add a graph transformation rule
as shown in Figure 5.10. A counter is represented as a star-like structure with a main
node as centre, where the value of the counter is the number of incident X-labelled edges.
The centre nodes are marked by unary c1- or c2-labelled edges respectively. Incrementing
and decrementing corresponds to creating and deleting X-labelled edges incident to the
appropriate centre node, as shown in Figure 5.10. Regardless of the counters value, the
longest undirected path of this structure has at most length two.
The zero test adds two X-labelled edges and “blocks” the state-edge, such that the

rewritten graph has an undirected path of length three if and only if the counter was not

86

5.2. Subgraph Ordering

zero (i.e. had an X-labelled edge attached). The auxiliary rules (shown at the bottom
of Figure 5.10) unblock the state to enable further computation. This ensures that the
two X-labelled edges are deleted before another instruction can be applied, thus they
will not affect the value of the counter.

〈q, ci++, p〉:
q

ci2

1 p

ci2

1 X

〈q, ci−−, p〉:
q

ci2

1 X p

ci2

1

〈q, ci=0?, p〉:
q

ci2

1 pB

ci2

1 X X

∀q ∈ Q:
qB

ci2

1 X X q

ci2

1

Figure 5.10.: Translation of Minsky rules to GTS rules

Obviously, if there is a sequence of transitions of the Minsky machine which leads
from a configuration 〈q0,m, k〉 to a state qf , this sequence can be copied in the GTS and
every graph generated through this sequence is in G2. On the other hand, if the graph
consisting of a single qf -labelled edge is G2-restricted coverable in the GTS, there is a
sequence of rule applications corresponding to a sequence of transitions of the Minsky
machine. Since this rule applications generate only graphs in G2, the zero-test-rule is
only applied if the counters value is in fact zero and the sequence of transitions is valid
(in the Minsky machine). Note that any non-injective match requires the existence of an
X-labelled loop or a (directed) circle of X-labelled edges. Such structures do not exist
in a valid configuration and cannot be produced by rules. Thus, this encoding is correct
even when using conflict-free or general matches.
Instead of adding and removing a path of length two in the bottom two rules of

Figure 5.10 one can add and remove a path of length n to show the undecidability for
any Gn.

87

Chapter 5. Well-Structured Graph Transformation Systems

5.3. Induced Subgraph Ordering
Another useful order is the induced subgraph ordering, where a graph G is an induced
subgraph of G′ if every edge in G′ where all incident nodes are present in G, is contained
in G as well. This ordering was used in [DSZ10] to verify protocols using broadcast
operations, for which it seems particularly suited. Broadcast operations are not directly
expressible in our formalism, but in Section 6.6 we will introduce an extension we pub-
lished in [DS14b; DS14a] to cover them and also instantiate the backward search for
the new formalism. However, our broadcast operations are more general than those in
[DSZ10], which causes our approach to be approximative.
Graph classes which are well-quasi ordered wrt. the induced subgraph ordering have

been studied in [Dam90] and further by Ding [Din92]. Unfortunately, the induced sub-
graph ordering is not a wqo even when bounding the longest undirected path in a graph,
so that we also have to bound the multiplicity of edges between two nodes. Note that
this restriction is implicitly done in [Din92] since Ding uses simple graphs.
Furthermore, we do not know whether the induced subgraph ordering can be extended

to a wqo on a class of hypergraphs. We therefore restrict ourselves to directed graphs
which are sufficient for modelling many applications, including most of our examples.
Note that this restriction will only affect Proposition 5.24, since the other definitions
and lemmas can be stated for general hypergraphs.
At first, this order seems unnecessary, since it is stricter than the subgraph ordering

and is a wqo on a more restricted set of graphs. On the other hand, it allows us
to specify error graphs more precisely, since a graph G does not represent graphs with
additional edges between nodes of G. Furthermore one can equip the rules with a limited
form of negative application conditions, still retaining the compatibility condition of
Definition 2.16.

Definition 5.19 (Induced subgraph). Let G1, G2 be graphs. G1 is an induced subgraph
of G2 (written G1 � G2) if G1 can be obtained from G2 by deleting a subset of the
nodes, including all edges incident to at least one of these nodes.

Note that G1 � G2 implies G1 ⊆ G2, but not vice versa. Thus, we can represent the
induced subgraph ordering by a restricted class of subgraph morphisms.

Definition 5.20 (Induced subgraph morphism). We call a partial morphism µ : G1
G2 an induced subgraph morphism if and only if it is injective on all elements on which
it is defined, surjective, and if it is undefined on an edge e, it is undefined on at least
one node incident to e.

Lemma 5.21. The induced subgraph ordering is presentable by induced subgraph mor-
phisms (cf. Definition 5.1).

88

5.3. Induced Subgraph Ordering

Proof. Let µ1 : G1 G2 and µ2 : G2 G3 be two induced subgraph morphisms.
Induced subgraph morphisms are closed under composition, since injectivity and surjec-
tivity are preserved and if µ2 ◦ µ1 is undefined for some edge e, then µ1 is undefined on
e or µ2 is undefined on µ1(e) implying that µ2 ◦ µ1 is undefined for at least one node of
e.

For some graph G we can obtain any induced subgraph G′ by a sequence of node
deletions including all incident edges. Each morphisms µi : Gi Gi+1 of this sequence,
where Gi+1 is obtained by deleting one node and all its incident edges from Gi, is an
induced subgraph morphisms and since they are closed under composition, the entire
sequence is as well.
On the other hand every induced subgraph morphism µ : G G′ can be split into a

sequence of node deletions (deleting all incident edges), since every edge deleted by µ is
incident to a deleted node, hence G′ � G.

We can again transfer Ding’s results for the induced subgraph ordering to our setting.
However, the simple encoding f used in the proof of Proposition 5.16 is not sufficient,
since the second condition, i.e. f(G1) � f(G2) =⇒ G1 � G2, is not satisfied. A
single node (without edges) is not an induced subgraph of a node with a loop, but the
relationship does hold for the encoding. Thus, we need to modify Ding’s proof directly,
making it necessary to introduce the notion of a type of a graph, which we do for general
hypergraphs.

Definition 5.22 (Type of a graph). A graph which consists of at most a single node,
possibly with incident edges, has type one. A connected graph containing at least two
nodes has at most type n, if there is a node v so that the deletion of v and all incident
edges splits the graph into components which each have at most type n − 1. The type
of a non-connected graph is the maximal type of its components.

For directed graphs the type of a graph is closely related to the notion of tree-depth (see
Chapter 6 of [NM12] for a definition). The connection becomes evident when thinking
of the root of a tree implying a tree-depth of n for a graph G as the node to be deleted
to reduce the type of G. However, the notion of tree-depth has no trivial extension in
the setting of hypergraphs.

In his proof Ding uses the fact that bounding the length of paths also bounds the
type of a graph and then proves the statement by induction over the type. This relation
was already mentioned in [RS85] and for instance proven in Proposition 6.1 of [NM12]
(for tree-depth instead of types), but always for directed graphs. Thus, we need to
restrict ourselves to directed graphs and will in the following use Dn to denote the class
of directed graphs where the longest undirected path is bounded by n, and use Dn,k to
denote the subclass of Dn where every two nodes are connected by at most k parallel
edges with the same direction and label (bounded edge multiplicity).

89

Chapter 5. Well-Structured Graph Transformation Systems

Lemma 5.23 ([RS85; Din92]). Every graph G ∈ Dn has at most type n+ 2.

Note that contrary to Ding our type is bounded by n+2 instead of n, because we measure
path lengths via the number of edges instead of nodes and Ding’s class Pn excludes paths
of length n.
It is unclear to us whether Lemma 5.23 also holds for general hypergraphs. At least the

converse, i.e. that a bounded type implies bounded paths, does not hold for hypergraphs,
although a directed graph with type at most n has no paths longer than 2n [RS85] (our
types correspond to Robertson and Seymour’s B-type). Figure 5.11 illustrates this by
an infinite set of graphs where we can add A-labelled edges and nodes at the dotted part
analogous to the other edges. Then in every graph there is a path v0, e1, v1, . . . , en, vn of
length n. Although the lengths of paths in this set is not bounded, the type is 2, since
the deletion of the node x also deletes all edges. Moreover, there might also be a proof
of Proposition 5.24 for general hypergraphs not using types at all.

v0

v1

v2 vn−2

vn−1

vn
x

A
e1

A
e2

A
en−1 A

en

Figure 5.11.: By adding more edges and nodes at the dotted part, we can increase the
longest path in this graph without increasing its type

Proposition 5.24. Let n, k be natural numbers. The induced subgraph ordering is a
wqo on the class Dn,k.

Proof. We prove this proposition by induction over the type of a graph, adapting Ding’s
proof in [Din92] that undirected, node-labelled graphs of bounded type are well-quasi-
ordered by the induced subgraph order. From Lemma 5.23 it then follows that Dn,k is
also well-quasi-ordered by induced subgraphs.
To prove this proposition we use directed graphs which are additionally node labelled,

i.e. there is a second alphabet Σ of node labels and a (total) labelling function σ : VG → Σ.
We obtain classical directed graphs if |Σ| = 1.
Let G1, G2, . . . be an infinite sequence of graphs of type n and with edge multiplicity

bounded by k. If n = 1 then every Gi consists of a single node with up to k · |Λ| incident
loops. Since the sets of node and edge labels are finite, there are only finitely many
possibilities to attach up to k · |Λ| edges to the node, thus Gi � Gj for some i < j, i.e. �
is a wqo on the set of all such graphs.
Now let n > 1. Then there is a node vi ∈ Gi such that the deletion of vi (and

its incident edges) splits the graph into components Gi,q (for 1 ≤ q ≤ `i) of type at

90

5.3. Induced Subgraph Ordering

most n − 1. We define G̃i to be the graph containing only vi and its incident loops.
Additionally we define Ĝi,q to be Gi,q where the label σ(y) of every node y is changed
to σ′(y) = 〈fy, σ(y)〉, where fy : Λ → {0, 1, . . . , k}2 is a function such that fy(λ) =
〈a, b〉 where a is the number of incoming and b of outgoing λ-labelled edges incident
to both y and vi. Since there are only finitely many possible functions fy (due to the
multiplicity constraint), the set of labels remains finite. We extend � to sequences such
that 〈G̃i, Ĝi,1, . . . , Ĝi,`i〉 �∗ 〈G̃j , Ĝj,1, . . . , Ĝj,`j 〉 if and only if G̃i � G̃j and there are
p1, . . . , p`i with 1 ≤ p1 < . . . < p`i ≤ `j such that Ĝi,q � Ĝj,pq . As shown for the
case n = 1, � is a wqo on all G̃i and since the graphs Ĝi,q, Ĝj,pq are of type n − 1,
they are well-quasi-ordered by induction hypothesis. Hence, due to Lemma 2.7 (see also
[Hig52]) �∗ is also a wqo and there are indices i < j such that 〈G̃i, Ĝi,1, . . . , Ĝi,`i〉 �∗
〈G̃j , Ĝj,1, . . . , Ĝj,`j 〉. It remains to be shown that this implies Gi � Gj . By Lemma 5.21
there are induced subgraph morphisms µ0 : G̃j G̃i and µq : Ĝj,pq Ĝi,q for 1 ≤ q ≤ `i.
We define the morphism µ : Gj Gi as

µ(x) =



vi if x = vj

µq(x) if x ∈ Ĝj,pq for some q
µ0(x) if x ∈ E

G̃j
and c

G̃j
(x) = vjvj

µv(x) if x ∈ EGj and cGj (x) = vjv ∨ cGj (x) = vvj

for vj 6= v ∈ VGj and µ(v) is defined
undefined else

where µv is any total, bijective morphism from Gj – restricted to vj , v and the edges
between them – to Gi – restricted to vi, µq(v) (if v ∈ Ĝj,pq) and any edges between
them (both not including loops). Note that µv exists since v and µq(v) are labelled with
some 〈f, α〉, thus the number of edges between vj and v is equal to the number of edges
between vi and µq(v) for all labels and directions.
We now show that µ is a induced subgraph morphism. First note that µ is a valid

morphism since µq, µ0 and µv are morphisms and labels of edges in Gi, Gj are the same
as their representative in Ĝj,pq , Ĝi,q and representatives of nodes are labelled with 〈f, α〉,
where the original is labelled α also implying equality on labels. We then observe that
µ is injective and surjective, since µq, µ0 and µv are all injective and surjective and vj is
mapped to vi. Assume there is an edge e ∈ EGj for which µ is undefined. If e is contained
in one of the components Ĝj,pq or in G̃j , at least one incident node is undefined, since µq
and µ0 are induced subgraph morphisms. If e connects vj and a node v of a component
Ĝj,z, then either z is not of the form pq and µ is undefined on Ĝj,z or z = pq and µ(v)
is undefined since otherwise µv has a mapping for e. Since µ is an induced subgraph
morphism, we obtain that Gi � Gj .

We can easily show that the well-structuredness of the subgraph ordering wrt. all GTS

91

Chapter 5. Well-Structured Graph Transformation Systems

also holds for the induced subgraph ordering.

Proposition 5.25 (WSTS wrt. the induced subgraph ordering). Let T be an arbitrary
GTS and let G be any downward-closed class of graphs on which the induced subgraph
ordering is a wqo. The systems TG(Λ), T c

G(Λ) and T
i
G(Λ) are all G-restricted WSTS wrt. the

induced subgraph ordering.

Proof. We can show that every GTS satisfies the compatibility conditions by using the
proof of Proposition 5.17 and additionally showing that the inverse of ν is an induced
subgraph morphism.
Assume there is an edge e ∈ EH′ , where all incident nodes have a preimage under ν

but e has none. Since r′, µ−1, ν, r′′ is a pushout, this can only be the case if all nodes
incident to e have a preimages in G and G′, and e has a preimage in G′. Because µ
is an induced subgraph morphism, e has a preimage in G. Due to commutativity r′

cannot be undefined on this preimage, thus, e has to have a preimage in H, violating
the assumption.

As a result of Propositions 5.24 and 5.25 we know that arbitrary GTS form Dn,k-
restricted WSTS wrt. the induced subgraph ordering.
In fact, we can even improve Proposition 5.25 by introducing negative application

conditions (NACs). Rules with NACs are applicable if a match of the rule exists such
that no match of the NACs exist, i.e. the graph to be matched must contain the rules left-
hand side, but must not contain the NAC. In general NACs violate the compatibility
condition wrt. any order, since rules may become inapplicable to a graph by adding
nodes or edges. However, the induced subgraph ordering is fine enough such that graph
transformation systems with NACs still satisfy the compatibility condition if the negative
application conditions only forbid the existence of edges and not of nodes, as shown in
the following example.

Example 5.26. Let the following simple rule be given, where the negative application
condition is indicated by the dashed edge, i.e. the rule is applicable if and only if there is
a match only for the solid part of the left-hand side and this match cannot be extended
to match also the dashed part.

1 2 3
A

4

A

5

A

1 2 3
A

4

A

5

A

Figure 5.12.: Rule for computing the transitive closure using a negative application con-
dition

92

5.3. Induced Subgraph Ordering

Applied to a graph containing only A-labelled edges, this rule computes the transitive
closure and will terminate at some point. This GTS satisfies the compatibility condition
wrt. the induced subgraph ordering, since for instance a directed path of length two (the
left-hand side) does not represent graphs where there is an edge from the first to the
last node of the graph.
The principle described in Example 5.26 can be extended to all negative application con-
ditions which forbid the existence of edges but not of nodes. This is the case, because
if there is no edge between two nodes of a graph, there is also no edge between these
two nodes in any larger graph. Hence, if there is no mapping from the negative appli-
cation condition into the smaller graph, there can also be none into the larger graph.
Graphs violating the negative application condition are simply not represented by the
smaller graph. In the following we will prove this, first extending our GTS with negative
application conditions.
Definition 5.27 (Rule with NACs). A rule with negative application conditions is a
pair 〈r,N〉 where r : L R is a rule and N is a set of negative application conditions.
A negative application condition (NAC) is a total, injective morphism n : L N .

Let m : L G be an injective match of r into G. We say that m satisfies a NAC n
if there is no total, injective morphism n′ : N G such that n′ ◦ n = m. A rule with
NACs is applicable to a graph G if there is a match satisfying all NACs.
A rule with NACs is applied as defined for standard rules (cf. Definition 3.17), but

only using matches satisfying all NACs.
Graph transformation systems with negative application conditions are GTS (cf. Defi-
nition 3.19) which may consist of standard rules and rules with NACs. Note that the
morphism n′ in the above definition is usually restricted to being injective since this
increases the expressiveness of NACs. We can for instance give a rule that is appli-
cable only if there are no k parallel edges between two nodes, which is not possible
if non-injective n′ are allowed – the same rule with non-injective n′ would forbid the
existence of any edge between the two nodes. Thus, we can also restrict ourselves to
injective matches, since for non-injective matches the triangle n′ ◦ n = m does trivially
not commute if both n and n′ must be injective.
For injective matches we can now state a result than is even stronger than Proposi-

tion 5.25.
Proposition 5.28. Let T be a GTS with NACs and let G be any downward-closed class
of graphs on which the induced subgraph ordering is a wqo. The system T i

G(Λ) is a G-
restricted WSTS wrt. the induced subgraph ordering if for all rules 〈r,N〉 ∈ T and all
NACs n ∈ N , n is bijective on nodes.
Proof. In the proof of Proposition 5.25 we have already shown that the compatibility
condition is satisfied without NACs. It remains to be shown that if a match satisfies all
NACs, then it also satisfies all NACs for any larger graph.

93

Chapter 5. Well-Structured Graph Transformation Systems

N L R

G H

G′ H ′

n

n′

r

m
r′
m′

µ−1

r′′
ν

Figure 5.13.: With restricted NACs n we can show that any morphism n′, violating the
NAC wrt. G′, can be extended to a morphism violating the NAC wrt. G

Let 〈r : L R,N〉 be a rule and let (n : L N) ∈ N be a NAC, as shown in
Figure 5.13. Furthermore, let m : L G be an injective match and let G � G′, i.e. there
is a µ : G′ G. We use the fact that the inverse µ−1 of µ is total and injective to obtain
the (injective) match µ−1 ◦ m and assume that there is an n′ : N G′ violating the
NAC, i.e. n′ ◦ n = µ−1 ◦m.
We will show that µ(n′(x)) is defined for all x ∈ N . If x is a node, then x has

(exactly) one preimage xL ∈ L due to the bijectivity of n. Since all involved morphisms
are injective, we obtain µ(n′(x)) = m(xL). If x is an edge, then by the previous argument
for all incident nodes v, µ(n′(v)) is defined. Since µ is an induced subgraph morphism,
µ(n′(x)) must be defined as well. Therefore, µ−1 ◦n′ is total and injective, and computes
with m in the necessary way, i.e. µ ◦ n′ ◦ n = µ ◦ µ−1 ◦m = m.

Hence, ifm satisfies all NACs, µ−1◦m satisfies all NACs as well, and the compatibility
condition holds.

5.4. Further Interesting Orders
In addition to the order presented in this chapter – which we will further investigate in
Chapter 6 – there are other interesting orders, which are compatible with our approach.
Each of these orders affects the notion of upward-closure and may well-quasi-order dif-
ferent sets of graphs.

Between Minors and Induced Subgraphs
Table 5.1 shows three further orders taken from [FHR09; FHR12], each finer than the
minor ordering and coarser than the subgraph ordering. Note that the authors use
undirected binary graphs (with only edges of arity two), which means that their results
need not necessarily hold for hypergraphs. Each column of Table 5.1 represents an
operation which can be used to create a smaller graph from a larger one. The operators
are deleting a vertex, including all incident edges, deleting an edge, contracting an edge,
i.e. deleting an edge an merging its incident nodes, and topologically contracting an edge,

94

5.4. Further Interesting Orders

i.e. same as contraction but one of the nodes needs to have a degree of less or equal than
two. Clearly, allowing more operators leads to a coarser order.

vertex deletions edge deletions top. contractions contractions
ind. subgraph 3 7 7 7

subgraph 3 3 7 7

ind. top. minor 3 7 3 7

top. minor 3 3 3 7

ind. minor 3 7 3 3

minor 3 3 3 3

Table 5.1.: Shows different orders and their allowed operations (taken from [FHR12])

The authors show that the topological minor ordering is a wqo on the class of graphs
with bounded minimal feedback-vertex-set, a set of vertices such that for each circle
of the graph at least one vertex is in the set. They also show that the induced minor
ordering is a wqo on graphs with bounded circumference, the length of the longest circle
in the graph. For the induced topological minor ordering no interesting class is known,
apart from the one inherited for the induced subgraph ordering.

The algorithmic complexity of checking these orders is also investigated in [FHR12]
and more thoroughly for the induced minor ordering in [FK+95]. Somewhat expectable,
the general problems are NP-complete but become polynomial-time solvable – some even
linear-time solvable – when fixing one parameter.

Orders Respecting Directed Edges
So far all order we have seen, including those of the previous section, have ignored the
direction of edges when deleting vertices, deleting edges or contracting edges. Especially
a restriction of the third operation may yield interesting results in the context of directed
graphs. Although some approaches exist, the results for directed graphs are scarce
compared to the undirected case.

In [JR+01] the authors use butterfly minors in the context of directed tree-width,
a generalization of tree-width for directed graphs. In fact, they do not use the term
“butterfly minor” (they simply call their relation “minor”), but the name established
itself later. A graph G is a butterfly minor of G′ if G can be generated by taking a
subgraph of G′ and then contracting edges which are the only outgoing edge of their
source node or the only incoming edge of their target node (or both). Clearly, this
contraction preserves directed path in the sense that after the contraction a directed
path from x to y exists only if there was a path prior to the contraction. Unfortunately,
it is unclear on which interesting classes this order could be a well-quasi-order.

Another interesting work investigating different width measures for directed graphs is
[GH+10]. There the authors use a directed topological minor ordering, a less restrictive

95

Chapter 5. Well-Structured Graph Transformation Systems

version of butterfly minors. A graph G is a directed topological minor of a graph G′ if G
can be generated by taking a subgraph of G′ and then contracting edges, where none of
the contractions may introduce a new path from some node x of degree three of higher
to some node y of degree three of higher. Again, it is unclear on which class this relation
could be a wqo, since this does not lie within the scope of [GH+10].
Finally, Chudnovsky and Seymour introduced weak and strong immersion on directed

graphs [CS11; CS14]. A weak immersion of a graph G into G′ is a mapping of nodes of G
to nodes of G′ and a compatible mapping (similar to the morphism property) of edges of
G to directed paths of G′, such that for every two distinct edges of G their corresponding
paths in G′ are edge disjoint (they may share nodes). A weak immersion is also a strong
immersion if for all edges of G only the endpoints of their corresponding paths have
preimages in G. As a result of Robertson and Seymour’s work the weak immersion is a
wqo on the class of undirected graphs (ignoring direction in the definition above), but
this is still an open problem for the strong immersion. For the class of all directed graphs
already weak immersion is no wqo, but Chudnovsky and Seymour could for instance show
that strong immersion is a wqo on the class of tournaments (complete graphs with an
assigned direction for each edge) [CS11] and complete directed bipartite graphs [CS14].
Note that the latter publication focuses on Rao-containment, another wqo on all graphs.

96

Chapter
6

Backward Analysis

In Sections 2.3 and 2.4 we introduced well-structured transition systems as well as their
generalization, Q-restricted WSTS. We have then shown in Chapter 5 that graph trans-
formation systems also form Q-restricted WSTS and investigated possible orders. How-
ever, before we can apply Theorem 2.21 for the decidability results we still need to prove
the existence of an effective pred-basis or Q-pred-basis. As we will see, the existence and
the computation of such bases depends on the order, the class Q and the type of matches
used. We will work out the computation for our three main orders and present necessary
and sufficient conditions which need to be proven for further order to fit our framework.
For better readability some proofs of this chapter where moved to Appendix C.

6.1. A General Backward Procedure
We start by restating Algorithm 2.15 as a specialized version for graph transformation
systems. We split this specialized version into the general backward search and the
computation of a single backward step, i.e. computing the (Q)-pred-basis, where the
former uses the latter. Note that in the context of graph transformation systems we
will write Q instead of Q to emphasize that Q is a class of graphs. Unfortunately,
the existence of an effective pred-basis or Q-pred-basis is not guaranteed in general. For
instance, for the induced subgraph ordering an effective pred-basis does not exist, simply
because the predecessor set is not finitely representable wrt. the order (a Dn,k-pred-basis
does however exist, i.e. for directed graphs where the length of paths and the multiplicity
of edges is bounded). In a nutshell, our algorithm will perform the following steps:

1. Prepare the rules by composing them with order morphisms.

2. Compute a representative (finite) set of pushout complements for all rules and
matches to graphs.

97

Chapter 6. Backward Analysis

3. Minimize the currently computed set of graphs (the working set) by removing all
non-minimal graphs.

4. If some pushout complements computed in step 2 were not dropped in step 3, then
repeat steps 2 to 4 another time.

We will illustrate how these steps allow us to face several problems occurring when
computing a (Q)-pred-basis. The first problem is that graphs do not simply represent
themselves, but also all larger graphs, i.e. their upward closure. This means that we have
to apply rules backwards to an infinitely large class of graphs! To implement this we use
the abstract representation of orders by a class of order morphisms (cf. Definition 5.1),
which we have proven to be possible for our three main orders. By composing rules with
order morphisms, as shown in Figure 6.1, we can simulate the application of r not just
to G, but also to the upward closure of G. We illustrate this in the following example.

L R

GH

R′

1 2
B B

1 2
A

1, 21 2
A

1, 2

w

r µ

m′m

Figure 6.1.: We can simulate the application of rules to the upward closure of G by
composing rules with order morphism

Example 6.1. In Figure 6.1 there is no co-match of the right-hand side R of r to the
graph G, since the A-labelled edge can not be mapped. However, there is an obvious
match m to the graph H which is in the upward closure of G. Instead of generating
H from G and then applying r backwards using the match m, we can also apply µ ◦ r
backwards using the match m′. Effectively, the composition of r and µ simulates the
generation of H for G and the backwards application of r at the same time. In this way
we can greatly simplify the computation of predecessors.

By composing all rules with all possible order morphism, we simply need to search
for all total co-matches – or injective matches if desired – from the new right-hand
side R′ to G. In this way the application of rules to the upward closure of G is done
implicitly. Altogether this gives rise to the notion of a prepared GTS, generated by these
compositions.

Definition 6.2 (Prepared GTS). LetM� be a class of order morphisms and let T be a
graph transformation system, i.e. a finite set of rules. The prepared graph transformation

98

6.1. A General Backward Procedure

system T ′ consists of all rules µ ◦ r : L R′, where r : L R is a rule of T and
µ : R R′ is an order morphism. Furthermore, there is a function origin : T ′ → P(T)
satisfying r ∈ origin(r′) if and only if there is a µ with r′ = µ ◦ r. We call the rules of a
prepared GTS prepared rules.

Note that due to Definition 5.1 it is guaranteed that for any GTS and order, the prepared
GTS has only finitely many rules. We will later need the function origin to determine
from which original rules a prepared rule could have been generated from. The function
will be non-injective if for instance the left-hand sides of different (original) rules are
isomorphic.
Alternative to our approach one could also “expand” G, i.e. generate larger graphs

and then search for matches to these graphs. However, this would require us to prove the
existence and compute a bound on the number of expansions necessary for each order.
Our approach requires an equivalent but significantly simpler condition, we need our
order morphisms to be preserved by pushouts along total morphisms, i.e. Definition 6.3
must hold.

Definition 6.3 (Preservation by pushouts). We say that a class of order morphismsM�
is preserved by pushouts along total morphisms if the following holds: if µ : G0 G1
is an order morphism in M� and g : G0 G2 is total, then the morphism µ′ in the
pushout diagram in Figure 6.2 is an order morphism inM�.

G0 G1

G2 G3

µ

g g′

µ′

Figure 6.2.: A class M� is preserved by pushouts along total morphisms, if µ ∈ M�
implies µ′ ∈M�

Example 6.4. Figure 6.3 illustrated why minor morphisms are preserved by total
pushouts (we will prove this in Lemma 6.20). The minor morphism µ contracts the
B-labelled edge with the number 5 and is the identity on all other elements. Since g is
total, the contacted edge is still existent in G2 and can be contracted by µ′ to simulate
the contraction of µ. Even the fact that g non-injectively maps the nodes 1 and 2 does
not prevent this, since by definition the nodes 1, 2 and 3 have to be merged in the
pushout. The same argument holds for node and edge deletions as well. Thus, µ′ is a
minor morphism if µ is a minor morphism.

Although Definition 6.3 is independent of the type of matches used, for a reasonable
application we can only use conflict-free or more restrictive matches (including injective

99

Chapter 6. Backward Analysis

G0 G1

G2 G3

1 2

3

A

4B

5

B

6

1, 3 2
B

6

A

4

1, 2 3
B
6

B

5

A4
1, 2, 3

A
4

B
6

µ

g g′

µ′

Figure 6.3.: Example of minor morphisms being preserved by pushouts along total mor-
phisms

ones), since a conflict-free match ensures that the co-match is total. The use of more
general matches would still require us to search for partial co-matches. Since we will
need this property in later proofs, we prove it in the following lemma.

Lemma 6.5. Let r : L R be a partial and m : L G a total morphism. Furthermore,
let 〈H, r′,m′〉 with r′ : G H and m′ : R H be the pushout of r and m. If m is
injective, then m′ is total and injective as well. If m is conflict-free wrt. r, then m′ is
total.

Proof. See Appendix C.1.

Another problem occurring in the computation of a (Q)-pred-basis is finding a represen-
tative set of pushout complements. At first sight we simply need to compute pushout
complements when applying rules backward, a problem for which we have given several
constructions in Section 3.5, namely Propositions 3.30 and 3.33. However, these con-
structions can generate infinitely many pushout complements. Thus, we need to restrict
ourselves only to minimal pushout complements, wrt. the order used, and be able to
exhaustively enumerate these to achieve effectiveness. Note that the finiteness of the
set of minimal pushout complements is only guaranteed for Q-pred-bases if the order
is a well-quasi-order on Q. For pred-bases (or other classes Q) we also have to prove
finiteness. We will revisit this problem at a later point and will now start to successively
define our main algorithm.

Main Search and Auxiliary Procedures
Before further investigating the correctness of our backward search, we state our (back-
ward) Algorithm 6.6 for graph transformation systems. For now we assume the existence

100

6.1. A General Backward Procedure

of a Q-pred-basis predsQ(T , G) (cf. Definition 2.18), where T is a prepared graph trans-
formation system and G a graph. The Q-pred-basis contains all graphs which can be
rewritten to some graph larger that G using a rule of T . Later we will present generic
algorithms which can be used directly by some orders and build upon to define Q-pred-
basis for other orders.
In addition to the Q-pred-basis Algorithm 6.6 uses two other simple algorithms for

preparing the rules (prepare�), as introduced previously, and minimizing the working set
(minimize�). Note that although the latter is a slight optimization, we will introduce
more substantial optimizations in Section 6.5.
Algorithm 6.6 (General backward search for GTS).
Input: A Q-restricted well-structured graph transformation system T , a finite set of
(final) graphs F , an order � represented by the class M� and a Q-pred-basis predsQ
for the order �.
Output: A finite basis Wold of the class of all graphs from which a graph of F is
coverable.
1: Wold ← ∅
2: Wnew ← minimize�(F)
3: T ′ ← prepare�(T)
4: while ↑Wold 6= ↑Wnew do
5: Wold ←Wnew
6: for all G ∈ Wold do
7: Wnew ←Wnew ∪ predsQ(T ′, G)
8: end for all
9: Wnew ← minimize�(Wnew)

10: end while
11: return Wold

The algorithm will terminate as soon as the condition in line 4 is met. To check whether
↑Wold and ↑Wnew are equal we can exploit the minimization in line 9. Since the sets
are both minimal, we can simply search for a bijective mapping f : Wold → Wnew such
that G is isomorphic to f(G) for every G ∈ Wold . Since the class ↑Wold is obviously a
subclass of ↑Wnew , the condition is guaranteed to be satisfied at some point if the order
is a well-quasi-order on Q and we use a Q-pred-basis. However, since this algorithm
can be used for all cases of Theorem 2.21, termination effectively depends on which
representatives predsQ computes. Before we proceed to the computation of the different
variants of predsQ, we state the two auxiliary procedures minimize� and prepare�.
The minimization procedure is defined in Algorithm 6.7 and simply removes all graphs

for which the set contains smaller or isomorphic graphs. Note that minimization can
remove elements, but will never affect the upward closure, i.e. ↑G = ↑minimize�(G) for
all finite sets G. Thus, minimization only affects the performance and not the correctness
of Algorithm 6.6.

101

Chapter 6. Backward Analysis

Algorithm 6.7 (Minimization).
Input: A set of graphs G and a decidable order �.
Output: The set minimize�(G), a minimized version of G.
1: while ∃G1, G2 ∈ G : (G1 6= G2 ∧G1 � G2) do
2: G ← G \ {G2}
3: end while
4: return G

The rule preparation is performed by Algorithm 6.8 by composing rules and order mor-
phisms, as already motivated on page 98.

Algorithm 6.8 (Rule preparation).
Input: A graph transformation system T and a class of order morphismsM�.
Output: The prepared GTS prepare�(T).
1: T ′ ← ∅
2: for all (r : L R) ∈ T do
3: for all (µ : R R′) ∈M� do
4: T ′ ← T ′ ∪ {µ ◦ r}
5: end for all
6: end for all
7: return T ′

Note that in line 3 of the algorithm we only need to choose one R′ out of its isomorphism
class and compose all order morphisms µ : R R′ with each rule. Although each
isomorphism class may be infinite, the number of isomorphisms classes is finite due to
Definition 5.1.

The Conflict-Free Q-Pred-Basis and Its Correctness
Since Algorithm 6.6 is just a restatement of Algorithm 2.15, the correctness only depends
on the Q-pred-basis used. We therefore present two very similar generic Q-pred-bases
– predsi

Q(T , G) for injective and predsc
Q(T , G) for conflict-free matches – which can be

used in most cases. Both procedures first search for co-matches of all (prepared) rules r
to G and then use the construction of Proposition 3.33 to compute all (partial) pushout
complements for each co-match. Since the set of pushout complements need not be
finite, we need to compute the set of minimal pushout complements of a rule r and a
match m wrt. the order used, which is defined as follows.

Definition 6.9 (Set of minimal pushout complements). Let � be an order, let Q be a
downward-closed class of graphs, let r : L R be a (prepared rule) and let m : R G
be a (total) co-match to some graph G. The set of minimal pushout complements is the
finite set minpoc�Q(r,m) ⊆ Q where:

102

6.1. A General Backward Procedure

• every G′ ∈ minpoc�Q(r,m) is a pushout complement object of r,m, where the match
m′ : L G′ is conflict-free wrt. some element of origin(r),

• for every pushout complement object G′ ∈ Q of r,m, satisfying the previous con-
dition, there is an G′′ ∈ minpoc�Q(r,m) with G′′ � G′, and

• if there are G′, G′′ ∈ minpoc�Q(r,m) with G′ � G′′, then G′ = G′′.

Note that the last condition only exists for efficiency reasons and we could drop it
without affecting correctness. The finiteness of the set is guaranteed if � is a well-quasi-
order on Q. Unfortunately this means that a procedure computing this set can only be
generalized to a limited extent, namely we can use Propositions 3.30 and 3.33 for the
actual computation of pushout complements. We will later prove the computability for
our three main orders, but for now we just assume the existence of a procedure for this
set, which we will also denote by minpoc�Q(r,m).

Algorithm 6.10 (Conflict-free Q-pred-basis).
Input: A prepared rule set T , a graph S ∈ Q and a procedure for computing minimal
pushout complements minpoc�Q.
Output: The set predsc

Q(T , S), an effective Q-pred-basis for conflict-free matches.
1: G ← ∅
2: for all (r : L R) ∈ T do
3: for all total co-matches m : R S do
4: Gpoc ← minpoc�Q(r,m)
5: for all 〈G′,m′ : L G′, r′ : G′ S〉 ∈ Gpoc do
6: G ← G ∪ {G′}
7: end for all
8: end for all
9: end for all

10: return G

The algorithm only considers total co-matches, since a partial co-match automatically
implies a non-conflict-free match and vice versa. In fact, by requiring that order mor-
phisms are preserved by pushouts along total morphisms, we can show that every min-
imal pushout complement is a valid predecessor. However, we also need to prove that
every predecessor is either computed this way or represented by another graph computed
this way. Thus, for predsc

Q to be a Q-pred-basis, a class of order morphisms also needs
to be pushout closed, a property we define as follows.

Definition 6.11 (Pushout closure). Letm : L G be a conflict-free match wrt. r : L
R. A class of order morphisms is called pushout closed if the following holds: if the
diagram on the left of Figure 6.4 is a pushout and µ : H S an order morphism, then

103

Chapter 6. Backward Analysis

there exist graphs R′ and G′ and order morphisms µR : R R′, µG : G G′, such
that:

1. the diagram on the right of Figure 6.4 commutes and the outer square is a pushout,
and

2. the morphisms µG◦m : L G′ and n : R′ S are total and µG◦m is conflict-free
wrt. r.

L R

G H

S

r

m m′

r′

µ

L R R′

G H

SG′

r µR

m m′

n
r′

µG

s

µ

Figure 6.4.: Two diagrams illustrating Definition 6.11

Example 6.12. In a sense, pushout closure can be seen as a compositionality property:
if H can be obtained by composing G and R, then every graph smaller than H can be
obtained by composing graphs smaller then G and R. For the minor ordering this is
illustrated in Figure 6.5 where µ contracts both edges of H. Deletions and contractions
performed by µ must be simulated by µR or µG (or both). Thus, the B-labelled edge is
contracted by µR and the C-labelled edge is contracted by µG. In this way, S is in fact
the pushout of the diagram.

Pushout closure enables us to prove that Algorithm 6.10 is in fact a Q-pred-basis. We do
this by first proving that predsc

Q(T , S) is a subset of the predecessors of G (Lemma 6.13)
and then proving that all graphs of the upward closure of the predecessors of G are
represented by predsc

Q(T , S) (Lemma 6.14).

Lemma 6.13. The set predsc
Q(T , S) computed by Algorithm 6.10 is a finite subset of

↑PredQ(↑{S}) for any prepared rule set T .

Proof. By assumption the sets of minimal pushout complements minpoc�Q(r,m) is finite
for all rules and matches. Since the prepared rule set and the number of matches are
both finite as well, predsc

Q(T , S) is finite.
Now let G ∈ predsc

Q(T , S) be a graph generated by Algorithm 6.10. Then there is a
rule r : L R, an order morphism µ : R R′ and a conflict-free match m : L G,
such that the left diagram in Figure 6.6 is a pushout.

104

6.1. A General Backward Procedure

L R
R′

G H

G′ S

A B

A

C

B

C

A

r µR

m

r′

m′

µG
µ

n

s

Figure 6.5.: Minor morphisms are pushout closed, i.e. µR and µG always exist

L R′

G S

µ ◦ r

m m′′

k

L R R′

G S′ S

r µ

m m′′

r′ µ′
m′

k

Figure 6.6.: Diagrams illustrating the proof of Lemma 6.13

Let m′ : R S′, r′ : G S′ be the pushout of m, r. Because the outer diagram on
the right of Figure 6.6 commutes, there is a unique morphism µ′ : S′ S. The left and
the outer squares are both pushouts and therefore the right square is a pushout as well
(cf. Lemma 3.7). Since m is total and conflict-free, m′ is also total. By assumptionM�
is preserved by pushouts along total morphisms, thus µ′ is in fact an order morphism.
This means we can use r to rewrite G to some graph S′ larger than S, hence G ∈
PredQ(↑{S}).

Lemma 6.14. It holds that ↑predsc
Q(T , S) ⊇ ↑PredQ(↑{S}) for any prepared rule set

T .

Proof. Let X be an element of ↑PredQ(↑{S}). Then there is a minimal representative
G ∈ PredQ(↑{S}) with G � X and a rule r : L R rewriting G with a conflict-free
match m to some element H of ↑{S}. Note that this also implies G ∈ Q. According to
Definition 6.11 the left diagram in Figure 6.7 can be extended to the right diagram.
Since the outer square is a pushout, G′ is a pushout complement object. Due to

the downward closure of Q we know that G′ ∈ Q and thus, a graph G′′ � G′ will be

105

Chapter 6. Backward Analysis

X

L R

G H

S

ν

r

m m′

r′

µ
X

L R

G H

S

R′

G′

ν

r

m m′

r′

µ

µR

n

µG

s

Figure 6.7.: Diagrams illustrating the proof of Lemma 6.14

obtained by Algorithm 6.10 using the rule µR◦r. More precisely G′′ ∈ minpoc�Q(µR◦r, n).
Summarized, this means that predsc

Q(T , S) contains a graph G′′ for every graph X such
that G′′ � G′ � G � X, i.e. every X is represented by an element of predsc

Q(T , S).

The previous two lemmas prove the existence of a Q-pred-basis for all orders which
are representable by morphisms, preserved by pushouts along total morphisms, pushout
closed under conflict-free matches and for which the set of minimal pushout complements
is finite and computable. We summarize this by the following proposition.

Proposition 6.15. The set predsc
Q(T , S) computed by Algorithm 6.10 is an effective

Q-pred-basis for the transition system T c
G(Λ) and all orders satisfying Definitions 5.1, 6.3

and 6.11, and for which the set of minimal pushout complements is finite and computable.

Proof. We have proven the correctness of the equality ↑predsc
Q(T , S) = ↑PredQ(↑{S})

by Lemmas 6.13 and 6.14. Moreover, since the prepared rule set, the number of matches
and the number of pushout complements are all finite, predsc

Q(T , S) is finite as well. The
effectiveness follows from the computability of matches and pushout complements.

The Injective Q-Pred-Basis and Its Correctness
With some modifications we can change Algorithm 6.10 to be an injective Q-pred-basis
predsi

Q(T , S), in which case our backward algorithm will analyse the transitions system
T i
G(Λ) induced by injective matches. Unfortunately, we cannot simply compute minpoc�Q

and drop all pushout complements with non-injective matches, since these might repre-
sent pushout complements with injective matches which are not otherwise represented.
This is especially the case for orders where order morphisms can be non-injective, as we
illustrate for the minor ordering in the following example.

Example 6.16. Consider a rule that simply replaces an A-edge with a B-edge, as shown
in Figure 6.8, and let S be a minor of H. As we will prove later, minor morphisms satisfy
Definition 6.11, i.e. the graphs R′, G′ exist, the outer square is a pushout and the diagram

106

6.1. A General Backward Procedure

commutes. This means that G′ is a pushout complement where the match µG ◦ m is
non-injective. However, it represents G, a graphs that can be rewritten to H with
S v H using an injective match. Thus, G should be computed by our procedure or at
least represented by another computed graph, but G′ should not. Note that G is not
a pushout complement of µR ◦ r, n at all, since it is rewritten to a graph strictly larger
than S.

L R R′

G H

G′ S

A B B

A

C

B

C

A B

r µR

m

r′

m′

µG
µ

n

s

Figure 6.8.: Pushout complements with non-injective matches might represent graphs
that can be rewritten to some H larger than S using an injective match

We therefore need a procedure that computes all such graphs G for every rule and
pushout complement. Effectively this procedure needs to compute all possibilities to
appropriately split the match into an injective match and an order morphism. In the
following we will call the set of graphs obtained by such splits the represented injective
predecessors, formally defined as follows.

Definition 6.17 (Represented injective predecessors). Let � an order, Q a downward-
closed class of graphs, r : L R a prepared rule, m : L G a match to some
graph G and S the pushout of r,m. A set of represented injective predecessors is a
set reps�Q(r,m) ⊆ Q such that:

• if G′ ∈ reps�Q(r,m) then there are r1 : L R′, r2 : R′ R, m1 : L G′,
m2 : G′ G with r1 ∈ origin(r), as shown in Figure 6.9 such that m = m2 ◦m1
and r = r2 ◦ r1, and for the pushout H ′ of m1, r1 it holds that S � H ′, and

• for all graphs G′ ∈ Q with G′ /∈ reps�Q(r,m) satisfying the previous condition,
there is a G′′ ∈ reps�Q(r,m) with G′′ � G′.

107

Chapter 6. Backward Analysis

L R′ R

G′

G

H ′

S

r1 r2

m1

m2

m

r

Figure 6.9.: Illustrates the morphisms of Definition 6.17

To be effective, we need a set of represented injective predecessors that is finite. In
general we prefer a minimal set, i.e. if G′ � G′′ holds for two elements, then G′ = G′′.
Of course we will have to prove the finiteness and computability wrt. our main orders
later, but at this point we assume that there is a procedure computing a finite set
of represented injective predecessors and denote this procedure by reps�Q(r,m) as well.
With this assumption we can then state an algorithm for the injective Q-pred-basis.

Algorithm 6.18 (Injective Q-pred-basis).
Input: A (prepared) rule set T and a graph S ∈ Q.
Output: The set predsi

Q(T , S), an effective Q-pred-basis for injective matches.
1: G ← ∅
2: for all (r : L R) ∈ T do
3: for all total co-matches m : R S do
4: Gpoc ← minpoc�Q(r,m)
5: for all 〈G′,m′ : L G′, r′ : G′ S〉 ∈ Gpoc do
6: if m′ is injective then
7: G ← G ∪ {G′}
8: else
9: G ← G ∪ reps�Q(r,m′)
10: end if
11: end for all
12: end for all
13: end for all
14: return G

We can state the correctness of this algorithm in a proposition similar to Proposition 6.15,
and even reuse most of the proofs.

108

6.1. A General Backward Procedure

Proposition 6.19. The set predsi
Q(T , S) computed by Algorithm 6.18 is an effective

Q-pred-basis for the transition system T i
G(Λ) and all orders satisfying Definitions 5.1, 6.3

and 6.11, and for which the set of minimal pushout complements as well as the set of
represented injective predecessors are finite and computable.

Proof. Since reps�Q is by assumption finite and computable, predsi
Q is finite and com-

putable as well, i.e. we inherit the effectiveness of predsc
Q. Thus, we only need to prove the

equality ↑predsi
Q(T , S) = ↑PredQ(↑{S}) by proving Lemmas 6.13 and 6.14 for predsi

Q.
Let G ∈ predsi

Q(T , S), then G is either a pushout complement itself (if the match
is injective) or a represented injective predecessor. In the first case we can apply the
argument of Lemma 6.13 to prove that G can be rewritten to a graph larger than S.
In the second case, by definition G can be rewritten to an H ′ with S � H ′ using an
injective match and a rule of the original GTS.
We now adapt the proof of Lemma 6.14 to respect the use of reps�Q. So let X be

an element of ↑PredQ(↑{S}). Then there is a minimal representative G ∈ PredQ(↑{S})
with G � X and a rule r : L R rewriting G with an injective match m to some
element H of ↑{S}. Note that this also implies G ∈ Q. According to Definition 6.11 the
left diagram in Figure 6.10 can be extended to the right diagram.

X

L R

G H

S

ν

r

m m′

r′

µ
X

L R

G H

S

R′

G′

G′′

G′′′

ν

r

m m′

r′

µ

µR

n

µG

s

Figure 6.10.: Diagrams illustrating the proof of Proposition 6.19

Since the outer square is a pushout, G′ is a pushout complement object. Due to
the downward closure of Q we know that G′ ∈ Q and thus, a graph G′′ � G′ will be
obtained using the rule µR ◦ r. If the match k : L G′′ is injective, G′′ will be kept,
i.e. G′′ ∈ predsi

Q(T , S), and G′′ � G′ � G � X holds. If k is not injective, then by
definition there is an G′′′ ∈ reps�Q(µR ◦ r, k) with an injective match k′ : L G′′′ and
G′′ � G′′′ � G � X. Note that r, µR is one of the possible decompositions of µR ◦ r
considered by reps�Q.

109

Chapter 6. Backward Analysis

Summarized, this means that every X ∈ ↑PredQ(↑{S}) is represented by elements G′′
or G′′′ of predsi

Q(T , S).

Summarizing the Requirements
To conclude this section we sum up the requirement and conditions we need to prove for
any order we want to use Algorithm 6.6 with. For this let Q be a downward-closed class
of graphs, let � be a quasi order on G(Λ) and let T be a graph transformation system.
The following conditions have to be met for the algorithm to be correct and computable
for conflict-free matches.

• The induced transition system T c
G(Λ) must be a Q-restricted WSTS wrt. �, i.e. �

must be a well-quasi-order on Q and T c
G(Λ) must satisfy the compatibility condition.

• The order � must be decidable and satisfy Definitions 5.1 and 6.3, i.e. it must be
representable by a class of morphisms M� which is preserved by pushouts along
total morphisms.

• An effective Q-pred-basis predsc
Q must exist, which is guaranteed if the following

conditions are satisfied.
– The morphismsM� must be pushout closed (Definition 6.11).
– The set of minimal pushout complements minpoc�Q (Definition 6.9) must be

computable (its finiteness is guaranteed by � being a well-quasi-order on Q).

We can now use Algorithm 6.6 to partially decide general and restricted coverability
according to cases (ii) and (iii) of Theorem 2.21. Furthermore, we can use the algorithm
also for case (iv), i.e. deciding general coverability if the algorithm terminates, if a pred-
basis predsc

G(Λ) exists. To prove the existence of predsc
G(Λ) we need to show finiteness of

minpoc�G(Λ) (which is no longer guaranteed) in addition to computability.
Very similar conditions can be stated for the injective case, where we additionally need

computability of reps�Q.

• The induced transition system T i
G(Λ) must be a Q-restricted WSTS wrt. �, i.e. �

must be a well-quasi-order on Q and T i
G(Λ) must satisfy the compatibility condition.

• The order � must be decidable and satisfy Definitions 5.1 and 6.3.

• An effective Q-pred-basis predsi
Q must exist, which is guaranteed if the following

conditions are satisfied.
– The morphismsM� must be pushout closed (Definition 6.11).
– The set of minimal pushout complements minpoc�Q (Definition 6.9) must be

computable (finiteness is guaranteed).

110

6.2. Minor Ordering

– The set of represented injective predecessors reps�Q (Definition 6.17) must be
computable (finiteness is guaranteed).

As in the conflict-free case this ensures decidability according to cases (ii) and (iii) of
Theorem 2.21, and also for case (iv) if a pred-basis predsi

G(Λ) exists. In the latter case
we need to prove finiteness and computability for both minpoc�G(Λ) and reps�G(Λ).

6.2. Minor Ordering
In this section we will prove that the minor ordering satisfies all necessary conditions for
applying Algorithm 6.6 both with conflict-free and injective matches. In fact, since the
minor ordering is a well-quasi-order on all graphs (see Proposition 5.6), we can show that
the coverability problem is decidable for all GTS satisfying the compatibility condition
wrt. the minor ordering. In [KS12b; KS12a] we have also shown under what conditions
the algorithms can still be applied in the presence of negative application conditions.
In Lemma 5.5 we have already proven that the minor ordering can be represented

by a class of minor morphisms. Thus we only have to show that this class is preserved
by pushouts along total morphisms (Lemma 6.20) and pushout closed (Lemma 6.21).
These two properties where first proven by König and Joshi in [JK08], which ultimately
gave rise to the framework presented in this thesis.

Lemma 6.20. Minor morphisms are preserved by pushouts along total morphisms (cf.
Definition 6.3).

Proof. See Appendix C.2.

Lemma 6.21. Minor morphisms are pushout closed (cf. Definition 6.11).

Proof. See Appendix C.2.

Minimal pushout complements wrt. the minor ordering can be computed by the con-
structions given in Propositions 3.30 and 3.33. To remain finite we do not add edges in
step 3 of Proposition 3.30. Since removing an edge is an allowed operation for minors,
all pushout complements left out in this way are still represented by other pushout com-
plement where no edges where added. This allows us to obtain the following general
result.

Proposition 6.22. The coverability problem wrt. the minor ordering is decidable for
every transition system T c

G(Λ) which satisfies the compatibility condition wrt. the minor
ordering (see of instance Proposition 5.7).

111

Chapter 6. Backward Analysis

Proof. Since the minor ordering is a well-quasi-order on all graphs (Proposition 5.6),
every GTS satisfying the compatibility condition is a WSTS and therefore also a Q-
restricted WSTS, where Q is the class of all graphs. Furthermore, we have proven that
the minor ordering is representable by morphisms (Lemma 5.5) which are preserved
by pushouts along total morphisms (Lemma 6.20) and pushout closed (Lemma 6.21).
Since the set of minimal pushout complements is computable, we satisfy all conditions
necessary to apply Algorithm 6.6 with conflict-free matches and obtain decidability due
to case (i) of Theorem 2.21.

It is also possible to use injective matches together with the minor ordering. We can
show that a procedure computing repsvQ exists, although it is quite complex. Given a
match m′ : L G′, the basic idea is to use “decontractions” to split nodes which are
non-injectively matched by m′. This means that we are searching for graphs G′′ from
which we can obtain G′ by a single edge contraction and to which we can extend m′ (to
obtain m′′) as shown in Figure 6.11. We illustrate this idea in the following example.

L

G′

G′′m′

m′′

µ′′

Figure 6.11.: Shows the basic idea of splitting matches used by Algorithm 6.24

Example 6.23. Let the rule and match be the same as in Example 6.16, i.e. we have a
non-injective match m′ : L G′. We can not simply drop m′, since there are G′′ larger
than G′ that can be rewritten with injective matches. Some of these G′′ are shown in
Figure 6.12 and each one has an additional edge which can be contracted to obtain G′.
In the presence of edges of arity more than two, such a decontraction can also add new
nodes. However, the D-labelled edge in this example could also be incident to one of
the original nodes multiple times. To cover all represented injective predecessors every
decontraction needs to be computed where m′′ is less non-injective than m′. In this
example decontracting once is enough.

To ensure that computing decontractions does terminate at some point, we need to
require that we only compute those G′′ wherem′′ has less pairs of non-injectively mapped
nodes than m′. The other G′′ need not be computed, since they are already represented
by those satisfying this restriction. With this termination criteria we can now define
Algorithm 6.24 to compute this set.

Algorithm 6.24 (Represented injective predecessors for the minor ordering).
Input: A prepared rule r : L R and a conflict-free match m : L G.
Output: The set repsvQ(r,m), a finite set of represented injective predecessors.

112

6.2. Minor Ordering

L

G′

A

A

A

C

A

C

A

B

A

B

A

D
m′

m′′

µ′′

Figure 6.12.: Shows some possible decontractions, each resulting in an injective m′′

1: if m is injective then
2: return {G}
3: end if
4: G ← ∅
5: M← {m}
6: whileM 6= ∅ do
7: let m′ : L G′ be any element ofM
8: M←M\ {m′}
9: P ← all pairs 〈G′′, µ′′ : G′′ G′〉 where µ′′ is undefined on exactly one edge e

and the identity on all other edges and all nodes except the nodes incident to e
10: for all 〈G′′, µ′′〉 ∈ P with G′′ ∈ Q do
11: for all total m′′ : L G′′ with m′ = µ′′ ◦m′′ do
12: if there are v1, v2 ∈ VL with m′(v1) = m′(v2) and m′′(v1) 6= m′′(v2) then
13: if m′′ is injective then
14: G ← G ∪ {G′′}
15: else
16: M←M∪ {m′′}
17: end if
18: end if
19: end for all
20: end for all
21: end while
22: return G

The algorithm above uses G to store the graphs for which injective matches exist and
M to store all matches it still has to process. In each iteration of the loop it chooses

113

Chapter 6. Backward Analysis

one match for which it computes all G′′ from which we obtain G′ by a single contraction
and for which a match m′′ commuting with m′ exists. However, the condition in line 12
ensures that there are less pairs of nodes matched non-injectively by m′′ than by m′ (if
this is not the case, m′′ is dropped). If m′′ is injective, we have found a final graph, but
if it is not, we have to perform more decontractions to become injective.
Interestingly we do not need to know the graph S or the original rule from which r

was prepared. In fact we can show that the property of being rewritten to a graph larger
than S is automatically fulfilled for all graphs we compute.

Lemma 6.25. The set repsvQ(r,m) computed by Algorithm 6.24 satisfies the conditions
of Definition 6.17.

Proof. See Appendix C.2.

With the existence of an appropriate repsvQ we have proven the necessary conditions to
state a variant of Proposition 6.22 for transition systems induced by injective matches.

Proposition 6.26. The coverability problem wrt. the minor ordering is decidable for
every transition system T i

G(Λ) which satisfies the compatibility condition wrt. the minor
ordering (see for instance Proposition 5.7).

Proof. Algorithm 6.24 is an appropriate repsvQ for the minor ordering (see Lemma 6.25).
All other necessary conditions hold due to Proposition 6.22.

6.3. Subgraph Ordering
The second main order we will prove compatible with our framework is the subgraph
ordering. In fact a lot of the results for the minor ordering can be reused since the
subgraph ordering is strictly finer, i.e. contractions are not allowed. We will also see
that this significantly simplifies the pred-basis computation for injective matches.

We start by proving preservation by pushouts along total morphisms and pushout
closure.

Lemma 6.27. Subgraph morphisms are preserved by pushouts along total morphisms
(cf. Definition 6.3).

Proof. Let G3 be the pushout of G0 along the subgraph morphism µ : G0 G1 and
total morphism g : G0 G2. Since every subgraph morphism is also a minor morphism,
we can use Lemma 6.20 to prove this lemma. It remains to be shown that µ′ : G2 G3
is injective where it is defined.
Assume there are two different elements x1, x2 ∈ G2 such that µ′(x1) = µ′(x2). For

G3 to be a pushout, both x1 and x2 have to have preimages x′1, x′2 ∈ G0 with g(x′1) = x1
and g(x′2) = x2. The diagram commutes, thus µ is defined for both elements and

114

6.3. Subgraph Ordering

these elements are mapped injectively to x′′1, x′′2 ∈ G1 respectively. Hence, there is a
commuting diagram with g′(x′′1) = µ′(x1) 6= g′(x′′2) = µ′(x2), for which there is no
mediating morphism from G3. Note that this last argument holds, since every possible
pair of preimages x′1, x′2 is matched injectively by µ. Since this violates the pushout
properties of the diagram, µ′ has to be injective.

Lemma 6.28. Subgraph morphisms are pushout closed (cf. Definition 6.11).

Proof. This lemma immediately follows from Lemma 6.21. Note that by construction
µR and µG only contract edges if µ does, thus, µR and µG are injective and subgraph
morphisms.

As for the minor ordering, the set of minimal pushout complements wrt. the subgraph
ordering, not just restricted to the class Gn of graphs with bounded paths, is always
finite and can be computed by the constructions described in Propositions 3.30 and 3.33.
Again we need not add edges in step 3 of Proposition 3.30, since the original graph is a
subgraph of all graphs generated this way. This leaves us with the following result.

Proposition 6.29. For every transition system T c
G(Λ) an effective pred-basis and Gn-

pred-basis for the subgraph ordering exists, and the decidability results of Theorem 2.21
apply.

Proof. We have already proven in Proposition 5.17 that every transformation system T
induces a Gn-restrictedWSTS wrt. the subgraph ordering. Furthermore, in Lemmas 5.14,
6.27 and 6.28 we have shown that the subgraph ordering satisfies the necessary conditions
to apply Algorithm 6.6. The set of minimal pushout complements – not just restricted
to Gn – can be computed in the same way as it is done for the minor ordering. Thus
predsc

G(Λ) is an effective pred-basis and predsc
Gn

is an effective Gn-pred-basis.

This means that we can apply Algorithm 6.6 using predsc
Gn

to achieve case (iii) of The-
orem 2.21. On the one hand, if a graph is represented by the final working set, then it
can cover a graph of the initial working set in the unrestricted transition system. On the
other hand, if a graph is not represented, it can not cover a graph of the initial working
set without exceeding the path bound. Furthermore, we can use predsc

G(Λ) for case (iv)
of Theorem 2.21, i.e. if the sequence of working sets becomes stationary – which is not
guaranteed in this case – then (general) coverability is decidable for the used instance. In
principle Proposition 6.29 does hold not just for Gn, but for all downward-closed classes
of graphs (wrt. the subgraph ordering). However, Gn is the largest class we know of on
which the subgraph ordering is a well-quasi-order.
Additionally, the existence of a pred-basis (not just Gn-pred-basis) leads to another

interesting result. Given a GTS, a graph G and a constant n, the question whether from
G we can reach a graph which contains a path of length at least n, is decidable. This
also enables us to decide whether we can use case (ii) of Theorem 2.21 for a given GTS,
for which we require that every reachable graph is in the class Q.

115

Chapter 6. Backward Analysis

Proposition 6.30. Let T be a graph transformation system, let G0 be a graph and let
n be a constant. Furthermore, let T c

G(Λ) = 〈G,⇒〉 be the transition system on all graphs
generated by T . The following problem is decidable: is there a graph G with G0 ⇒∗ G
and G has a path of length at least n?

Proof. We use that paths are preserved by the subgraph ordering, i.e. if a graph G has
a path of length n, then any larger graph also has a path of length n (or longer). We
observe that the problem above is therefore equivalent to checking if a path of length n
is coverable or not and we will now show that this is decidable.
Let Pn be the set of all paths of length n, i.e. the set of all connected graphs which

contain a path of length n and are minimal in the sense that any deletion of a node or
edge decreases every longest path of the graph by at least one. The set Pn is a finite
basis for the (upward-closed) class of all graphs containing a path of length at least n.
LetW be the result of applying Algorithm 6.6 with predsc

Gn
to Pn using the given rule

set and restricting the graph class to Gn. Then G ∈ ↑W implies that G can cover a path
of Pn and G /∈ ↑W implies that G cannot cover a path of Pn in ⇒Gn . However, any
minimal pushout complement not in Gn and therefore not returned by minpoc⊆Gn

would
have been subsumed by minimize⊆ (in line 9 of Algorithm 6.6), since every such pushout
complement is already represented by the initial working set. Thus, the restriction to
Gn has no effect on the result and G /∈ ↑W in fact implies that G cannot cover a path of
Pn in ⇒.

With this, if the paths of all graphs reachable from a set of initial graphs are bounded,
then the restricted coverability problem is decidable (for this instance).

Checking whether a graph is reachable where a set path bound is exceeded is not
the only problem where the “optimistic” variant of Algorithm 6.6, i.e. using a pred-
basis not guaranteeing termination, is helpful. We can also use this variant to prove
that the coverability problem is decidable for context-free graph transformation systems.
In fact, the correctness is guaranteed by the compatibility condition (see case (iv) of
Theorem 2.21) and we only need to prove termination. We can do this by exploiting the
restricted form of context-free rules.

Proposition 6.31. Let T be a context-free graph transformation system. The cover-
ability problem (wrt. the subgraph ordering) is decidable for the transition system T c

G(Λ)
induced by conflict-free matches.

Proof. Let T be a context-free GTS and let r : L R be a prepared rule. Due to
the special nature of rules of T , we know that L consists of a single edge including its
incident nodes and R may be an arbitrary graph. Note that since r is a composition of
a context-free rule and a subgraph morphism, r need not be defined for all nodes. Let
m : R G be a co-match of r to some graph G. We will show that if the sum of edges
and isolated nodes of a pushout complement G′ of r,m is larger than that of G, then

116

6.3. Subgraph Ordering

G ⊆ G′, i.e. G′ is dropped since it is subsumed by G. If this is the case, the algorithm
will only keep graphs with a less or equal sum of edges and isolated nodes, of which
only finitely many exist for any given G (the number of edge labels and the arity of each
label is finite). Thus, in the worst case the algorithm will terminate as soon as all these
graphs were computed for all input graphs.
We first observe that every pushout complement G′ has at most as many isolated

nodes as G. An isolated node can only be added backwards if L has an isolated node
(which is by definition not the case). Furthermore, the backward application of every
r where R contains at least one edge, removes at least one edge and adds exactly one
edge. Thus, the sum of edges and isolated nodes does not increase for such rules.
So assume that R consists only of nodes and there is one node v which has no preimage

in L. The co-matchm can only match v to an isolated node, since otherwise the dangling
condition (see Proposition 3.21) will be violated, i.e. no pushout complement would exist.
But this means that the number of isolated nodes decreases by at least one while the
number of edges increases by exactly one. Thus, the sum does not increase for this kind
of rule as well.
So we finally assume that R consists only of nodes and all nodes have a preimage in L.

Then G′ is obtained from G by adding some new (non-isolated) nodes and a new edge,
i.e. G ⊆ G′. A more precise proof of this last statement can be found in Section 6.5,
where we prove that pushout complements of any rules which are also order morphisms
are immediately subsumed (cf. Proposition 6.44).
Note that all these arguments hold for conflict-free and injective matches alike, since

context-free rules are injective. This implies that the co-rule is also injective, hence,
two elements are matched non-injectively by the match if and only if these elements are
matched non-injectively by the co-match (also implying that there is only one minimal
pushout complement). Thus, the backwards application of a rule does not cause any
“demergings” (splitting an existing node).
Summarized this means that the number of graphs the algorithm computes is bounded

by the size of the input graphs for which the first backward steps are computed. Termi-
nation is therefore guaranteed.

Note that this result is already implied for minor morphisms by Proposition 5.11, in
which we have proven that every transition system – regardless of matches – induced
by a context-free GTS forms a WSTS wrt. the minor ordering. Thus we can apply
Algorithm 6.6 as proven in Section 6.2.
The subgraph ordering can also be used with injective matches. The computation is

significantly simpler compared to the minor ordering, since we can reduce reps⊆Q to the
following simple check.

Algorithm 6.32 (Represented injective predecessors for the subgraph ordering).
Input: A prepared rule r : L R and a conflict-free match m : L G.
Output: The set reps⊆Q(r,m), a finite set of represented injective predecessors.

117

Chapter 6. Backward Analysis

1: if m is injective then
2: return {G}
3: else
4: return ∅
5: end if

The reason for this is that subgraph morphisms are injective. Therefore the composition
of an injective match and a subgraph morphism can never be non-injective, as shown in
the following example.

Example 6.33. Let the prepared rule µR ◦ r and the co-match n be given such that G′
is a pushout complement, as shown in Figure 6.13. Any graph G consists of G′ possibly
extended with additional nodes and edges, in this case an A- and a B-labelled edge
(the dotted parts). Since Definition 6.17 is only concerned with those splits of µG ◦m
into µG,m that commute, m is non-injective if µG ◦ m is. Thus, there are simply no
represented injective predecessors and we can drop µG◦m. Furthermore, since injectivity
is preserved by pushouts, we do not even have to consider non-injective co-matches n,
since these always cause the match to be non-injective as well.

L R R′

G H

G′ S

A B B

A

B
A

A

B
B

A B

r µR

m

r′

m′

µG
µ

n

s

Figure 6.13.: For subgraph morphisms a non-injective match µG ◦ m implies a non-
injective m

In general, the computation of a set reps�Q is only necessary if the order � used allows
some form of contraction or merging. The proof that reps⊆Q is in fact sufficient for the
subgraph ordering is very straight-forward.

Lemma 6.34. The set reps⊆Q(r,m) computed by Algorithm 6.32 satisfies the conditions
of Definition 6.17.

118

6.4. Induced Subgraph Ordering

Proof. The first condition of Definition 6.17 is obviously satisfied, since either reps⊆Q(r,m)
is empty or we return G and can therefore splitm into idG◦m, r into the rule from which
it was prepared and a subgraph morphism, and the pushout is S (which is a subgraph
of S).
The second condition clearly holds if reps⊆Q(r,m) = {G}, since for every graph G′

satisfying the first condition by definition G ⊆ G′ holds. Thus, we only need to show
that no split is possible if m is non-injective. So assume that there is a split m = m2◦m1
where m2 is a subgraph morphism and m1 is injective. This implies that m is injective
as well, violating the assumption.

We can even prove that for injective matches we need not consider total co-matches in
line 3 of Algorithm 6.18, but can restrict to injective co-matches. Although an injec-
tive co-match does not imply an injective match – we still need to drop some pushout
complements – the other direction does hold. All pushout complements for non-injective
co-matches will therefore be dropped by reps⊆Q.

Hence, we obtain for injective matches the same decidability result as for conflict-free
matches. For subgraphs the injective case is even easier to compute than the conflict-free
case.

Proposition 6.35. For every transition system T i
G(Λ) an effective pred-basis and Gn-

pred-basis for the subgraph ordering exists, and the decidability results of Theorem 2.21
apply.

Proof. The applicability of the backward search for conflict-free matches (Algorithm 6.6)
has been stated in Proposition 6.29. The only additional condition for injective matches
is the existence of a procedure reps⊆G(Λ), which we have shown in Lemma 6.34. Thus
predsi

G(Λ) is an effective pred-basis and predsi
Gn

is an effective Gn-pred-basis.

One of the implications of this result is that coverability is decidable for context-free
graphs transformation systems and injective matches, i.e. Proposition 6.31 holds for
injective matches as well.

6.4. Induced Subgraph Ordering
Our last main order is the induced subgraph ordering, which is strictly finer than the
subgraph ordering (pure edge deletions are not allowed). We can again use the results
for the subgraph ordering to prove preservation by pushouts along total morphisms and
pushout closure.

Lemma 6.36. Induced subgraph morphisms are preserved by pushouts along total mor-
phisms (cf. Definition 6.3).

119

Chapter 6. Backward Analysis

Proof. Since every induced subgraph morphism is also a subgraph morphism, µ′ is in-
jective and surjective by Lemma 6.27. Let e ∈ G2 be an edge on which µ′ is undefined.
Then e has a preimage e′ ∈ G0 since otherwise the pushout of µ and g would contain
e. Since µ′(g(e′)) is undefined, so is g′(µ(e′)). First assume that µ is undefined for e′.
Since µ is an induced subgraph morphism, at least one of the nodes v incident to e′ is
undefined and also µ′ has to be undefined on g(v) for the diagram to commute. Now
assume µ(e′) is defined, then g′(µ(e′)) must be undefined. However, this can only be
the case if there is a conflict, i.e. there is another e′′ ∈ G0 with g(e′) = g(e′′) = e where
µ(e′′) is undefined. This also implies that µ′ is undefined on at least one node incident
to e.

Lemma 6.37. Induced subgraph morphisms are pushout closed (cf. Definition 6.11).

Proof. In Lemma 6.28 we have shown that there are subgraph morphisms µR and µG if
µ is a subgraph morphism. We will show that these morphisms are induced subgraph
morphisms if µ is an induced subgraph morphism.

Let e ∈ R be an edge on which µR is undefined. By definition µ(m′(e)) is undefined
and since m′ is total, µ is undefined on m′(e) (which is defined). Hence, at least one
node v incident to m′(e) has no image under µ and all its preimages under m′ (which
exist since e has a preimage) are undefined under µR. Thus, e is incident to at least one
node on which µR is undefined on.
Let e′ ∈ G be an edge on which µG is undefined. By definition µ(r′(e′)) is undefined

and e′ has no preimage under m. Because of the latter property, e′ is in the pushout H
and therefore defined under r′. Thus, µ is undefined on r′(e) and on at least one incident
node. All preimages under r′ of this node are undefined under µG since the diagram
commutes. Hence, µG is an induced subgraph morphism.

Unfortunately, the computation of minimal pushout complements wrt. the induced sub-
graph ordering is more involved. The set of minimal pushout complements wrt. all
graphs is also not guaranteed to be finite, as shown in the following example.

Example 6.38. Let a very simple rule and match be given, as shown in Figure 6.14.
Both G′ and G′′ are pushout complements of r,m, since every edge incident to the node
1 is deleted when computing the pushout. For subgraphs we only need to compute
G′, since it is a subgraph of G′′. However, it is not an induced subgraph. Thus, both
graphs are minimal wrt. the induced subgraph ordering. In general, every addition of an
edge incident to at least one deleted node leads to a new minimal pushout complement.
The set is therefore infinite in this case and we need to rely on the bound on edge
multiplicity – which is also necessary for the induced subgraph to be a well-quasi-order
(see Proposition 5.24) – to achieve a finite set.

We therefore obtain the following algorithm to compute minimal pushout complements.

120

6.4. Induced Subgraph Ordering

L R

G

G′

G′′

1

2

r

m

2 1

2 1

A

A

B

Figure 6.14.: Shows two minimal pushout complements for r,m wrt. the induced sub-
graph ordering

Algorithm 6.39 (Minimal pushout complements wrt. induced subgraphs).
Input: A rule r : L R and a co-match m : R G.
Output: The set minpoc�Gn,k

(r,m), the set of minimal pushout complements wrt. Gn,k
and the induced subgraph ordering.
1: G ← minpoc⊆Gn,k

(r,m)
2: F ← G
3: while G 6= ∅ do
4: let G′ be any element of G
5: G ← G \ {G′}
6: H ← all graphs obtained by adding an edge of any label to G′ (without adding

new nodes) incident to at least one node deleted by the pushout
7: F ← F ∪ (H ∩ Gn,k)
8: G ← G ∪ (H ∩ Gn,k)
9: end while

10: return F

The correctness of this algorithm follows from the correctness of our pushout complement
constructions Propositions 3.30 and 3.33.

Lemma 6.40. Algorithm 6.39 computes the set of minimal pushout complements in Gn,k
wrt. the induced subgraph ordering.

Proof. First we observe that line 6 of the algorithm will increase the number of edges
between some sequence of nodes. Since no new nodes are added, at some point every
sequence of nodes will exceed the multiplicity bound set by Gn,k and no more graphs
will be added to G in line 8. Thus, the algorithm terminates.

121

Chapter 6. Backward Analysis

Since line 6 corresponds to step 3 of the construction described in Proposition 3.30,
it is guaranteed that every graph of F is a pushout complement of r,m. So we only
need to prove that every pushout complement in G′ ∈ Gn,k is represented by some el-
ement computed. Without loss of generality we can assume that G′ was calculated by
the constructions described in Propositions 3.30 and 3.33, i.e. we first compute a graph
G′′ and then add edges in step 3 of Proposition 3.30 which all satisfy the condition
in line 6 of this algorithm. Due to the downward closure of Gn,k (wrt. subgraphs and
induced subgraphs), G′′ ∈ minpoc⊆Gn,k

(r,m). Furthermore, every graph of the sequence
G′′, G1, G2, . . . , G`, G

′ obtained by successively adding edges (one per graph) is an ele-
ment of Gn,k and will not be dropped in lines 7 and 8 of our algorithm. Thus, all minimal
pushout complements are contained in F .

This means that for the induced subgraph ordering an effective Gn,k-pred-basis exists.
In fact, our pred-basis does only need a multiplicity bound and no path bound to work
(similar to the subgraph ordering). However, we were only able to prove that the induced
subgraph ordering is a well-quasi-order on Dn,k, i.e. directed graphs with bounded paths
and multiplicity. We therefore obtain the following somewhat weaker result.

Proposition 6.41. For every transition system T c
G(Λ) an effective Dn,k-pred-basis for

the induced subgraph ordering exists, and the decidability results of Theorem 2.21 apply.

Proof. In Propositions 5.24 and 5.25 we have shown that T c
G(Λ) forms a Dn,k-restricted

WSTS wrt. the induced subgraph ordering. Then in Lemmas 5.21, 6.36 and 6.37 we have
proven that a class of induced subgraph morphisms exists that satisfies the necessary
conditions, i.e. is preserved by pushouts along total morphisms and pushout closed.
Finally in Lemma 6.40 we have proven that the set of minimal pushout complements
wrt. Dn,k is finite and computable.

For injective matches the results for subgraphs can be transferred to induced subgraphs.
We can again use the simple Algorithm 6.32 to obtain a valid procedure for reps�Q (for
any Q), i.e. we can drop any pushout complements with non-injective matches. Hence,
the decidability result is equivalent to Proposition 6.41.

Proposition 6.42. For every transition system T i
G(Λ) an effective Dn,k-pred-basis for

the induced subgraph ordering exists, and the decidability results of Theorem 2.21 apply.

Proof. We have shown most of the necessary conditions in the proof of Proposition 6.41.
Algorithm 6.32 computes a valid set reps�Q due to Lemma 6.34. Clearly, if for non-
injective matches no split is possible for subgraph morphism, then it is also not possible
for induced subgraph morphism, a strict subclass of morphisms.

122

6.5. Optimizations

6.5. Optimizations
When computing our backward analysis there are several places where combinatorial
explosions can occur: in the rule preparation, the search for co-matches, the computation
of minimal pushout complements and the computation of injective predecessors. Not all
these problems can be avoided, but many can be countered by implementing intelligent
search strategies to achieve efficiency in the average case, e.g. when searching for co-
matches we can abort if we detect that the gluing condition will not be satisfied. In
this section we focus not on these search optimizations, but on those that arise from our
special setting. The following three optimizations are covered:

• The very simple Algorithm 6.32 for computing reps�Q can be used for every order �
for whichM� contains only injective morphisms (Lemma 6.43). This also means
that we only need to compute injective co-matches for those order.

• A rule that is also an order morphism can be removed from the GTS without
affecting the results of the backward search (Proposition 6.44). This enables us
to reduce the number of rules we need to apply backwards, which turns out to
significantly improve the performance.

• Under certain conditions we can convert a rule r to a rule r′ which behaves the same
when applied backwards, but is undefined for less edges. This works for injective
(Proposition 6.46) as well as conflict-free matches (Proposition 6.48). Replacing r
with r′ enables us to benefit even more from the previous optimization.

We start with the first optimization regarding reps�Q. For subgraphs and induced sub-
graphs we have shown that the simple Algorithm 6.32 is sufficient for computing reps�Q.
We can easily translate this result to any order not allowing some form of contraction
or merging, and obtain the following.

Lemma 6.43. Let M� be a class of order morphisms for � which contains all iso-
morphisms. If every µ ∈M� is injective, then Algorithm 6.32 (which calculates reps�Q)
correctly computes the set of represented injective predecessors, i.e. the conditions of
Definition 6.17 are satisfied.

Proof. In the correctness proof for subgraphs (see Lemma 6.34) we only use two prop-
erties of subgraph morphisms: every subgraph morphisms is injective and every isomor-
phisms is a subgraph morphism. Both properties hold by assumption.

For such order we only need to compute pushout complements for injective co-matches,
since non-injective co-matches imply non-injective matches and pushout complement
with these matches are dropped.

123

Chapter 6. Backward Analysis

A rather significant performance boost can be achieved by removing rules for which
we know that every pushout complement computed using this rule will be subsumed
by another graph in the minimization step. An example for such a rule (for all orders
presented so far) is r : L R where R is the empty graph and L is arbitrary. Given the
only possible match m : R G to some G the minimal pushout complement wrt. the
minor and subgraph orderings is G′, the disjoint union of G and either L or a version of
L where some nodes and edges are merged (if conflict-free matches are used). However,
G is obviously a subgraph and minor of G′. For induced subgraph the minimal pushout
complements contain not just G′, but also all graphs obtained from G′ by adding edges
incident to at least one node of L. Again G is an induced subgraph of all such graphs. In
fact, we can prove that every pushout complement computed using a rule which is also an
order morphism will be subsumed, regardless of whether we use injective or conflict-free
matches and also independent of how minimal pushout complements are computed.

Proposition 6.44. Let M� be a class of order morphisms that satisfies all neces-
sary conditions to apply the backward search (Algorithm 6.6) using either predsc

Q (Algo-
rithm 6.10) or predsi

Q (Algorithm 6.18) as Q-pred-basis. For every G ∈ predsc
Q(T , S) or

G ∈ predsi
Q(T , S) computed using a rule r ∈ T ∩M� it holds that S � G.

Proof. First assume that G ∈ predsc
Q(T , S). This means that there is a (prepared) rule

r : L R (by assumption an order morphism) and a conflict-free match m : L G
such that S is the pushout of r,m, as shown in Figure 6.15a. Since M� is preserved
by pushouts along total morphisms (cf. Definition 6.3), the morphism r′ is an order
morphism as well. Thus, S � G holds. Note that this argument holds regardless of the
computation of minpoc�Q(r,m), since by definition every element of this set is a pushout
complement.

L R

G S

r

m

r′
m′

(a) Preservation by pushouts along total
morphisms causes r′ to be an order
morphism

L R′ R

G

G′

H

S

r1 r2

m

µ

m

r

r′

m′

(b) Every represented injective predecessor is also sub-
sumed by S

Figure 6.15.: Every graph computed by predsc
Q or predsi

Q is subsumed by S

124

6.5. Optimizations

Now assume G ∈ predsi
Q(T , S). Again, there is a (prepared) rule r : L R and an

injective match m : L G, but the pushout of r,m need not be S. By definition we
can split r into r2 ◦ r1 and there is a µ : G G′ such that µ ◦m is conflict-free wrt. r
and S is the pushout of r and µ ◦m, as shown in Figure 6.15b. As in the conflict-free
case r′ is an order morphism proving S � G′ � G for all G.

The proof of Proposition 6.44 also implies that isomorphisms can me removed from the
set of rules, since isomorphisms are preserved by pushouts as well. Due to Definition 5.1
– even if r′ is no order morphism – S � G is guaranteed. Thus, an obvious improve-
ment is to modify prepare� to not return prepared rules that are order morphisms or
isomorphism.
Another possibility to reduce the number of rules is the deletion of “equivalent” rules.

Under some circumstances rules will produce the same pushout complements, i.e. behave
the same, even if the morphisms are not isomorphic.

Example 6.45. For instance, let r : L R be a rule where L consists of a single edge
together with its incident nodes, R is isomorphic to L and r is the isomorphism. This
rule behaves the same as a rule r′ : L R which is the same as r, but undefined on the
edge. Obviously, r does not change any graph it is applied to (forwards or backwards),
but this also holds for r′, since an application deletes an edge and then immediately adds
an edges with the same label at the same position. We therefore only need to consider
one of these rules in our analysis. In fact, we can delete r′ – regardless of the order used
– since it behaves like an isomorphism, although it is neither an isomorphism nor an
order morphism!

We will first prove this property for injective matches and then extend it to conflict-free
matches. However, this extension is only possible when the left-hand side satisfies some
correctness criteria, namely it may not contain another edge with the same label. Later
in Example 6.47 we will illustrate the problem occurring if this condition is violated.

Proposition 6.46. Let r : L R be a rule, let e ∈ EL be an edge where r(e) has only
one preimage in L (which is e) and let r′ : L R be defined as r′(x) = r(x) for x 6= e
and r′(e) undefined. For every injective match m : L G the pushout object of r,m is
isomorphic to the pushout object of r′,m.

Proof. By definition there is a k : L L with r′ = k ◦ r which is the identity on every
x 6= e and undefined on e. We can now form the pushout of k,m and then of r,m′, as
shown in Figure 6.16. By the properties of pushouts, G′′ is the pushout of m, r′. Since
k and k′ are both injective (and almost the identity), the commutativity m′ ◦ k = k′ ◦m
ensures that m(x) = m′(x) for all x 6= e. This means that k′(cG(m(e))) = cG′(m′(e)),
which – together with the fact that k′ is a bijection on nodes – implies that m,m′ and
G,G′ are isomorphic, respectively. Thus, the pushouts of r,m and r′,m are isomorphic
as well.

125

Chapter 6. Backward Analysis

L L R

G G′ G′′

k r

r′

m m′

k′

Figure 6.16.: Diagram showing the morphisms of Proposition 6.46

As a result of Proposition 6.46 we can further minimize the set of rules for the subgraph
and induced subgraph orderings. Before or after rule preparation we can “extend” all
prepared rules r : L R where there are e ∈ EL and e′ ∈ ER where:

• r(e) is undefined, but r(v) is defined for all nodes v incident to e,

• e′ has no preimage in L and

• r(cL(e)) = cR(e′).

The extended rule r′ : L R with r′(x) = r(x) for x 6= e and r′(e) = e′, fully re-
places r. We can repeat the extensions until there are no more pairs e, e′ satisfying the
necessary conditions. Since this may cause more rules to be subgraph or induced sub-
graph morphisms, it can further reduce the number of rules when used with the other
optimizations.
Unfortunately, this optimization needs to be restricted before we can use it also for

conflict-free matches. This is especially a problem for the minor ordering, since we need
to compute pushout complement for conflict-free matches even if we restrict to injective
ones. The problems occurring for conflict-free matches are illustrated in the following
example.

Example 6.47. Let the rule r be given as shown in Figure 6.17, where m is a conflict-
free match resulting in the pushout G′. Note that r is undefined on all edges. If we
would extend r to match for instance the edge 3 in L to 5 in R, then m would no longer
be conflict-free. In fact, G would no longer be a pushout complement of r,m′ and would
not be computed by our backward algorithm!

Our optimization is therefore only possible for rules where it is guaranteed that edges
are matched injectively. Since nodes can also be matched non-injectively, this is only
the case if edges in L have unique labels. Note that this means that r may be extended
for some edge, but no for others, even if they satisfy the conditions of Proposition 6.46.
This leads to a more restricted version of this proposition.

126

6.6. Universally Quantified Rules

L
R

G′G

1 2

A

3

A
4

1 2
A

5

1 2
A

5

1 2
A

3, 4

r

m′m

r′

Figure 6.17.: Shows problem with extending rules when using conflict-free matches

Proposition 6.48. Let r : L R be a rule, let e ∈ EL be an edge where r(e) has only
one preimage in L (which is e) and where e is the only edge in L with the label lL(e),
and let r′ : L R be defined as r′(x) = r(x) for x 6= e and r′(e) undefined. For every
conflict-free match m : L G the pushout object of r,m is isomorphic to the pushout
object of r′,m.

Proof. From the proof of Proposition 6.46 it already follows that m,m′ and G,G′ are
isomorphic, and since m is conflict-free wrt. r′ it is guaranteed that m′ is total. Thus,
we only need to show that m′ is also conflict-free wrt. r.
So assume that there are x1, x2 ∈ L with m′(x1) = m′(x2) and r(x1) is defined while

r(x2) is undefined. Neither x1 nor x2 can be the edge e on which r is defined but r′
is not, since this would require that there is another edge with the same label in L.
However, any other x1, x2 for which m′ has a conflict would imply that m has the same
conflict wrt. r′, which is false by assumption.

When using conflict-free matches we can therefore also extend rules, similar to the
injective case.

6.6. Universally Quantified Rules
One drawback of the SPO approach, used in this thesis, is that rules can only change a
fixed part of a graph they are applied to, i.e. the match of the left-hand side. However, if
we want to model for instance broadcast protocols, we need to have rules that can match
the entire neighbourhood of a node. An example of such a rule can be seen in Figure 6.18.
There we have a process node, marked with an unary S1-labelled edge indicating that it
is currently in state S1, and we want to send a message along all outgoing connections
(C-labelled edges). The rule should automatically match all incident C-labelled edges
and rewrite them to M -labelled edges, indicating that a message was sent along this

127

Chapter 6. Backward Analysis

connection. At the same time the process should change its state from S1 to S2. Note
that this rule is not expressible by normal SPO rules.

1 3

S12

C 1 3

S22

M

r

Figure 6.18.: A rule rewriting all C-labelled edges incident to the S1-marked node to
M -labelled edges

In [DSZ10] Delzanno et al. used similar but less expressive broadcast operations –
in addition to local operations (i.e. standard replacement) – and the induced subgraph
ordering, to analyse broadcast protocols. For this they defined their own rewriting
syntax and semantic. For category-based graph transformation so-called adaptive star
grammars exist [DH+06], which can clone left-hand sides to extend a rule to match an
arbitrary large part of the graph. In this section we use a similar idea in combination
with the theory of amalgamated graph transformations [BFH87] to define our own, more
flexible, rules which we call universally quantified. We then prove the applicability of
our backward search even for this more general type of rules, but only for the subgraph
ordering in conjunction with injective matches. In principle the proofs also hold for the
induced subgraph ordering, but not necessarily for the minor ordering or conflict-free
matches, since they assume injectivity of matches as well as order morphisms. Whether
such extensions are possible was not yet investigated. The theory presented in this
section was first published in [DS14b; DS14a].
We start by formalizing the notion of universally quantified rules as an extension

of normal rules. These new rules need to be instantiated via a sequence of recursive
instantiation steps to generate a rule morphism which can then be applied as per the
standard SPO approach.

Definition 6.49 (Universally quantified rules). A universally quantified rule is a pair
ρ = 〈r, U〉, where r : L R is a partial morphism, called the core rule, and U is a finite
set of universal quantification pairs. A universal quantification pair (or short q-pair) is a
pair 〈pu, qu〉 = u ∈ U where pu : L Lu is a total injective morphism and qu : Lu Ru
is a partial morphism satisfying the restriction that qu(pu(x)) is defined and has exactly
one preimage in Lu for every x ∈ L.

With qn(u) we denote the set of quantified nodes of u, which is the set of all v ∈ VL
such that there is an edge incident to pu(v) which has no preimage in L. We denote
the quantified nodes of a rule the same way, i.e. qn(ρ) =

⋃
u∈U qn(u). We require that

qn(u) 6= ∅ for all u ∈ U .

A universally quantified graph transformation system (UGTS) is a graph transformation
system containing universally quantified rules in addition to regular ones.

128

6.6. Universally Quantified Rules

The idea of universally quantified rules is to take the core rule and extend it using the
q-pairs to finally obtain an applicable rule morphism, a so-called instantiation. For this
the core rule and q-pairs are recursively merged via amalgamation. The morphism pu of
a q-pair u defines the common interface for this amalgamation between the core rule and
u, whereas qu defines what the q-pair adds to the rule. Some consistency conditions in
Definition 6.49 ensure that this amalgamation does not cause unexpected behaviour. To
ensure that an instantiation cannot be applied if it can be extended further, we will state
match conditions for quantified nodes, since these are the nodes of which the degree is
affected by instantiation. Note that the set of q-pairs of a rule may be empty, but the
semantic of such universally quantified rules differs from standard SPO rules.

Definition 6.50 (Instantiation of universally quantified rules). An instantiation of a
universally quantified rule ρ = 〈r, U〉 consists of a total injective morphism π : L L
and a partial morphism γ : L R and is recursively defined as follows:

• The pair 〈idL : L L, r〉, where idL is the identity on L, is an instantiation of ρ.

• Let 〈π : L L, γ : L R〉 be an instantiation of ρ and let 〈pu : L Lu, qu : Lu
Ru〉 = u ∈ U . Furthermore, let Lu be the pushout of π, pu and let Ru be the
pushout of γ ◦ π, qu ◦ pu, as shown in the diagram in Figure 6.19. Then p′u ◦ π
and the (unique) mediating morphism η are also an instantiation of ρ. We write
〈p′u ◦ π, η〉 = 〈π, γ〉 � u to indicate that the instantiation 〈π, γ〉 was extended by
using u.

We say that the length of an instantiation is the number of steps performed to generate
the instantiation, where 〈idL, r〉 has a length of 0.

L L R

Lu Lu

Ru Ru

π γ

pu p′u

π′

qu
η

Figure 6.19.: Diagram showing an instantiation of a universally quantified rule

Example 6.51. In Figure 6.20 we illustrate the instantiation process for the rule ρ =
〈r, {〈pu, qu〉}〉 given in Figure 6.18. The core rule simply replaces a unary S1-labelled edge
with a unary S2-labelled edge and can be extended using u to also replace all outgoing

129

Chapter 6. Backward Analysis

C-labelled edges withM -labelled edges. Figure 6.20 shows the trivial instantiation (with
length 0) in the top row and extends it by u to obtain the instantiation 〈p′u◦idL, η〉 (which
has length 1). The common interface for the amalgamation of r and qu consists only of
the (grey) quantified node and its incident S1-labelled edge. Note that the conditions for
q-pairs forbid qu to change anything in the common interface, thus preventing a conflict
while instantiating. The rule morphisms η of the new instantiation now performs both
the changes r and qu would perform.

L L R

Lu Lu

Ru Ru

S1 S1 S2

C

S1

C

S1

M

S1

M

S2

idL r

pu p′u

id ′L

qu
η

Figure 6.20.: A possible instantiation of a rule r with a quantification 〈pu, qu〉

Any further instantiation with u will add an additional node and C-labelled edge to
Lu and an additional node and M -labelled edge to Ru. As we will define later, the rule
morphism η is only applicable if the grey node is matched to a node with degree (exactly)
two, preventing the application of an instantiation which can still be instantiated further.
The rule application is performed by calculating the pushout of η (not r) and a valid
match m as normal. The match is only valid if all edges incident to the grey node have
a preimage in Lu, such that an application will always result in all incident C-labelled
edges to be replaced by M -labelled edges. Although the number of affected edges can
be arbitrary large, the quantification it bounded to the neighbourhood of the grey node
and therefore the changes are still local.

From Definitions 6.49 and 6.50 it implicitly follows that parts of an instantiation which
are generated in different instantiation steps are independent. In fact, we can prove that
the order in which q-pairs are used to generate an instantiation can be neglected, since
any two instantiation steps of a sequence can be swapped without changing the resulting
instantiation. Therefore we can uniquely specify instantiations by the number of uses of
each q-pair in the instantiation sequence, as shown in the following lemma.

130

6.6. Universally Quantified Rules

Lemma 6.52. Let ρ = 〈r, U〉 be a rule and let f : U → N0 be any function assigning
a quantity to each q-pair. Every instantiation of ρ which is generated by using f(u)
occurrences for each u respectively, yields the same morphisms (up to isomorphism).

Proof. See Appendix C.3

Finally, based on instantiations and quantified nodes we can define when a universally
quantified rule is applicable. This is the case if the entire neighbourhood of every quan-
tified node is matched. Intuitively, we can search for a match of the core rule and
then successively perform instantiation steps while updating the match until the entire
neighbourhood is matched. If this is not possible, the rule is not applicable.

Definition 6.53 (Application of universally quantified rules). Let ρ be a universally
quantified rule. We say that ρ is applicable to a graph G, if there is an instantiation
〈π : L L, γ : L R〉 of ρ and a total injective match m : L G, such that for
every x ∈ qn(ρ), there is no e ∈ EG incident to m(π(x)) without a preimage in L. The
application of ρ to G via m results in the graph H, the pushout of m and γ.

We reuse the notation G ρ,m⇒ H (or simply G⇒ H) to denote a rewriting step from G
to H using an appropriate instantiation of ρ and match m.

Note that this definition introduces a restricted form of negative application condition
since the existence of an edge, which cannot be mapped, may block the application of
a rule if no larger instantiation can map this edge. As we will see later, this causes
the working set computed by the backward search to be an over-approximation, since
the compatibility condition of WSTS is no longer satisfied. It is also possible to weaken
Definition 6.53 to only require that an instantiation is only applicable if there is no larger
instantiation which is also applicable by extending the match. The neighbourhood of
quantified nodes need then not be matched entirely, but only those edges that can be
matched by extending with some q-pair. In fact, this alternative definition coincides
with the one used by Delzanno et al. [DSZ10]. The backward search would still compute
an over-approximation for the subgraph ordering, but would be precise for the induced
subgraph ordering.
We now need to extend Algorithm 6.6, our backward search, to handle universally

quantified rules in addition to regular ones. In the following we assume that T is a UGTS,
i.e. contains both kind of rules. Applying a universally quantified rule backward can be
done quite straight-forwardly by computing all necessary instantiations and applying
those backward which are applicable. However, this requires a bound on the number of
instantiations (since there are infinitely many) and requires instantiations to be prepared
after their computation. We can prove that we do not need to compute instantiations
that have a greater length than the size of G, the graph to which we want to apply ρ
backwards. Intuitively, if we perform more instantiation steps than G has nodes and
edges, then the subgraph morphisms composed with the instantiation must be undefined

131

Chapter 6. Backward Analysis

on all elements added in one of those steps (otherwise there can be no co-match). By
not performing that step in the first place, we obtain a smaller instantiation that already
represents all pushout complements that we would compute with the larger instantiation.
We prove this in the following proposition.

Proposition 6.54. Let ι be an instantiation of length k of some rule ρ. If k is larger
than the number of nodes and edges of G, then every graph computed by the backward
application of ι is already represented by the backward application of an instantiation of
lower length.

Proof. See Appendix C.3.

In the following we use boundρ(G) to denote the bound on the number of instantiations
that exists due to Proposition 6.54. Note that this bound only depends on G and not
on ρ. By taking the structure of ρ into account we can further reduce the bound, but
this is not necessary to prove the correctness of our Q-pred-basis.

Preparation of the universally quantified rules ρ is only possible in a very limited
way. Since we need to prepare the instantiations anyway, we can define prepare�(T) to
preserve all universally quantified rules unchanged, without loosing correctness. With
this assumption we can define the Q-pred-basis uq-predsi

Q as follows.

Algorithm 6.55 (Extended injective Q-pred-basis).
Input: A (prepared) rule set T and a graph S ∈ Q. We use Ts to denote the set of
(prepared) standard rules and Tuq to denote the set of (unprepared) universally quantified
rules.
Output: The set uq-predsi

Q(T , S), an effective Q-pred-basis for the subgraph ordering
with injective matches and universally quantified rules.
1: G ← predsi

Q(Ts, S)
2: for all ρ ∈ Tuq do
3: for all instantiations 〈π, γ : L R〉 of ρ with length boundρ(G) or less do
4: for all subgraph morphisms µ : R R

′ do
5: for all total co-matches m : R′ S do
6: Gpoc ← minpoc⊆Q(µ ◦ γ,m)
7: for all 〈G′,m′ : L G′, r′ : G′ S〉 ∈ Gpoc do
8: if m′ is injective and satisfies Definition 6.53 then
9: G ← G ∪ {G′}
10: end if
11: end for all
12: end for all
13: end for all
14: end for all
15: end for all

132

6.6. Universally Quantified Rules

16: return G

In line 1 we use the standard injective Q-pred-basis to compute predecessors of standard
rules. We then need to compute instantiations for every universally quantified rule that
do not exceed the bound (line 3). This instantiations are prepared in line 4. Note
that, as in prepare�(T), we only need to consider one representative for every class
of isomorphic subgraph morphisms. Finally, after computing co-matches and pushout
complements we need to drop all graphs where the match is not valid (line 8), i.e. where
not the entire neighbourhood of all quantified nodes is matched. The latter check can
be lifted to a check for the co-match, i.e. a post condition, as we will later introduce as
an optimization.

To prove that Algorithm 6.55 does compute a correct Q-pred-basis we need to show
that the Lemmas 6.13 and 6.14 hold for uq-predsi

Q, i.e. the computed set is finite but still
contains all minimal predecessors. For this we can reuse the proof of Proposition 6.19,
where we have shown that predsi

Q is a valid Q-pred-basis. In fact, very property we
have shown for prepared rules holds for prepared instantiations as well. Additionally we
can prove that if a pushout complement satisfies the application condition, any smaller
pushout complement satisfies it as well. This allows us to prove effectiveness of uq-predsi

Q
either for all graphs or graphs where the longest path is bounded, which we state in the
following proposition.

Proposition 6.56. Let T be a UGTS containing standard rules as well as universally
quantified rules. The set uq-predsi

Gn
(T , S) computed by Algorithm 6.55 is an effective

Gn-pred-basis for the transition system T i
G(Λ) when using the subgraph ordering. Further-

more, uq-predsi
G(Λ)(T , S) is an effective pred-basis.

Proof. See Appendix C.3.

Unfortunately, although we have proven the existence of a (Gn)-pred-basis for UGTS,
enabling us to apply our main backward search (Algorithm 6.6), we obtain a weaker
result than the one for standard GTS. The problem is that UGTS do not satisfy the
compatibility condition of Gn-restricted WSTS, since a rule may become inapplicable
to some G by the addition of a single edge to G. However, our procedure exploits
this property and may therefore find invalid paths in the transition system. Thus, the
final working set is an over-approximation of the actual set (which need not be finitely
representable).
We will now discuss some optimizations regarding rule preparation, tightening the

bound and checking the application condition as a postcondition.

Optimization by Preparation
In Algorithm 6.55 we prepare instantiations rather than universally quantified rules.
Preparing the rules itself is more complex, but would allow for more optimization and

133

Chapter 6. Backward Analysis

eliminate the need of preparing the instantiations. To do this we would have to compose
subgraph morphisms not just with the core rule, but also with each q-pair. However,
composing just one subgraph morphism with each q-pair is not sufficient, since this
results in an instantiation where every part generated from the same q-pair is prepared
in the same way. For instance the composition of the instantiation γ and the subgraph
morphism µ shown in Figure 6.21 would not be possible. To cover this case in the
preparation of a universally quantified rule we would need to add one new q-pair for
every possibility to compose an old q-pair with a subgraph morphism, such that the new
q-pair is still injective and total on the common interface.

L R R
′

S1
C

C

S2
M

M

S2
Mγ µ

Figure 6.21.: Shows an instantiation of the rule in Figure 6.18 composed with a µ which
would be covered if all q-pairs are prepared independently in the same way

In Section 6.5 we proved that rules which are also order morphisms can be removed
from the rule set, since they do not affect the computation of working sets (except by
worsening performance). The same can be done for universally quantified rules, but only
if all instantiations of such rules are order morphisms. This is for instance the case if
the core rule and all quantifications are order morphisms. Unfortunately, in general we
can not simply remove a q-pair from a rule even if this q-pair is an order morphisms. It
may be necessary to instantiate with this q-pair to satisfy the application condition.

Tightening the Upper Bound on Instantiations
The bound on the length of instantiations proven to exist in Proposition 6.54 can be
improved depending on the rule used. For instance, let ρ = 〈r : L R,U〉 be a uni-
versally quantified rule. If U = ∅, then boundρ(G) = 0 holds obviously for all G,
since there is only one possible instantiation. The same holds if instantiations only
increase the left-hand side of the rule, i.e. for every u ∈ U given the instantiation
〈idL, r〉 � u = 〈π : L Lu, γ : Lu Ru〉, the graphs Ru and R are isomorphic.
A more common situation is that q-pairs do not add edges to the right-hand side

which are solely incident to nodes of the core rule r. For instance the rule in Figure 6.18
has this structure. In such a case the bound can be reduced to the number of nodes of G
instead of the number of nodes and edges. The reason is that if the composed subgraph
morphism removes all nodes which where added by an instantiation step using some q-
pair, all edges are removed as well, effectively making the instantiation step unnecessary.
Thus every meaningful instantiation step introduces at least one node. We formalize this
in the following lemma.

134

6.7. Summary

Lemma 6.57. Let ρ = 〈r : L R,U〉 and let 〈idL, r〉 �u = 〈π : L Lu, γ : Lu Ru〉.
If for every u ∈ U every edge e ∈ Ru without preimage in R is incident to a node v ∈ Ru
without preimage in R, then boundρ(G) = |VG|.

Proof. See Appendix C.3.

Lifting the Application Condition to a Post Condition
In Algorithm 6.55 the application condition is checked in line 8 for each pushout com-
plement. However, we can lift the application condition over the instantiation to check
beforehand whether the backward step will yield new graphs. For instance, if the co-
match does not already match the entire neighbourhood of an image of a quantified node,
the edge not matched will violate the application condition for every existing pushout
complement. Checking a postcondition instead of a precondition can greatly reduce the
number of pushout complements computed. We prove this lifting in the following lemma.

Lemma 6.58. Let ρ be a rule, 〈π : L L, γ : L R〉 an instantiation of ρ and
m : R G a co-match of the instantiation to some graph G. If there is a node x ∈ qn(ρ)
where m(γ(π(x)) is defined and incident to an edge e without preimage in R, then there
is no pushout complement H of γ, m satisfying the condition of Definition 6.53.

Proof. See Appendix C.3.

6.7. Summary
In this chapter I have defined the core of a framework for verifying graph transformation
systems and also introduced extensions and optimizations. I will now summarize the
implied decidability results and verification procedures. Practical examples can be found
in Chapter 7 where these results are illustrated by a number of case studies.
Because of the generality of our framework, there are several dimensions affecting

decidability. First of all there is the order, which we made variable in our framework.
We have shown the minor ordering, the subgraph ordering and the induced subgraph
ordering to be compatible, but are not limited to these orders (see the end of Section 6.1
for necessary and sufficient conditions).
Another dimension is the graph class Q to which we restrict. This class depends on

the chosen order, since it needs to be downward-closed wrt. that order. If the order is
a well-quasi-order on Q, then it is guaranteed that the set of predecessors (restricted to
Q) of any set of graphs is finitely representable and that the algorithm will terminate
for every instance. If this is not the case, the algorithm is still applicable if predecessor
sets are finitely representable, but termination is no longer guaranteed. In general one
is interested in the largest class of graphs on which the order is a well-quasi-order. We
have identified these classes to be the class of all graphs G(Λ) for the minor ordering, the

135

Chapter 6. Backward Analysis

class of graphs where longest paths are bounded Gn for the subgraph ordering and the
class of directed graphs where longest paths and multiplicity are bounded Dn,k for the
induced subgraph ordering. For other orders there might be multiple interesting classes.
The last dimension is the class of graph transformation systems. These normally arise

from the order due to the restrictions imposed by the compatibility condition (see Def-
inition 2.16). For the minor ordering it is the class of lossy systems, for the subgraph
ordering it is the class of ordinary graph transformations systems and for the induced
subgraph ordering it is the class of graph transformation systems with simple negative
application conditions. However, we can also use graph transformation systems that do
not satisfy the compatibility condition. Results obtained for such systems are then an
over-approximation. Note that the transition system induced by a graph transforma-
tion system is also affected by the type of matches used. This actually forms another
dimension that we will not need to distinguish in this section, since we have proven both
injective and conflict-free matches to be fully compatible with our three main orders.
Therefore, the results shown in the following are for both these match types.
In Table 6.1 it is shown which decidability results our framework provides for every

combination wrt. the mentioned dimensions. The possible results are briefly summarized
in Table 6.2 and we will investigate them for each order in the following.

GTS class Q minor subgraph ind. subgraph

lossy systems
(cf. Proposition 5.7)

G(Λ) Dec Dec NoRes
Gn Thm Thm NoRes
Dn,k Thm Thm Thm

ordinary GTS
(cf. Definition 3.19)

G(Λ) App NoTerm NoRes
Gn ThmApp Thm NoRes
Dn,k ThmApp Thm Thm

GTS with simple NACs
(cf. Definition 5.27)

G(Λ) App NoTermApp NoRes
Gn ThmApp ThmApp NoRes
Dn,k ThmApp ThmApp Thm

Table 6.1.: Shows decidability results implied by the applicability of the backward search
described in this chapter for varying combinations of orders, GTS and graph
classes (see Table 6.2 for a legend)

Minors
The minor ordering is the coarsest order we presented and is in fact a well-quasi-order
on all graphs. Since it satisfies the compatibility condition wrt. lossy systems, the cov-
erability problem is decidable wrt. these systems (we obtain an ordinary well-structured
transition system). If we restrict to Gn or Dn,k, we obtain the split decidability result

136

6.7. Summary

Dec Algorithm decides the problem, i.e. the returned set W∗ can be used
to check coverability for arbitrary initial graphs.

App The set W∗ returned by the algorithm is an over-approximation. If
G /∈ ↑W∗, then G can not cover a final graph, but if G ∈ ↑W∗, then
this may be because of approximation.

NoTerm Termination is not guaranteed, but if the algorithm terminates, the
problem is decidable for that instance. The returned set W∗ can be
used to check coverability for arbitrary initial graphs.

NoTermApp Termination is not guaranteed, but if the algorithm terminates, then
W∗ can be used as in the case of App.

Thm Split decidability result (case (iii) of Theorem 2.21) applies. See also
Figure 6.22.

ThmApp Case (iii) of Theorem 2.21 applies, but the result is an over-
approximation. If G /∈ ↑W∗, then G can not cover a final graph
within Q, but if G ∈ ↑W∗, this may be caused by approximation.

NoRes The algorithm can currently not be applied.

Table 6.2.: Summary of the different cases shown in Table 6.1

of case (iii) of Theorem 2.21. This means that our algorithm will return a final working
set W∗ and we know that: if G ∈ ↑W∗, then G can cover a final graph within the entire
set of graphs S, and if G /∈ ↑W∗, then G can not cover a final graph while only reaching
graphs of the chosen class Q. This mixed decidability result is illustrated in Figure 6.22.
In case G can cover a final graph within S but not within Q, it is undefined whether G
will be presented by the working setW∗ computed by our algorithm or not. Nonetheless,
the algorithm is applicable and guaranteed to terminate. Note that the minor ordering
is a well-quasi-order on Gn and Dn,k since they are both subsets of G(Λ) (on which it is
a well-quasi-order).

coverable within S

not coverable within Q

Figure 6.22.: Shows the split decidability result implied by case (iii) of Theorem 2.21

We can also use the minor ordering in conjunction with ordinary GTS or GTS with

137

Chapter 6. Backward Analysis

negative application conditions, even though the compatibility condition is not satis-
fied. Applying our algorithm will implicitly add “lossiness” to the graph transformation
system, so that it satisfies the compatibility condition. The resulting new system is
an over-approximation of the original system and the decidability and split decidability
results previously shown, apply to it. The final working set returned by the algorithm
is exact for the new system and an over-approximation for the original system. For the
latter systems this means that if G /∈ ↑W∗, then G can not cover a final graph within Q
and if G ∈ ↑W∗ then this may either be because G can cover a final graph or because
of over-approximation. Which case applies can be checked by performing those steps
forwardly that lead the algorithm to generate a minor of G. In general this argument
also holds for GTS with NACs, but we could show in [KS12b] that some of these systems
satisfy the compatibility condition wrt. the minor ordering and how our algorithm can
handle these systems.

Subgraphs
An indirect consequence of the existence of our algorithm is that the coverability problem
wrt. the subgraph ordering is decidable for lossy systems. This comes from the fact that a
graph is coverable wrt. the subgraph ordering if and only if it is coverable wrt. the minor
ordering. Obviously coverability wrt. subgraphs also implies coverability wrt. minors,
since the minor ordering is coarser that the subgraph ordering. On the other hand,
assume that a graph G is coverable wrt. the minor ordering, i.e. we can reach a G′

with G v G′. By definition, a lossy system contains contraction rules for every edge
with an arity of at least two. By applying contraction rules to all edges of G′ which
are contracted to obtain G, we obtain a G′′ with G ⊆ G′′, i.e. G can also be covered
wrt. the subgraph ordering. Note that we can ignore edges with arity zero or one, since
a contraction of such edges is just a deletion. Thus, we inherit the decidability result of
the minor ordering.
Similar to the minor ordering, if we restrict the class of graphs to Gn or Dn,k we obtain

the split decidability result shown in Figure 6.22. Since the subgraph ordering is not as
restrictive on the graph transformation systems as the minor ordering, these results are
exact for lossy systems as well as ordinary GTS, but approximative for GTS with simple
negative application conditions.
A special case occurs if we use the subgraph ordering in conjunction with ordinary

GTS and the class of all graphs. We have shown that backward steps are computable
and thus our algorithm is applicable. However, since the subgraph ordering is not a
well-quasi-order on G(Λ), termination is not guaranteed. This means that we can use
the algorithm “faithfully” and decide the coverability problem for every terminating
instance. Remember that the algorithm does not need any initial graphs and will return
a working set against which we can check any initial graph. However, if initial graphs
are given, the algorithm can check whether they are represented by the working set and

138

6.7. Summary

terminate as soon as this is the case. With this premature termination we obtain a
classical semi-decidability procedure for the coverability problem, but if the algorithm
terminates without initial graphs given, we get a stronger result. If we use GTS with
simple NACs instead, the results are similar, but will be an over-approximation, since
the compatibility condition is no longer satisfied. The number of terminating instances
can be increased by the use of graph patterns or attributed graphs, as I will investigate
in the future work section (see Section 8.3).

Induced Subgraphs
For the induced subgraph ordering we can obtain the split decidability result for each of
the mentioned classes of GTS if we restrict to Dn,k. For all other cases our algorithm does
not imply any results. The problem is that in the case of G(Λ) and Gn the predecessor
set is not guaranteed to be finitely representable (contrary to the ordinary subgraph
ordering). Our algorithm is therefore not applicable without further adaptation. Such
an adaptation could for example be the use of patterns discussed in Section 8.3.

139

Chapter
7

Implementation and Case Studies

In this chapter we will show that the backward search presented in Chapter 6 is not
just of theoretical interest, but can also be used in practice. We start by presenting the
tool Uncover, which implements some of the combinations of order and match types
for which we defined the algorithms in Chapter 6. This tool is specifically designed to
be extendible with further orders, providing an appropriate class hierarchy. We then
introduce a collection of case studies, including runtime results, which we were able to
analyse using Uncover.

7.1. The Uncover Tool
Uncover is a command line tool which is written in C++, using the C++11 standard,
and licensed under GPLv2. It is designed to run as a background process on UNIX-like
systems, e.g. a server. During the analysis the results – in addition to intermediate
computations – are written to the hard drive. This allows convenient verification of case
studies even if their runtimes are high. The following parts of our framework, introduced
in Chapter 6, are currently implemented:

Minor ordering The minor ordering is implemented, but can only be used with conflict-
free matches. Any graph transformation system can be analysed using this order.
However, if the GTS is not well-structured wrt. the minor ordering (see Propo-
sition 5.7), i.e. it does not contain the necessary edge contraction rules, then the
final working set will be an over-approximation, since those rules are implicitly
added to the GTS.

Subgraph ordering The subgraph ordering is implemented for the use with conflict-
free as well as injective matches. For the latter matches the computation of

141

Chapter 7. Implementation and Case Studies

pushout complements is optimized by computing only injective co-matches (see
Lemma 6.43). Furthermore, universally quantified rules are implemented for use
with the subgraph ordering.

Induced subgraph ordering The induced subgraph ordering is not yet implemented.
However, by design Uncover can be easily extended. In fact, we mainly need to
implement the computation of minimal pushout complements, i.e. Algorithm 6.39.
The check whether a given graph is an induced subgraph of another given graph
is very similar to the check for subgraphs.

Optimizations Uncover implements several small optimizations. For every order, rules
are removed that are also order morphisms (see Proposition 6.44). When adding
new orders, only the check if a given morphism is an order morphism must be
implemented to benefit from this optimization. Additionally, the main backward
search (Algorithm 6.6) was optimized to reduce runtime and memory consump-
tion. These optimizations include computing predecessors only for the most recent
graphs, minimizing the working set as soon as possible and immediately dropping
graphs which were subsumed by other graphs.

We will first show the usage and then have a brief look at the architecture of Uncover,
where our special interest lies in extensibility. The tool itself provides a brief description
of its usage which can be printed by the call uncover -h (see a cropped version below).

uncover -h

UnCoVer (Using Coverability for Verification):
--
This program executes a predefined scenario . The scenario
parameters can be either given directly on the console
(--scn) or by giving a configuration file
(--scenario -file). Only one of these options may be used.
See the option list below for listing available scenarios
or their description and further configuration .

Possible options :
...

Usage
Uncover implements different functionality by defining several scenarios. A list of all
available scenarios can be printed by the call uncover -l, as shown below.

142

7.1. The Uncover Tool

uncover -l

List of available scenarios :

ID 100; Names: backward_analysis , backw
ID 200; Names: leq_check , leq
ID 300; Names: le_rule_creator , lerc
ID 1000; Names: gxl_pic_converter , gxl2pic
ID 1100; Names: gtxl_latex_converter , gtxl2latex
ID 10000; Names: test_xml
ID 11000; Names: test_rule_preparer , testprep
ID 12000; Names: test_backward_step , testbws
ID 13000; Names: test_matcher

Each scenario has a different list of parameters and may even require different exter-
nal tools to run. A description for each scenario can be printed by calling uncover -u
arg, where arg can be one of the synonyms or the ID. Our main backward search is
implemented in backward_analysis. Its mandatory and optional parameters will be
introduced later in this section. The scenario leq_check checks which graphs of a given
set are in the upward closure of another given set of graphs. Given the working set
computed by the backward search, this scenario will later allow us to check whether
graphs are represented by the final working set, i.e. whether they are coverable. The
scenario le_rule_creator is used to generate the graph transformation system for the
leader election case study (see Section 7.3). For drawing graphs we can use the sce-
nario gxl_pic_converter and for drawing graph transformation systems we can use
gtxl_latex_converter. Both scenarios support different output formats and rely on
Graphviz [Graphviz], an open source software for graph visualization, to layout the
graphs. Furthermore, they use LATEX [Latex] to layout rules and sets of graphs. The
scenarios beginning with test_ are all used to test the functionality of different parts of
the implementation. In addition to scenario specific parameters, Uncover also provides
general parameters such as -o to set the level of log messages.
To start a scenario we need to call uncover --scn=name ..., where name is the sce-

nario name (or a synonym) and is followed by a list of parameters. The parameters may
be provided as a list of key-value pairs or omitting the keys if the parameters are in the
correct order (these notations may also be mixed). We illustrate this by introducing the
usage of the (main) scenario backward_analysis. A possible invocation of this scenario
can be seen in Figure 7.1. Without providing keys the first three parameters are inter-
preted (in order) as a GTXL-file containing the graph transformation system, a GXL-file
containing the minimal (initial) error graphs and the order to be used. For storing graphs
and graph transformation systems we use the Graph eXchange Language (GXL) [GXL]
and Graph Transformation eXchange Language (GTXL) respectively. Both formats are

143

Chapter 7. Implementation and Case Studies

uncover --scn=backw GTS.xml Error.xml "subgraph[-]" to=3600

specifies that a backward
analysis will be performed

the GXL file storing
the initial error graphs

sets a timeout of
one hour (optional)

filename of the GTXL
storing the GTS

string specifying
the order used

Figure 7.1.: Shows an exemplary use of the Uncover tool

XML-based and definition files are available with the source code [Uncover]. Note that
the given GTS need not contain initial graphs, but such graphs can be provided to pre-
maturely terminate the analysis as soon as one is represented by the working set. The
third parameter may either be minor to specify the minor ordering or subgraph[x] to
specify the subgraph ordering, where x may be a natural number setting the path bound
or - for no bound. A detailed description of all parameters of a scenario s can be printed
with the call uncover -u s. The description of the backward analysis scenario is shown
below.

uncover -u backw

Scenario description of ’backward_analysis ’:
--
This scenario performs a backward search algorithm . It
takes a graph transformation system and a set of error
graphs as input and computes the set of graphs , from
which the given graphs are coverable . Use the parameters
to specify the order and result storage .
Synonyms : backw

Parameter descriptions (in order):

(1) gts (required):
An XML file (in GTXL) containing the GTS which will be
analyzed .

(2) error -graph , err (required):
A GXL file containing the set of error graph which should
not be coverable .

(3) order , or (required):

144

7.1. The Uncover Tool

Specifies which wqo should be used. The given GTS has to
be well - structured with respect to the given order.
Possibilities : minor , subgraph [?] (? can be a natural
number or ’-’)

(4) result -folder , res:
A folder where all intermediate results will be stored .

(5) timeout , to:
If the scenario takes longer than the given timeout (in
seconds), it will be terminated (soft termination , i.e.
may run longer).

(6) check -initial , ci:
If set to true , after every backward step it will be
checked whether one of the initial graphs is represented
by the calculated graph set and the analysis will stop if
the check succeeds . Default is ’false ’.

(7) matching , m:
Defines the type of matchings used. Available are:
’conflictfree ’ (default , alias: ’cf ’) and ’injective ’
(alias: ’inj ’)

There are four optional parameters. If a result-folder is given, the scenario will
store intermediate results in that folder. These results consist of graphs computed by
backward steps together with the information which rule was applied to which graph to
obtain them. Furthermore, it stores which graphs were removed by minimization and
how the rule set changed due to preparation. For premature termination a timeout or
initial graphs can be given. The timeout is enforced softly, i.e. if it is exceeded, the
scenario will finish the current computations before terminating. If the check-initial
parameter is set to true, the analysis will terminate as soon as one of the initial graphs
– given in the GTS – is represented by the working set. In both cases, the working set
computed up to that point will be stored as result. Finally, the matching parameter
can be used to specify whether conflict-free or injective matches should be used. Note
that parameters may be restricted depending on the order used and whether the GTS
contains universally quantified rules.

145

Chapter 7. Implementation and Case Studies

Workflow
A brief overview over the workflow of Uncover is given in Figure 7.2. The GTXL and
GXL files are read by the GTXLReader to create a GTS object and a collection of graphs.
The string representing the order is read and instances of the Order, RulePreparer and
MinPOCEnumerator classes are generated for the given order. These classes handle all
order-specific operations, i.e. checking whether a graph is smaller than another graph
(Order), composing rules and order morphisms (RulePreparer) as well as computing
minimal pushout complements (MinPOCEnumerator). All parsed and additional optional
parameters are then forwarded to the analysis engine. It implements the main backward
search (Algorithm 6.6) with some slight optimizations to decrease runtime as well as
memory consumption and calls other classes for preparation and minimization. After
termination of the backward search the final graph set is written to a GXL file by the
GTXLWriter class. Important information, i.e. about performed operations and progress,
will be displayed as log messages. Optionally – controlled by the optional parameters –
additional files will be created. This can include a prepared version of the given GTS,
all graphs computed by backward steps, information about which graph was generated
from which other graphs by which rule, and which graph was removed because it was
subsumed by which other graph.

GTXLReader
GTXL file

GXL file

Order
Instantiation

order string
Analysis
Engine

GTXLWriter
GXL files

GTXL files*

GTS

initial graph set

optional parameters

Order

RulePreparer

MinPOCEnumerator

final graph set

GTS*

log messages

list of creations by rule application*

list of deletions by minimization*

list of all computed graphs*

Figure 7.2.: Internal workflow of a backward analysis in Uncover; outputs marked with
a * are optional

Improvements and Other Orders
There are several ways of improving Uncover, which either arise from optimizations
of the underlying framework or the implementation itself. In the following we briefly
address some of these improvements.

• Possible optimizations of the underlying framework were already introduced in
Section 6.5. Some of these optimizations are already implemented, e.g. the removal

146

7.1. The Uncover Tool

of rules which are also order morphisms. Especially optimizations reducing the
number of rules have shown to cause great performance boosts.

• Intelligent search strategies can be used for minimizing duplicate computations as
far as possible. Already changing the order on graphs for which backward steps
are computed can result in a different performance.

• There is currently no tool support for modelling graphs and graph transformation
systems. By allowing more input and output formats, existing graph tools could
be used for modelling.

• Due to the large quantity of data, searching the optional output files, e.g. for
determining how a final graph could be reached, is time-consuming. An appropriate
tool support capable of handling large data is necessary.

• More orders (see Section 5.4) would strengthen the framework if one can prove the
necessary conditions (see Chapters 5 and 6). Uncover is designed in such a way
that this only requires the implementation of the classes Order, RulePreparer and
MinPOCEnumerator for the new order. While the first two should be rather easy
to implement, the MinPOCEnumerator class needs to compute all minimal pushout
complements. However, for this Uncover provides classes for computing pushout
complements for total rules as well as partial rules, which are also used in the
implementations of MinPOCEnumerator for the minor and subgraph orderings.

• Uncover is currently single-threaded. However, backward steps for different
graphs or rules can be computed in parallel quite naturally. With a good par-
allelisation strategy this can be used to improve performance.

Dependencies
To compile Uncover requires the Boost framework [Boost] in version 1.54 or higher
and the XercesC++ library [XercesC++] in version 3.1 or higher. More precisely, the
following Boost libraries are required:
• boost_system,
• boost_filesystem,
• boost_program_options,
• boost_regex and
• boost_unit_test_framework.

Note that for compilation the standard and development packages of the above li-
braries are necessary. The source code archive contains a CMake script (requiring CMake
2.8 or higher [CMake]) for generating the makefiles, which is capable of compiling with

147

Chapter 7. Implementation and Case Studies

GCC [GCC] and Clang [Clang]. The source code should be compilable with newer ver-
sions of the above libraries and may be compilable with older versions, but this was not
tested.

Uncover is written in C++ without using any OS specific functions and is therefore
platform independent. However, due so some compatibility issues with the libraries, it
does currently not compile on Windows. It is verified to compile on Linux (tested on
Ubuntu 14.04, Fedora 21) and Mac OS X with MacPorts (tested on Yosemite).
To run the main backward search no other tools are required. The scenarios for

drawing graphs and graph transformation systems require Graphviz [Graphviz] and
LATEX[Latex].

Similar Tools
Not many tools for verifying graph transformation systems exist. For finite state systems
the Groove tool [Groove; Ren03; GM+12] exists, which supports rules with complex
application conditions. It implements a controllable state space exploration and enables
model checking via CTL and LTL formulas. For infinite state systems the Augur2 [Au-
gur2; KK08] and GBT [GBT; SWJ08] tools exist. Since most problems are undecidable
in the infinite case, these tools use approximations to obtain partial decidability. Au-
gur2 uses attributed Petri nets to over-approximate attributed graph transformation
systems. By using algorithms for Petri nets such as unfolding techniques and cover-
ability checks, properties of the original GTS can be proved using the Petri net. If
the abstraction is to coarse, counterexample-guided abstraction refinement can be used
[KK06]. An approach similar to the one implemented in Uncover is used by GBT.
There a backwards analysis is performed using graph patterns to abstractly represent
sets of graphs. These graph patterns consist of a positive part which must occur as a
subgraph in every represented graph and a negative part which must not occur. It is
an interesting question whether this forms a well-quasi-order with some interesting class
of graphs and could be integrated into our framework. In [AB+08] a prototype imple-
mentation is mentioned – including runtime results – which can analyse directed graphs
with an out-degree of at most one using the minor ordering. However, the prototype
is neither named nor published. Another prototype is Symgraph [Symgraph; ADR09].
There graphs are represented symbolically by so-called graph constraints and analysed
by an approximative backward search.
There is also some tool support for related formalisms. For depth-bounded systems the

Picasso tool [Picasso; ZWH12; BK+13] exists, which implements a forward search. It
computes so-called abstract coverability trees and uses techniques such as ideal comple-
tion and widening to ensure termination. Although the results are only approximative,
the achieved precision is quite good. For Petri nets the Mist2 tool [Mist2] is available.
It implements the backward search as well as the EEC algorithm [GRV06] and supports
transfer arcs. The tool Petruchio [Petruchio; SM12] allows a backward analysis of

148

7.2. Termination Detection

Petri nets and lossy channel systems. It implements partial order reduction, pruning
and backwards acceleration.

Runtimes
So far we used both the subgraph ordering and the coarser minor ordering to verify
different case studies with Uncover. All these case studies can be downloaded from
the tools main website [Uncover]. An overview of runtime results for these case studies
is given in Table 7.1. These runtimes where computed on an Intel R© Xeon R© CPU E5-
2637 v2 with 64 GB RAM using only one core (parallelisation is not yet implemented).
In the following Sections 7.2 to 7.6 we will present all these case studies and give more
detailed runtime results.

case study wqo class Q runtime #EG
Termination detection (faulty) minor all graphs 796ms 69
Termination detection (correct) minor all graphs 304ms 101
Leader election (id ≤ 10) minor all graphs 1m 2s 451
Leader election (id ≤ 20) minor all graphs 27m 56s 2401
Rights management subgraph all graphs 28ms 4
Dining Philosophers subgraph all graphs 442ms 12
Public-private server subgraph path ≤ 50 14.1s 104
Public-private server subgraph path ≤ 100 3m 28s 204

Table 7.1.: Runtime results from Uncover for different case studies

7.2. Termination Detection
In the termination detection case study, we model a termination detection protocol that
works on a ring structure and assumes lossiness, i.e. messages can be lost and processes
can leave the ring. We first presented this modelling in [BD+12b; BD+12a] and later
introduced a modified version using negative application conditions in [KS12b; KS12a].
Initially the network is a ring consisting of multiple active processes (A) and (exactly)
one active detector (DA), as shown in Figure 7.3a. Independent of each other, processes
and detectors can be active, indicated by the labels A and DA, or passive, indicated
by the labels P and DP. The purpose of the detector process is to check whether all
processes are passive and generate a termination flag (seen in Figure 7.3b) if this is the
case. Thus, we can check whether the detector process works correctly by checking if
a graph containing a termination flag and an active process is reachable. This can be
done by checking whether the graph in Figure 7.3b is coverable.

149

Chapter 7. Implementation and Case Studies

A

DA
(a) Initial ring

A

termination

(b) Error graph

Figure 7.3.: Graphs describing the initial and erroneous configurations of the termination
detection protocol

The protocol works as follows. Beginning with the initial graph (Figure 7.3a), multiple
new processes (not detectors) can be spawned by an active process (Figure 7.4a) or active
detector (Figure 7.4b). Note that this – as well as all other rules – changes the size of
the ring, but always preserves its structure. Active processes and detectors can become
passive voluntarily (Figures 7.4c and 7.4d) and may be reactivated by other processes or
detectors (Figures 7.4e to 7.4g). Note that there is no rule having two detectors, since
there is at most one detector in the ring. At some point the (passive) detector decides to
test whether all processes have become passive. It does this by generating a termination
message (Figure 7.4h) that is forwarded along the ring (Figure 7.4i) until it reaches the
detector again (Figure 7.4j) at which point the termination flag is created. Since the
termination message passes only passive processes, all processes of the ring are assumed
to be passive as soon as the message reaches the detector again. However, as we will
see, there is an error in this argument. Finally, the rules in Figures 7.4k to 7.4p cause
the system to be lossy. These rules also cause the GTS to be well-structured wrt. the
minor ordering, i.e. Proposition 5.7 is satisfied.

case study wqo class Q runtime #EG
Termination detection (faulty) minor all graphs 796ms 69
Termination detection (correct) minor all graphs 304ms 101

Table 7.2.: Runtime results from Uncover for the termination detection case study

We can therefore use our backward search (with the minor ordering) to check whether
the error graph is coverable. It computes a total of 69 graphs (see Table 7.2) of which
the majority represents only invalid configurations, e.g. graphs which are not rings. The
most interesting graph is shown in Figure 7.5 and consists of only a single DA-labelled
loop. This graph represents all rings containing at least one detector, including the
initial graph (Figure 7.3a). Thus, the protocol is erroneous! The error lies in the fact
that passive processes can be reactivated as soon as they have passed the termination
message. Hence, at the time the termination message reaches the detector again, it is
not guaranteed that the processes have not been reactivated. And in fact, if we remove
the rules in Figures 7.4e to 7.4g, we obtain a correct version of the protocol. For that

150

7.2. Termination Detection

1 2
A

1 2
A A

(a) Process spawns another process
1 2

DA
1 2

DA A

(b) Detector spawns another process

1 2
A

1 2
P

(c) Process becomes passive

1 2
DA

1 2
DP

(d) Detector becomes passive

1 2 3
A
4

P
1 2 3

A
4

A

(e) Process activates process

1 2 3
A
4

DP
1 2 3

A
4

DA

(f) Process activates detector

1 2 3
DA

4
P

1 2 3
DA

4
A

(g) Detector activates process

1 2
DP

3 1 2
DP

3

T

(h) Detector spawns termination message

1 2
P
3

T

1 2
P
3

T

(i) Passive process forwards termination message

1 2
DP

3

T

1 2
DP

3

termination

(j) Detector receives termination message

1 2
A

1, 2

(k) Active process leaves

1 2
P

1, 2

(l) Passive process leaves

1 2
DA

1, 2

(m) Active detector leaves

1 2
DP

1, 2

(n) Passive detector leaves

1
T

1

(o) Termination message lost

termination

(p) Termination flag lost

Figure 7.4.: Rule set modelling a (faulty) termination detection protocol

151

Chapter 7. Implementation and Case Studies

DA

Figure 7.5.: One of the errors in the final working set computed by the backward search

version our analysis produces 101 graphs (see Table 7.2) of which none is isomorphic to
the one in Figure 7.5. All 101 graphs represent erroneous configurations, either they are
no rings or contain multiple detectors. Since none represents the initial graph, we know
that the second version of the protocol is correct.

Bonus Analysis
Using the backward search we can also prove invariants to some extent. For instance,
if we use the graph in Figure 7.6a to start the backward search, the final working set
will contain it and the two graphs in Figures 7.6b and 7.6c. From this we know that
we cannot reach rings with two detectors from rings with one detector, since otherwise
the working set would represent such graphs. We therefore know that the number of
detectors is invariant wrt. the rules. In general we can use such checks to prove that the
modelling can only reach valid configurations.

DP

DP
(a) Two passive detectors

DP

DA
(b) A passive and an active detector

DA

DA
(c) Two active detectors

Figure 7.6.: Possible representatives of rings with two detectors

7.3. Leader Election
In the leader election case study we model a leader election protocol which works on a
ring and assumes lossiness, just like the termination detection protocol. It was first used
in [JK08; JK12] where the authors first proposed the idea of using the minor ordering for
verification, ultimately leading to the framework presented in this paper. The protocol
uses unique identifiers for each process (see Figure 7.7a) and aims to elect one as leader
(shown by an L-labelled edge).

The protocol works as follows. Every process can generate a message (Figure 7.8a) to
acquire leadership. These messages are passed along the ring (Figure 7.8b), but only if
the passing process has a higher ID, i.e. lower priority, than the process who generated
the message. If a message reaches the process who generated it (Figure 7.8c), the process
is elected as leader. Processes may also decide to leave the ring (Figure 7.8d). Note that

152

7.3. Leader Election

P1

P2

P3

(a) Initial ring structure

L

L

(b) Error graph

Figure 7.7.: Initial and erroneous configuration of the leader election protocol

due to these last rules the system is lossy and therefore well-structured wrt. the minor
ordering (it satisfied Proposition 5.7).

1 2
Pi
3 1 2

Pi
3

Mi

(a) A process generates a new message to elect
itself as leader

1 2
Pj

3

Mi

1 2
Pj

3

Mii < j

(b) Other processes forward a message if their ID
is higher than that of the sender

1 2
Pi
3

Mi

1 2
L
3

(c) A process receives its own message and be-
comes the leader

1 2
Pi/L

1, 2

(d) A process or the leader leave the ring

Figure 7.8.: Modelling of a leader election protocol by graph transformation rules

An error in this protocol would be the election of two leaders. Wrt. the minor or-
dering, every ring with two leaders is represented by the minimal graph in Figure 7.7b.
Unfortunately, our formalism requires that the set of labels is finite and can thus not
handle an arbitrary number of unique identifiers. We therefore need to fix the number
of IDs – which leads to a graph transformation system in our classical sense – before
we can use our backward search to check whether the minimal error graph is coverable.
Note that this graph transformation system still induces an infinite transition system.
Our analysis will then generate the final working set as shown in Figure 7.9, proving
that the protocol is correct. Note that the description of those error graphs is generic,
i.e. Figure 7.9 shows which set will be generated for an arbitrary high number of IDs.
Our analysis is currently not capable of generating this set directly – it is only possible
for fixed IDs – but runs with different numbers of IDs imply the set. To directly generate
this set, our framework would need to be extended with attributed graphs. In principle

153

Chapter 7. Implementation and Case Studies

this is possible, but it significantly complicates the calculations, since it requires comput-
ing weakest preconditions of formulas on the attributes. How powerful the logic needs
to be depends on the modelled system, here atoms such as i < j would be sufficient.

L

L

Pi

L
Mi

Pi

L

Pi

Pi

L
Pi

Pi

L
Pi

Pi

L
Pi

Pi

Pi
i < j

Pj

Pi

L

i < j
Pj

Pi
Mj

i < j
Pj

Pi
Pj

i < j
Pj

Pi
Pj

i < j
Pj

Pi
Pj

i < j

Pj

Pi

Pj
i < j < k

Pi

Pj

Pk

Figure 7.9.: Final working set computed by the backward search for the leader election
protocol

Runtime results of Uncover as well as the number of computed graphs in the final
working set are shown in Figure 7.10. Although the number of rules is strictly increasing
with the number of IDs, the runtime is not.

7.4. Access Rights Management
In our next case study we model a simple multi-user system as the GTS shown in
Figure 7.11 inspired by [KMP02]. A graph contains user nodes, indicated by unary U -

154

7.4. Access Rights Management

0 2 4 6 8 10 12 14 16 18 20
0

1,000

2,000

3,000

Number of IDs

R
un

tim
e
in

se
co
nd

s

(a) The runtime of Uncover depending on the number of IDs

0 2 4 6 8 10 12 14 16 18 20
0

1,000

2,000

Number of IDs

N
um

be
r
of

er
ro
r
gr
ap

hs

(b) Number of error graphs computed depending on the number of IDs

Figure 7.10.: Runtimes and number of error graphs for the leader election case study

labelled edges, and object nodes, indicated by unary O-labelled edges. Users can have
read (R) or write (W) access rights regarding objects indicated by a (directed) edge.
The system starts with no users or objects at all, i.e. the empty graph, and provides
several rules to manipulate users, objects and access rights. New users can be added
(Figure 7.11a), new objects can be added with read or write access associated with a user
(Figure 7.11b) and users as well as object may be deleted again (Figure 7.11c). Both read
and write access can be traded between users (Figure 7.11d) or dropped (Figure 7.11e).
Additionally users can downgrade their write access to a read access (Figure 7.11f) and
obtain read access to arbitrary objects (Figure 7.11g). Note that rules containing labels
of the form R/W represent two rules, one with R-labelled edges and one withW -labelled
edges.

The modelled multi-user system can generate arbitrarily many users and object, as
well as arbitrarily many access rights to the same object. However, the system is only
correct if there is at most one write access to each object, requiring some form of mutual
exclusion. This means especially that any configuration of the system containing the

155

Chapter 7. Implementation and Case Studies

∅
U

(a) Add a new user

1

U2

1

U2 O

R/W

(b) Add a new object

U/O
∅

(c) Delete user or object

1

2

3

U4

U5

O 6
R/W

1

2

3

U4

U5

O 6

R/W

(d) Trade access rights with other user

1 2

U3 O 4

R/W 1 2

U3 O 4

(e) Delete read or write access

1 2

U3 O 4

W 1 2

U3 O 4

R

(f) Downgrade write to read access

1 2

U3 O 4

1 2

U3 O 4

R

(g) Obtain read access to object

Figure 7.11.: A GTS modelling a multi-user system

graph depicted in Figure 7.12 is considered erroneous. We can therefore check the
correctness of the system by using that graph as initial working set of our backward
search. Unfortunately the given system is not well-structured wrt. the minor ordering.
In fact, adding contraction rules results in a too coarse over-approximation, since the
contraction of read or write edges causes a node to become a user and object at the
same time, i.e. the result is an invalid configuration. However, we can use the subgraph
ordering instead. Although not guaranteed in general, Uncover terminates for this
case study even without a path bound and returns four minimal graphs, consisting
of the initial error graph and those shown in Figure 7.13. The two rightmost graphs
represent non-valid configurations of the system and are not reachable from the initial
graph. Since the empty graph is not represented, the modelled system is correct.

U

U

O
W

W

Figure 7.12.: An undesired state in the multi-user system

156

7.4. Access Rights Management

U O
W

W

U O

UW

W

O

U W

W

Figure 7.13.: Additional error graphs of the rights management protocol, computed by
the backward search

Problems with swapping
Now we extend the rights management system with the rule in Figure 7.14a, which
allows users to swap rights they own. If we now perform the analysis, Uncover will
return just a single graph, the empty graph. This means that from the initial graph we
can reach an erroneous graph. By having a look at the computed graphs we can see that
the swap rule can be applied to the left graph in Figure 7.14b to get the right graph
(which is one of the graphs in Figure 7.13).

1

2

3

4

U5

U6

O 7

O 8

R/W

R/W

1

2

3

4

U5

U6

O 7

O 8

R/W

R/W

(a) Two users may swap two rights they own

1 2

U3 O 4

W
1 2

U3 O 4

W

W

(b) The rule in Figure 7.14a is applicable to the left
graph and generates the right

Figure 7.14.: Shows the effects of adding a swap rule to the rights management protocol

The problem is not caused by an error in the rights management system, but in
the modelling itself, since it no longer appropriately reflects the system. Since the
problematic match is caused by non-injectivity, we can prevent it by restricting Uncover
to injective matches. Note that in general this will also affect the other rules, but in
this case study the other rules behave the same regardless of match types. For injective
matches Uncover will compute just two graphs, the original error and the left most
graph in Figure 7.13. The runtime of all three cases – non-injective matches with and
without the swap rule and injective matches with the swap rule – is shown in Table 7.3

157

Chapter 7. Implementation and Case Studies

case study wqo class Q runtime #EG
Rights management (without swap) subgraph all graphs 28ms 4
Rights management (with swap) subgraph all graphs 95ms 1
Rights management (inj., with swap) subgraph all graphs 19ms 2

Table 7.3.: Runtime results from Uncover for different versions of the access rights
management case study

7.5. Dining Philosophers
In another case study we modelled the Dining Philosophers Problem on an arbitrary
graph structure. Each node represents a philosopher and has an incident unary edge
specifying his state. A philosopher is either thinking (T), hungry (H) or eating (E).
Between two philosophers there can be an unowned fork, indicated by an F -labelled
edge, or a fork owned by one of the philosophers, indicated by an OF -labelled edge
pointing to the owner. To eat a philosopher needs to own all incident forks. To model
this by a rule, we need to use the universally quantified rules introduced in Section 6.6.
This modelling was first published in [DS14b; DS14a].

1 2F

H 3

1 2OF
H 3

(a) Acquire a fork (variant 1)

1 2F

H 3

1 2OF
H 3

(b) Acquire a fork (variant 2)

1 2OF
H 3

1 2F

H 3

(c) Release a fork

1 2OF
3 H

1 2OF
3 E

(d) Start eating

1 2OF
E

1 2F

T

(e) Release all forks

1

T

1

H

(f) Get hungry

Figure 7.15.: Modelling of the Dining Philosophers Problem on an arbitrary net

The system works as follows. Hungry philosophers can take unowned forks (Fig-
ures 7.15a and 7.15b) and also release control of a previously taken fork (Figure 7.15c).
If a philosopher owns all incident forks, he can start eating (Figure 7.15d). The high-
lighted part of the rule indicates a universal quantification, meaning that the rule can
only be applied if all edges incident to the philosopher are part of the matching and in

158

7.6. Public-Private Server Communication

fact forks owned by him. At some point the philosopher finishes eating and releases all
forks (Figure 7.15e), going into his thinking state. When releasing all forks, all forks
owned by the philosopher are converted to unowned forks. At a later point a philosopher
can become hungry again (Figure 7.15f), restarting the process of acquiring forks to eat.
Note that the rules in Figures 7.15d and 7.15e can not be described without universal
quantifications, since we need to ensure that every incident fork is owned and later freed.

F

E E

OF
E E

Figure 7.16.: Two minimal error graphs for the Dining Philosophers Problem

We now want to prove that two adjacent philosophers can never be eating at the same
time. We can do this by checking whether one of the graphs in Figure 7.16 is coverable
wrt. the subgraph ordering. Together these graphs represent all other graphs containing
two eating philosopher which share a fork. Uncover will take 442ms to compute the 12
minimal graphs shown in Figure 7.17. Note that on the one hand the use of universally
quantified rules causes the set to be an over-approximation and on the other hand we
lose the guarantee of termination due to the subgraph ordering. However, in this case
Uncover terminates and the approximation is precise enough. An initial configuration
of the Dining Philosopher Problem consists only of hungry or thinking philosophers
with unowned forks between them. Since every graph of Figure 7.17 contains at least
one eating philosopher, none represents an initial configuration. Thus, two adjacent
philosophers can never be eating at the same time.

7.6. Public-Private Server Communication
The last case study presented in this thesis describes a public-private server communi-
cation system. Every node is either a public server, marked with a unary Spub-labelled
edge, or a private server, marked with a unary Sprv-labelled edge. These servers can
run external (Pext) and internal processes (Pint). Connections (C-labelled edges) can
exist between servers and processes can be transferred along these connections. Our
modelling is inspired by a very similar case study in [Koz10].
Initially the system consists of a private server and a generator (see Figure 7.18a).

The generator is used to control the generation of public servers (Figure 7.19j) and
will at some point be removed to stop generation (Figure 7.19f). Private servers can
spawn internal processes (Figure 7.19a) and public servers can spawn external processes
(Figure 7.19b), which should only be processed by public servers. Arbitrary connec-
tions can be introduced between private servers (Figure 7.19c), between public servers
(Figure 7.19d) and from private to public servers (Figure 7.19e). Internal and external

159

Chapter 7. Implementation and Case Studies

F

E E

OF

E E

F

E H

OF

E H

F

H E

OF

E T

F

T E

F

E T

OF

H E H

OF

T E H

OF

H E T

OF

T E T

Figure 7.17.: Final working set computed by the backward search for the Dining Philoso-
phers Problem

Sprv Gpub
(a) Initial graph

Sprv Pext
(b) Error, external process can

access private server

C

Spub Sprv

(c) Error, public server can send pro-
cesses to private server

Figure 7.18.: Initial and error graphs of the public-private server communication

processes can be transferred along these connections (Figures 7.19g and 7.19h). Finally,
private servers can also become public servers (Figure 7.19i).
An error occurs in this system whenever private data can be accessed by public servers

or external processes. Thus, a graph is erroneous if an external process is incident to
a private server (Figure 7.18b) or a public server has a connection to a private server
(Figure 7.18c). If we call Uncover with these two minimal error graphs and use the
subgraph ordering, the set of graphs shown in Figure 7.20 will be returned. However,
contrary to the previous case studies, we have to fix the path bound in order to terminate.
For any path length Uncover will compute the two fixed graphs in the left of Figure 7.20
and will compute paths of the form on the right up to the bounded path length. The
runtime and number of graphs computed, depending on the path length, is shown in
Figure 7.21. Note that the number of graphs computed for a path length n is always
2n+ 4, i.e. linear, as already indicated by Figure 7.20. The runtime, on the other hand,

160

7.6. Public-Private Server Communication

1
Sprv

2 1
Sprv

2

Pint

(a) Spawn an internal process

1
Spub

2 1
Spub

2

Pext

(b) Spawn an external process

1 2

Sprv3 Sprv 4

1 2C

Sprv3 Sprv 4

(c) Add connection between private servers

1 2

Spub3 Spub 4

1 2C

Spub3 Spub 4

(d) Add connection between public servers

1 2

Sprv3 Spub 4

1 2C

Sprv3 Spub 4

(e) Connect a private server to a public one

Gpub ∅

(f) Delete generator

1 2C

3Pint
1 2C

3 Pint

(g) Transfer an internal process

1 2C

3Pext
1 2C

3 Pext

(h) Transfer an external process

1 Sprv 1 Spub

(i) Convert private to public server

Gpub1 Gpub1 Spub

(j) Spawn public server

Figure 7.19.: Modelling of public-private server communication

is not linear, since the number of matches increases with increasing path lengths.
Since the initial graph is not represented by any of these graphs, no error can be

reached in the modelled system. However, we can only prove this up to the set path
bound, i.e. there might be a graph with a longer path that is both reachable from the
initial graphs and can reach an erroneous graph. This graph would not be found by the
analysis, since it (or a predecessor) would be dropped due to exceeding the path bound.
To achieve termination without a path bound we would need to introduce graph patterns
into our framework. In this case these patterns need to be able to finitely represent the
paths shown in Figure 7.20. However, it also requires acceleration or widening techniques
to reach these patterns by a backward step.

161

Chapter 7. Implementation and Case Studies

Sprv Sprv
C C C

Pext Sprv

length ` with 0 ≤ ` ≤ bound

Sprv Sprv
C C C

Spub Sprv

length ` with 0 ≤ ` ≤ bound

Figure 7.20.: Final working set computed by Uncover for the public-private server
communication case study

0 20 40 60 80 100 120 140 160
0

500

1,000

Path length

R
un

tim
e
in

se
co
nd

s

(a) The runtime of Uncover depending on the bounded path length

0 20 40 60 80 100 120 140 160
0

100

200

300

Path length

N
um

be
r
of

er
ro
r
gr
ap

hs

(b) Number of error graphs computed depending on the bounded path length

Figure 7.21.: Runtimes and number of error graphs for the public-private server commu-
nication case study

162

Chapter
8

Conclusion

8.1. Summary
In this thesis we have presented a framework for solving the coverability problem for
graph transformation systems. It is based on the theory of well-structured transition
systems introduced in [AČ+96; FS01]. We require a well-quasi-order and a transition
relation which is a simulation relation wrt. the order used. This can be seen as a mono-
tonicity criteria, since we require that larger graphs (i.e. states) can mimic transitions of
all smaller graphs. Of course, for coarser orderings this is a stronger condition than for
finer orders. However, coarser orders are more likely to be well-quasi-orders on a larger
class of graphs. This trade-off is shown for our three main orderings in Table 8.1.

ordering wqo on well-structured on
minor ordering all graphs lossy systems
subgraph ordering bounded paths GTS without NACs
ind. subgraph ordering bounded paths and multip. GTS with restricted NACs

Table 8.1.: Different orders result in a trade-off between the class of graphs and GTS

The minor ordering is a well-quasi-order on all graphs, but satisfies the compatibility
condition only for a restricted class of GTS, mainly lossy systems, but also context-free
GTS. On the other hand, the subgraph ordering satisfies the compatibility condition
for all GTS without negative application conditions, but is no well-quasi-order on all
graphs. However, it is a well-quasi-order on the class of graphs where the longest path
is bounded. For the induced subgraph ordering we additionally have to restrict the edge
multiplicity (i.e. the number of parallel edges with the same label between a sequence
of nodes) to obtain a wqo, but we gain compatibility with GTS even in the presence
of simple negative application conditions. It becomes obvious that no order is superior

163

Chapter 8. Conclusion

to another, but each order may be suited for a specific application or modelling. For
the minor and subgraph orderings we have shown this via the different case studies in
Chapter 7.

We presented the backward search for solving the coverability problem in Chapter 6.
However, we have to distinguish between the general coverability problem on the en-
tire transition systems and the restricted coverability problem on the transition system
restricted to the class of graphs Q on which the order is a wqo. In their general form
both problems are undecidable, but we presented an algorithm which will terminate and
either state that a graph is coverable in the unrestricted transition system or not cover-
able in the restricted transition system. We also showed that the restricted coverability
problem becomes decidable if the minor ordering is used (in which case it coincides with
the general coverability problem) or if Q is closed under reachability. Note that it is in
general not possible to simply restrict the transition system to graphs of Q, since the
compatibility condition will likely be violated.
For the subgraph ordering we also presented so-called universally quantified rules.

These rules are equipped with quantification pairs that allow them to be extended to
match the entire neighbourhood of a node, which is not possible with normal SPO rules.
These rules are more powerful and allow us to model for instance protocols with broad-
cast operations. However, since these rules impose some form of negative application
condition which violates the compatibility condition, the result of our algorithm will be
an over-approximation.
As proof of concept that our algorithm is not just of theoretical interest, we introduced

the tool Uncover which implements several components of our framework, including
the minor ordering, the subgraphs ordering and universally quantified rules.

8.2. Related Work
Beyond the approach we used in our framework, there are several other related ap-
proaches which also use the theory of well-structured transition systems to obtain ver-
ification procedures. Most of these approaches use various well-structured transition
systems, solve various decision problems and apply either the forward or the backward
algorithm. Depending on the setting they can be exact or approximating. We have
already mentioned some of these approaches in the Chapters 2, 5 and 6, but discuss
them here again for completeness.

Graphs transformation systems The approach presented in [AB+08] uses a backward
algorithm very similar to the one in our framework. The authors use the minor ordering
and graphs with at most one outgoing (binary) edge at each node to represent heaps. The
minor ordering works especially well on this class of graphs, since it is downward-closed
wrt. all three operations, i.e. node deletion, edge deletion as well as edge contraction.

164

8.2. Related Work

In this setting the authors use the (decidable) coverability problem as basis to verify
programs with dynamic heaps and also present some runtime results of an unpublished
prototype implementation. This approach is somewhat contained in our approach, since
we could use their class of graphs as restricted class Q together with the minor ordering
(which we normally use in conjunction with all graphs). Since their transformation
systems only reach graphs which are in this class, we obtain case (ii) of Theorem 2.21,
i.e. a decidable restricted coverability problem.
In [DSZ10] the authors analyse ad hoc networks, which are modelled by a graph where

every node is a process that is in turn modelled by a finite-state automaton. These
networks allow local as well as broadcast operations and the authors use the induced
subgraph ordering (which seems especially suited for broadcast operations). They are
interested in three decision problems: control state reachability (can a configuration be
reached where one of the processes is in given state), target reachability (is a configura-
tion reachable such that every process is in some state of a given set) and repeated control
state reachability (is there an infinite execution where a given state occurs infinitely of-
ten). These problems are undecidable, but become decidable if the transition system
has node mobility. This approach inspired the definition and integration of universally
quantified rules into our framework. Note that the application condition of universally
quantified rules is slightly different than in this approach.
Another interesting approach is pursued in [SWJ08], where graph patterns containing

a positive and a negative part are used to represent all graphs that contain the positive
part as a subgraph, but not the negative part. This allows the use of negative application
conditions, since these can be taken into account by changing the patterns negative part.
The authors apply the standard backward algorithm using patterns as minimal elements
of upward-closed sets to prove safety properties of the DYMO protocol. However, they
do not define any well-quasi-order, which means that the approach is not guaranteed
to terminate. Although they claim to over-approximate the reachability problem, they
effectively solve coverability. A prototype implementation exists in the form of the GBT
tool [GBT].

Depth-bounded systems In [BK+13] the authors use the subgraph ordering in con-
junction with the forward algorithm. For representing downward-closed sets, they in-
troduce abstractions by nested graphs G, where subgraphs of G can be equipped with
natural numbers that indicate multiple occurrences of these subgraphs. Since these
numbered subgraphs can be nested, they obtain an over-approximation. This setting is
then used to solve weakly fair termination and runtime results for an extension of the
Picasso tool [Picasso] are given.

Petri nets and lossy systems Another attempt to define a general framework was done
in [SM12] for Petri nets (with transfer arcs) and lossy systems. The idea is to apply a

165

Chapter 8. Conclusion

backward search for coverability and use the predecessor computation, the order and a
witness function as parameters of the analysis. For search space construction, the authors
integrated pruning, partial order reduction and backward acceleration. Experimental
results are provided for Petri nets as well as lossy systems by the Petruchio tool
[Petruchio].

Approaches beyond well-structured transition systems Of course there are also ap-
proaches for analysing graph transformation systems without using well-structured tran-
sition systems. For instance, the Groove tool [Groove; Ren03] can be used to model
graph transformation systems with very expressive application conditions and explore
their state space. Groove can be used for model checking and verification [GM+12],
but is limited to finite state spaces.
There also exists a number of approaches for infinite state systems that use abstract

interpretation. The Augur2 tool [Augur2] implements the approach of [BCK01] where
the authors use Petri graphs – which are hypergraphs extended with transitions – to
abstract sets of graphs and apply techniques for Petri nets. This abstraction can also
be refined via counterexample-guided abstraction refinement (CEGAR) [KK06]. A dif-
ferent idea is used in [HJ+15a; HJ+15b], where the authors use hyperedge replacement
grammars (i.e. context-free GTS) to abstractly represent data structures such as trees,
heaps or lists. A pointer-manipulating program can be analysed by modelling its heap in
this ways and executing it on the abstract data structure. Another possible abstraction
is represented in [Bau06] and implemented in the Hiralysis tool. There the author
uses so-called partner abstractions where the structure of graphs is over-approximated
by keeping for each node only its label and the labels of its adjacent nodes (“partners”).
This approach is extended in [BR15a] to so-called cluster abstractions. Instead of only
using the labels of partners, the information about possible edges between partners is
also stored using three-valued logic. This extension is implemented in the Astra tool
[Astra; BR15b].
Last but not least, there are also approaches using Hoare logic for graphs, i.e. the

correctness of graph programs is checked by computing pre- and postconditions in a
Hoare logic style [Pen09; HP09]. If the computations are precise enough, invariants or
non-reachability of invalid configurations can be proven. The conditions used in this
approach are limited to first-order structural properties, but have been extended to
conditions equivalently expressive to monadic second-order logic (on graphs) in [PP14].

8.3. Future Work
There are several starting points for improving the approach presented in this thesis. In
the following we will discuss some of these points and how they could be implemented.

166

8.3. Future Work

More orders As already discussed in Section 5.4, a larger variety of order would
strengthen the presented approach. Since we model properties as upward-closed sets,
different orders can model different properties, i.e. a coarser order is not automatically
better than a finer order (or vice versa). An interesting question is whether the induced
minor ordering fits in our framework and whether the property of the induced subgraph
ordering to be well-structured even in the presence of simple negative application con-
ditions can be transferred to the induced minor ordering. If this is the case, we could
analyse protocols working on ring structures (for which the subgraph ordering is not well
suited) and still allow simple negative application conditions.

Especially interesting are orders which preserve directed paths in some sense, e.g. but-
terfly minors, where special contractions ensure that if there is no path between two
nodes, there is also no path between these nodes in any butterfly minor. With such or-
ders we could analyse protocols, where directed paths play an essential role, e.g. garbage
collection algorithms, but where the subgraph ordering would not terminate.

Attributed graphs In Section 7.3 we introduced a leader election case study. We had
the problem that our analysis can only analyse the system if the number of IDs used is
fixed. To avoid this, we could use attributed graphs, i.e. introduce variable labels for our
edges. By for instance assigning an integer variable to each process and message sent
around the ring, the forwarding of a message can be modelled by only one rule, instead
of one for each pair of IDs. Attributed graphs would also be helpful for modelling cryp-
tographic protocols, since correctness of these often depends on the data send within a
message. However, extending our framework in this way is not an easy task. For each
graph computed by our analysis we need to symbolically represent the attributes and re-
lations between attributes, i.e. we need to use appropriate formulae. These formulae need
to be adjusted as part of each backward step by computing weakest preconditions. This
requires some kind of abstraction framework (e.g. predicate abstraction) and automatic
inference. It is also not clear whether our current well-quasi-orders can be extended to
the pairs of graphs and formulae, such that the result is still a well-quasi-order. However,
an extension to attributed graphs would be a promising enhancement of our framework.

Graph patterns We encountered a problem similar to the one mentioned in the previous
point when analysing the public-private server communication case study presented in
Section 7.6. There the problem was, that in each backward step the analysis computed
paths of increasing length which were not in relation wrt. the subgraph ordering, i.e. the
final working set is not finitely representable. We could tackle this problem by using
graph patterns to describe sets that are otherwise not finitely representable. In this
case a pattern for describing possibly arbitrary long paths would be sufficient. However,
the problem is that the backward application of a rule becomes more difficult, since
rules need now be applied (backwards) to graph patterns instead of only graphs. This

167

Chapter 8. Conclusion

approach also requires some form of acceleration that creates graph patterns as part
of a backward step. This would probably cause our approach to be approximative, but
would ensure termination for some case studies (e.g. the one presented). Furthermore, we
would also need to extend the orders to graph patterns. It could be helpful to investigate
how abstract graph transformation [SWW11] can be used in this context. Another good
starting point for this improvement would also be to check whether the graph patterns
used in [SWJ08] would fit into this framework.

Forward vs. Backward Often the backward algorithm is claimed to be less efficient
than the forward algorithm. This assumption is based on the fact that the backward
algorithm can find states that are not reachable in the forward way, a “problem” the
(non-approximating) forward algorithm does not have. General research indicates non-
primitive recursive upper bounds in the worst-case and even some completeness results
for some well-structured transition systems. However, these results often hold for the
forward search as well. Efficiency may be better for specific WSTS and may also be
improved by optimizations not part of the standard (general) backward search. The
runtime results in Chapter 7 lets one assume that the average performance may be much
better than expected. Furthermore, it is worth noting that the forward and backward
algorithms are not fully comparable. Due to the order being a wqo, the final result of the
backward search, i.e. the upward-closed set of states from which a state s is coverable, is
finitely representable. This does not necessarily hold for the equivalent result set of the
forward algorithm (the covering set), i.e. the downward-closed set of all states that are
coverable from a state s. On the one hand, the forward algorithm relies on an adequate
domain of limits to represent downward-closed sets of which the definition may be non-
trivial. On the other hand, there are even WSTS (e.g. depth-bounded systems) where
the covering set is not computable, even though coverability is decidable [BK+13]. All
in all, a thorough comparison between the forward and backward approaches would help
to understand which one is preferable for which systems.

Other decidability problems The coverability problem is not the only problem for
which decidability can be achieved by using the theory of well-structured transition
systems. For instance, [FS01] states four problems which are decidable by a forward
search if successors can be computed effectively, the order is decidable and one of the
alternative compatibility conditions in Figure 8.1 is satisfied.
The termination problem, i.e. the problem whether there is a infinite sequence of

transitions from a given state, is decidable if transitive compatibility holds. Transitive
compatibility (Figure 8.1a) is the same as regular compatibility, but the sequence t1 ⇒+

t2 must not be empty. As soon as the forward search finds a state that is larger than
one of its predecessors, there is a sequence of transitions (from the smaller to the larger)
that can be repeated arbitrarily often, i.e. the system does not terminate.

168

8.3. Future Work

t1 t2

s1 s2

� �
+

(a) Transitive

t1 t2 tn−1 tn

s1 s2

��

(b) Stuttering

t1 t2

s1 s2

≺ ≺

+

(c) Strict transitive

Figure 8.1.: Alternative compatibility conditions

The control-state maintainability problem, i.e. the problem whether every state reach-
able from a state s is larger than some set of control-states, and the inevitability problem,
i.e. the problem whether every computation starting from s will reach a state not larger
than a set of control-states, are both decidable if stuttering compatibility holds. Stut-
tering compatibility (Figure 8.1b) requires that for every ti in the sequence s1 � ti must
hold, except for the last tn, for which s2 � tn holds.

Boundedness, i.e. the problem whether infinitely many states can be reached from some
state s, is decidable if strict transitive compatibility holds. Strict transitive compatibility
(Figure 8.1c) requires that if s1 ≺ t1 holds, then s2 ≺ t2 must hold as well (i.e. if t1 is
strictly larger, then t2 must be strictly larger as well), and the sequence from t1 to t2
must not be empty.
It would be an interesting point of research how these decidability results for the

mentioned problems could be translated to graph transformation systems. For the orders
presented in this thesis we would need to investigate which graph transformation systems
satisfy the alternative compatibility conditions.

Uncover The Uncover tool itself could also be further improved. For instance, most
but not all parts of our framework are implemented, i.e. the induced subgraph ordering is
not. Most optimizations presented in Section 6.5 are implemented as well, but additional
optimizations are imaginable that improve performance and increase practical value of
Uncover. Due to the nature of the backward search, runtimes and termination (in case
of the subgraph ordering) are hard to predict. Runs with random graph transformation
systems (see [Koz07]) could be helpful to benchmark the tool and analysis technique.

169

Appendix
A

Related Formalism

In Chapter 4 we proved decidability and undecidability of reachability and coverabil-
ity for several variants of graph transformation systems. These proofs use Petri nets,
Turing machines or Minsky machines for the reductions. In this chapter we will briefly
define these three well-known formalisms as well as the decision problems we used in the
reductions.

A.1. Petri Nets
Petri nets where first introduced by Petri in [Pet62]. Intuitively a Petri net consists of
places, which can contain an arbitrary number of tokens, and transitions that can fire to
consume tokens from some places and add tokens to other places. The “state” of a Petri
net is fully described by the number of tokens in each place, i.e. a so-called marking.
Formally we define Petri nets as follows.
Definition A.1 (Petri net). A Petri net is a tuple 〈P, T, pre(·), post(·),m0〉, where P
is a set of places, T is a set of transitions, pre(·) and post(·) are sets of functions with
pret : P → N0, postt : P → N0 for every t ∈ T , and m0 : P → N0 is the initial marking.
Definition A.2 (Marking). A marking (of a Petri net) is a function m : P → N0.
For two markings we say that m1 ≤ m2 if and only if m1(p) ≤ m2(p) for all p ∈ P .
Furthermore, we define m1 + m2 = m′ with m′(p) = m1(p) + m2(p) for all p ∈ P and
m1 −m2 = m′′ with m′′(p) = max(m1(p)−m2(p), 0) for all p ∈ P .
Note that by fixing any order on the set of places, we can also write markings as tuples
of natural numbers.
Definition A.3 (Firing transitions). Given a marking m, we say that a transition t is
enabled if pret ≤ m. Any enabled transition t can be fired to obtain a new marking
m′ = m− pret + postt.

171

Appendix A. Related Formalism

Beginning with the initial marking we can fire transitions to generate new markings.
We say that a marking is reachable if it can be generated by firing an arbitrary number
of transitions an arbitrary number of times. Just as graph transformation rules, Petri
nets can be seen as describing a transition system, where the states are markings and
transitions between states correspond to firing a transition of the Petri net.

We are mainly interested in the reachability and coverability problems for Petri nets,
which are both decidable [KM69; May84; May81]. In fact, coverability has been shown
to be decidable even in the presence of more powerful transitions, namely transitions
with reset arcs (removing all tokens of a place) and transfer arcs (moving all tokens from
one place to another) [DFS98], whereas reachability is undecidable in these cases. We
also use these more powerful arcs in some of our proof sketches.

A.2. Turing Machines
Turing machines are a computation model presented by Turing in [Tur37]. This simple
model consists of an infinite tape which is read by a head moving along the tape. How
the head moves and changes the tape depends on the current state of the machine.
Formally these machines are defined as follows.

Definition A.4 (Turing machine). Let Σ be an alphabet. A (deterministic) Turing
machine is a tuple 〈Z,Σ,Γ, δ, z0,2, E〉, where Z is a set of states, Γ ⊃ Σ is the tape
alphabet, δ : Z × Γ → Z × Γ × {R,L,N} is the transition function, z0 ∈ Z is the start
state, 2 ∈ Γ \ Σ is the blank symbol and E ⊆ Z is the set of final states. Additionally,
we require that δ(z, a) = 〈z, a,N〉 for all z ∈ E and a ∈ Γ.

The idea of a Turing machine is that there is an infinite tape which contains a word
w ∈ Σ∗ starting at the initial head position and 2 symbols at every other position. The
Turing machine then performs a step depending on the current state and the current
tape symbol at the head’s position. In each step, the state may be changed, the current
symbol at the head’s position may be changed and the head can be moved one to the
left or right. We formalise this behaviour by introducing configurations and a transition
relation on these configurations.

Definition A.5 (Configurations). A configuration of a Turing machine is an element of
Γ∗ZΓ∗. Given a word w ∈ Σ∗ the initial configuration of a Turing machine is z0w2.
Let am . . . a1zb1 . . . bn be a configuration with m ≥ 0 and n ≥ 1. We define the

transition relation ` as follows:

• if δ(z, b1) = 〈z′, c, L〉, then am . . . a1zb1 . . . bn ` am . . . a2z
′a1cb2 . . . bn if m ≥ 1 and

zb1 . . . bn ` z′2cb2 . . . bn if m = 0,

• if δ(z, b1) = 〈z′, c,N〉, then am . . . a1zb1 . . . bn ` am . . . a1z
′cb2 . . . bn, and

172

A.3. Minsky Machines (Two-Counter Machines)

• if δ(z, b1) = 〈z′, c, R〉, then am . . . a1zb1 . . . bn ` am . . . a1cz
′b2 . . . bn if n > 1 and

am . . . a1zb1 ` am . . . a1cz
′2 if n = 1.

We say that a Turing machine halts on a word w if from the initial configuration we
can reach a configuration containing a final state, i.e. z0w2 `∗ αzβ with z ∈ E and
α, β ∈ Γ∗.

Note that our Truing machines are deterministic, i.e. for every configuration ν there is
exactly one configuration µ with ν ` µ. If the state in ν is a final state, then by definition
of final state ν = µ must hold.

Our main interest lies in the so-called halting problem, i.e. the question whether a
given Turing machine will halt for a given word w. This problem is undecidable, even
when the word w is fixed [Tur37].

A.3. Minsky Machines (Two-Counter Machines)
Minsky machines are a computation model which is equivalent in its expressiveness to
Turing machines and was introduced by Minsky in [Min67]. A Minsky machine has a
state and two counters which can be incremented and decremented independently by a
set of instructions. Furthermore, instructions can also compare counters to zero, causing
Minsky machines to be as powerful as Turing machines. Formally a Minsky machine is
defined as follows.

Definition A.6 (Minsky machine). A Minsky machine is a tuple 〈Q,∆, 〈q0,m, n〉〉,
where Q is the set of states, ∆ ⊆ Q×Cmd×Q is the set of instructions and 〈q0,m, n〉 ∈
Q × N0 × N0 is the initial configuration of the machine. A command of Cmd can be
‘c++’ (an increment), ‘c−−’ (a decrement) or ‘c=0?’ (a zero-test), where c may be one
of the two counters, i.e. c ∈ {c1, c2}.

Analogous to Turing machines, we can define configurations and a transition relation on
configurations as follows.

Definition A.7 (Configurations). A configuration of a Minsky machine is an element of
Q×N0×N0. Let 〈q, n1, n2〉 be a configuration. We name the counters ci with i ∈ {1, 2}
and define the transition relation ` as follows:

• if 〈q, ci++, q′〉 ∈ ∆, then 〈q, n1, n2〉 ` 〈q′, n′1, n′2〉 with n′i = ni + 1, n′3−i = n3−i,

• if 〈q, ci−−, q′〉 ∈ ∆ and ni > 0, then 〈q, n1, n2〉 ` 〈q′, n′1, n′2〉 with n′i = ni − 1,
n′3−i = n3−i and

• if 〈q, ci=0?, q′〉 ∈ ∆ and ni = 0, then 〈q, n1, n2〉 ` 〈q′, n1, n2〉.

173

Appendix A. Related Formalism

Note that the increment and zero-test are blocking, i.e. an instruction containing them is
only applicable if ni > 0 or ni = 0 respectively. Again, ` forms a transition system where
states are configurations of the Minsky machine. For Minsky machines we are interested
in the reachability problem, i.e. whether a given configuration is reachable (from the
initial configuration), and the control state reachability problem, i.e. whether a config-
uration is reachable (from the initial configuration) that contains a given state. Both
problems are undecidable in general [Min67]. Note that the control state reachability
problem is a variant of the coverability problem.

174

Appendix
B

Proofs of Chapter 3

This appendix contains proofs of Sections 3.4 and 3.5 which where moved here to ease
the reading of those sections.

B.1. Proofs of Section 3.4
This section contains the correctness proofs for the constructions of pushouts in Λ-HGt
and Λ-HGp respectively.

Proposition 3.22 (Pushout in Λ-HGt). Let G,H, I be graphs with pairwise disjoint
node and edge sets1 and let f : G H, g : G I be total graph morphisms. Let ∼ be
the relation on VH ∪ VI ∪ EH ∪ EI , where f(x) ∼ g(x) and g(x) ∼ f(x) for all x ∈ G
and let ∼ be the equivalence closure of ∼. The pushout object J = 〈VJ , EJ , cJ , lJ〉 can be
constructed as follows:

• VJ = (VH ∪ VI)/∼,

• EJ = (EH ∪ EI)/∼,

• cJ : EJ → V ∗J where cJ([e]∼) = [v1]∼ . . . [vk]∼ and v1 . . . vk =
{
cH(e) if e ∈ EH
cI(e) if e ∈ EI

• lJ : EJ → Λ where lJ([e]∼) =
{
lH(e) if e ∈ EH
lI(e) if e ∈ EI

The resulting morphisms are f ′ : I J , g′ : H J with

f ′(x) = [x]∼ g′(y) = [y]∼
1Disjointness can be easily achieved by renaming.

175

Appendix B. Proofs of Chapter 3

for x ∈ I and y ∈ H, respectively. The object J together with the morphisms f ′, g′ is the
pushout of f, g.

G H

I J

f

g g′

f ′

G H

I J

J ′

f

g g′

f ′

f ′′

g′′

h

Figure B.1.: Pushout diagram for the construction in Proposition 3.22

Proof. To show that J is, in fact, the pushout, we have to prove that J is well-defined,
the left diagram in Figure B.1 commutes, and the morphism h exists and is unique (up
to isomorphism).
Obviously cJ and lJ assign a sequence of nodes and a label to each new edge [e]∼ ∈ EJ .

We first show that lJ is well-defined by showing that e ∼ e′ implies l(e) = l(e′). In the
following we will assume that e ∈ H and e′ ∈ I, but the proof is the same for e, e′ ∈ H and
e, e′ ∈ I. If e ∼ e′, then there exists an alternating sequence e = f(e1) ∼ g(e1) = g(e2) ∼
f(e2) = f(e3) ∼ . . . ∼ g(en) = e′. Obviously the label is preserved by every equality in
the sequence, and for every step f(ei) ∼ g(ei) it holds that lH(f(ei)) = lG(ei) = lI(g(ei)),
thus l(e) = l(e′). Note that this also implies |c(e)| = |c(e′)|.

In the same way, using the same sequence we show that cJ is well-defined by showing
that e ∼ e′ implies c(e)[i] = c(e′)[i] for 1 ≤ i ≤ |c(e)|. Again, at every equality in the
sequence cI(g(ej))[i] = cI(g(ej+1))[i] or cH(f(ej))[i] = cH(f(ej+1))[i] respectively, obvi-
ously hold. If f(ej) ∼ g(ej), then we obtain cH(f(ej))[i] = f(cG(ej)[i]) ∼ g(cG(ej)[i]) =
cI(g(ej))[i]. The fact that e ∼ e′ implies c(e) ∼ c(e′) is also sufficient to prove that f ′
and g′ are morphisms.

It is easy to see that the diagram commutes, since g′(f(x)) = [f(x)]∼ = [g(x)]∼ =
f ′(g(x)). For two morphisms f ′′ : I J ′ and g′′ : H J ′, commuting with f and g as
shown in Figure B.1, the mediating morphism h is defined as

h([x]∼) =
{
g′′(x) if x ∈ H
f ′′(x) if x ∈ I

Clearly, the diagram on the right of Figure B.1 commutes, i.e. g′′ = h◦g′ and f ′′ = h◦f ′
hold, also showing that h is a morphism, but we have to show that h is unique and
well-defined. For the uniqueness assume that there is another morphism h′ : J J ′

176

B.1. Proofs of Section 3.4

commuting with f ′′ and g′′. Then either h′([x]∼) = h′(g′(x)) = g′′(x) = h([x]∼) or
h′([x]∼) = h′(f ′(x)) = f ′′(x) = h([x]∼) depending on whether x ∈ H or x ∈ I.

Finally we show that h is well-defined. Assume there are x ∈ H and x′ ∈ I such that
x ∼ x′. Note, that the proofs for x, x′ ∈ H and x, x′ ∈ I are again essentially the same
as this case. Since x ∼ x′, there is an alternating sequence x = f(x1) ∼ g(x1) = g(x2) ∼
f(x2) = f(x3) ∼ . . . ∼ g(xn) = x′. Every equality preserves the image of the respective
element in J ′, since f ′′(g(xi)) = f ′′(g(xi+1)) or g′′(f(xi)) = g′′(f(xi+1)) respectively
hold. If f(xi) ∼ g(xi), the image is also preserved, since g′′(f(xi)) = f ′′(g(xi)) holds by
assumption that the diagram commutes. Thus, h is well-defined.

Proposition 3.24 (Pushouts in Λ-HGp). Let G,H, I be graphs with pairwise disjoint
node and edge sets and let f : G H, g : G I be partial graph morphisms. Let ∼ be
the relation on VH ∪VI ∪EH ∪EI , where f(x) ∼ g(x) and g(x) ∼ f(x) for all x ∈ G for
which f(x) and g(x) are both defined and let ∼ be the equivalence closure of ∼.
We say that an equivalence class on nodes is valid if and only if it does contain no

element f(x) for which g(x) is undefined and no element g(x) for which f(x) is undefined.
An equivalence class on edges is valid, if the previous condition holds for the class and
the equivalence class of every incident node is valid as well.

We can construct the pushout J by the same means as Proposition 3.22 with the
exception that VJ and EJ contain only the valid equivalence classes and f ′(x), g′(x) are
undefined if the equivalence class of x is not valid.

Proof. In the proof of Proposition 3.22 we have already shown that cJ and lJ are well-
defined. This directly transfers to this setting, since cJ and lJ are only defined for valid
equivalence classes and a valid equivalence class of an edge implies valid equivalence
classes of its incident nodes. The same holds for the commutativity of the diagram for
valid equivalence classes and the existence of the mediating morphism h (being defined
only for valid equivalence classes). By definition the diagram also commutes for non-
valid equivalence classes, since for any x ∈ G the images f(x) and g(x) are equivalent.
This means that the equivalence class of f(x) is non-valid if and only if the equivalence
class of g(x) is non-valid. Hence, g′(f(x)) = f ′(g(x)). Note that the diagram of this
proof is shown in Figure B.1, with the exception that the involved morphisms need not
be total.
Finally we have to show that for two morphisms f ′′ : I J ′ and g′′ : H J ′ com-

muting with f and g, the mediating morphism h : J J ′, as defined in the proof of
Proposition 3.22 commutes with g′′ and f ′′.

The morphism h is only defined on valid equivalence classes and by definition com-
mutes with g′′ on all these classes. We show that for all x ∈ H, if the equivalence class
of x is not valid, then g′′(x) is undefined. The commutativity with f ′′ can be shown
analogously. Assume the equivalence class of x is non-valid, then there is an alternating
sequence x = f(x1) ∼ g(x1) = g(x2) ∼ f(x2) = f(x3) ∼ . . . ∼ f(xn) = x′ where g(xn) is

177

Appendix B. Proofs of Chapter 3

undefined and f(xn) as well as every g(xi), f(xi) with 1 ≤ i ≤ n− 1 are defined. Note
that the proof is the same if x′ ∈ I instead of x′ ∈ H. Clearly, f ′′(g(xn)) is undefined
and this undefinedness is preserved by every equality, since f ′′(g(xi)) = f ′′(g(xi+1)) and
g′′(f(xi)) = g′′(f(xi+1)) hold, respectively. So assume f(xi) ∼ g(xi), then by commu-
tativity we know that g′′(f(xi)) = f ′′(g(xi)) holds. Thus, h commutes with f ′′ and g′′,
i.e. g′′ = h ◦ g′ and f ′′ = h ◦ f ′.

B.2. Proofs of Section 3.5
The following two lemmas prove correctness of the construction of pushout complements
for total morphisms defined in Proposition 3.26.

Lemma 3.28. Let f : G H and g′ : H J be two morphisms satisfying the condi-
tions of Proposition 3.21, i.e. at least one pushout complement exists. Then every equiv-
alence relation ≡ created by the construction in Proposition 3.26 generates a pushout
complement.

Proof. Assume that ≡ is one of the equivalences of the construction of Proposition 3.26
and that I, g, f ′ have been obtained by factoring G] J̃ through this equivalence (see
Figure B.2).
As a first step we show that g′ ◦f = f ′ ◦g, i.e. the resulting square commutes. Because

g is the canonical embedding of G into G] J̃ (and therefore injective) and f(x) is defined
as g′(f(x)) if x ∈ G, we know that g′(f(x)) = f(g(x)) holds. Furthermore by definition
of g, f ′ we have:

g′(f(x)) = f(g(x)) = f ′([g(x)]≡) = f ′(g(x))

Now we show that I is indeed a pushout complement by verifying that the second
condition of Definition 3.6 is satisfied: we have to prove that for every other commuting
pair of morphisms g′′ : H J ′, f ′′ : I J ′ there is a unique morphism h : J J ′ such
that h◦g′ = g′′ and h◦f ′ = f ′′ as shown is Figure B.2. We define the required morphism
h as follows:

h(x) =
{
f ′′(x′) if ∃x′ ∈ I : f ′(x′) = x
g′′(x′) if ∃x′ ∈ H : g′(x′) = x

By definition of f ′ every element of J has a preimage either under f ′ or g′. It remains
to be shown that h is a well-defined morphism, and that it is the unique morphism such
that the triangles commute.

Commutativity. By definition h(g′(x)) = g′′(x) and h(f ′(x)) = f ′′(x) hold.

Uniqueness. Let h′ be another morphism with h′ ◦ f ′ = f ′′ and h′ ◦ g′ = g′′. Each
element of J has a preimage either under f ′ or g′:

178

B.2. Proofs of Section 3.5

G H

I

G] J̃

J

J ′

f

g
g

g′

f ′

f f ′′

g′′

h

Figure B.2.: Commuting diagram showing all morphisms of Lemma 3.28

1. if x = f ′(x′) for some x′ ∈ I, then h′(x) = h′(f ′(x′)) = f ′′(x′) = h(f ′(x′)) = h(x),

2. if x = g′(x′) for some x′ ∈ H, then h′(x) = h′(g′(x′)) = g′′(x′) = h(g′(x′)) = h(x).

Well-definedness. As seen before, h is defined for all elements of J . To show well-
definedness it is therefore only necessary to prove that different x′ having the same
image under f ′ or g′ also have the same image under f ′′ or g′′.

Every element of I is an equivalence class of ≡. Therefore, let x = [x′]≡ and y = [y′]≡.
In the following we do not strictly distinguish between an element of G and its image
under g because g is a canonical embedding. Hence for x′ ∈ G] J̃ the property x′ ∈ G
holds if and only if x′ has a preimage under g.

The first property we show is that f ′(x) = f ′(y) =⇒ f ′′(x) = f ′′(y) holds for all
x, y ∈ I. For x 6= y there are two cases which have to be considered:

1. We assume x′, y′ ∈ G, i.e. the equivalence classes x, y have representatives in G
(which also implies g(x′) = x and g(y′) = y). We know that x′ ≡f y′ holds
because of f(x′) = f ′([x′]≡) = f ′(x) = f ′(y) = f ′([y′]≡) = f(y′). Due to this
equivalence there are x1, y1, . . . , xn, yn ∈ G with x′ = x1, y′ = yn such that xi ≡ yi
for 1 ≤ i ≤ n and yi ≡f xi+1 for 1 ≤ i < n. Using the definition of g and the
fact that xi and yi are elements of G it can be shown that the equivalence xi ≡ yi
implies g(xi) = [g(xi)]≡ = [g(yi)]≡ = g(yi). These properties lead to the equality
g′′(f(xi)) = f ′′(g(xi)) = f ′′(g(yi)) = g′′(f(yi)) = g′′(f(xi+1)) for every i, thus
f ′′(x) = f ′′(y) holds.

2. Now assume x contains no elements of G (implying x′ /∈ G). Because x contains no
elements of G, it also has no preimage under g. By definition f ′([x′]≡) = f ′([y′]≡)
implies x′ ≡f y

′. Because of this equivalence there are x1, y1, . . . , xn, yn ∈ G with
x′ = x1, y′ = yn satisfying xi ≡ yi for 1 ≤ i ≤ n and yi ≡f xi+1 for 1 ≤ i < n. It
is easy to see that y1 can not be an element of G, because otherwise [x′]≡ would
contain elements of G. Furthermore, due to the definition of ≡f it holds that
y1 = x2 because y1 is not in G. This property can be extended to yi = xi+1, which

179

Appendix B. Proofs of Chapter 3

leads to xi ≡ xi+1. Since this ultimately implies x′ ≡ y′ and, thus, x = y, it is
clear that f ′′(x) = f ′′(y) holds.

The second property needed for well-definedness is g′(x) = g′(y) =⇒ g′′(x) = g′′(y).
The identification condition (see Proposition 3.21) states that because of g′(x) = g′(y)
there are x′, y′ ∈ G such that f(x′) = x and f(y′) = y. Using this and the first property
the desired equality can easily be shown by:

g′(x) = g′(y) =⇒ g′(f(x′)) = g′(f(y′)) =⇒
f ′(g(x′)) = f ′(g′(y′)) =⇒ f ′′(g(x′)) = f ′′(g(y′)) =⇒
g′′(f(x′)) = g′′(f(y′)) =⇒ g′′(x) = g′′(y)

The last property to show is f ′(x) = g′(y) =⇒ f ′′(x) = g′′(y). We first show that
f ′(x) = g′(y) implies that there is a y′ ∈ G with f(y′) = y: the only items of J which
are in the range of both f ′ and g′ are the images of elements of G and nodes in the
range of g′ which are incident to edges which are not in the range of g′. However, due
to the dangling condition (see Proposition 3.21) such nodes must have a preimage in G.
Together with the first property this implies:

f ′(x) = g′(y) =⇒ f ′(x) = g′(f(y′)) =⇒ f ′(x) = f ′(g(y′)) =⇒
f ′′(x) = f ′′(g(y′)) =⇒ f ′′(x) = g′′(f(y′)) =⇒ f ′′(x) = g′′(y)

Morphism. Finally it is straightforward to prove that h satisfies indeed the morphism
properties. For instance in order to show that h(cJ(e)) = cJ ′(h(e)) for an edge e ∈ J
we have to distinguish two cases: if there exists an edge e′ ∈ I with f ′(e′) = e, then –
since f ′ is a morphism – we have f ′(cI(e′)) = cJ(e). Hence h(cJ(e)) = h(f ′(cI(e′))) =
g′′(cI(e′)) = cJ ′(g′′(e′)) = cJ ′(h(e)) by definition of h. The case e′ ∈ H with g′(e′) = e is
analogous.
This proves that every diagram formed by an equivalence generated in the given

construction is a pushout diagram.

Lemma 3.29. Assume that f : G H and g′ : H J are given. Then every pushout
complement 〈I, g : G I, f ′ : I J〉 of f , g′ can be obtained via the construction
of Proposition 3.26. Furthermore two isomorphic pushout complements which commute
with the isomorphism give rise to the same equivalence ≡.

Proof. Assume that I with morphisms g, f ′ is a pushout complement of f , g′. We will
show that there is an equivalence ≡, as specified by the construction of Proposition 3.26,
such that I is obtained by the quotient G] J̃/≡. For the given pushout of f , g′ we
will define a surjective morphism k : G] J̃ I as seen in Figure B.3. Our next step
is then to define an equivalence relation ≡ where x, y ∈ G] J̃ are equivalent if and
only if k(x) = k(y). The quotient of G] J̃ through ≡ then results in I and it has to

180

B.2. Proofs of Section 3.5

G H

I

G] J̃

J

f

g
g

g′

f ′

f
k

Figure B.3.: Commuting diagram showing all morphisms of Lemma 3.29

be shown that the equivalence relation ≡ is one of the equivalence relations obtained by
the presented construction.
Let ∼ be the equivalence closure of the relation ∼ where f(x) ∼ g(x) and g(x) ∼

f(x) for all x ∈ G. Due to the construction of pushouts using equivalence classes we
can assume without loss of generality that J = (I] H)/∼ (see Proposition 3.22).
Furthermore, for x ∈ H we have g′(x) = [x]∼ and for y ∈ I we have f ′(y) = [y]∼. Using
this, we define k as follows:

k(x) =


g(x) if x ∈ G
y′ if x = yc and f ′(y′) = y

cI(k(ec))[i] if x = 〈ec, i〉

Well-definedness. Problems with well-definedness may arise only in the second case of
the definition of k, where x is of the form yc for some element y of J . In this case y is not
in the range of g′ due to the construction of G] J̃ . Therefore y as an equivalence class
does not contain elements of H. Because of the definition of ∼ every equivalence class
containing elements of either H or I (but not both) only contains one element, hence y
contains exactly one element y′ of I. Because f ′(y′) = [y′]∼ = y the preimage of y under
f ′ is unique and therefore k(x) is well-defined in this case.

Morphism. Note that k is obviously a morphism on the elements of G. Furthermore,
J̃ is a disjoint collection of nodes and edges and the third case in the definition of k
ensures that it is indeed a valid morphism.

Surjectivity. We now show that k is surjective. Let therefore x ∈ I be any element of
I and we distinguish the following two cases:

1. ∃y ∈ G : (g(y) = x): By definition k(y) = g(y) = x.

2. @y ∈ G : (g(y) = x): Without a preimage under g the equivalence class [x]∼
contains only x because x is not equivalent to any element of H according to
∼. Therefore [x]∼ is not in the range of g′ since otherwise the equivalence class

181

Appendix B. Proofs of Chapter 3

would contain elements of H. Because of the definition of k there is a y′ ∈ J̃ with
f(y′) = [x]∼ = f ′(x), hence k(y′) = x.

Commutativity. We have to show that both triangles commute:

1. We first check that k(g(x)) = g(x) for any x ∈ G. As already seen, g(x) = x if
x ∈ G. Using the definition of k we obtain k(g(x)) = k(x) = g(x).

2. Now we show that f ′(k(x)) = f(x) for any x ∈ G] J̃ . There are two cases to
distinguish:
a) x ∈ G: Using k(x) = g(x) if x ∈ G and g′ ◦ f = f ◦ g due to the definition of

g and f it can be shown that:

f ′(k(x)) = f ′(g(x)) = g′(f(x)) = g(f(x)) = f(x)

b) x ∈ J̃ : In this case k(x) = y′ and f ′(y′) = f(x), therefore f ′(k(x)) = f ′(y′) =
f(x).

The equivalence ≡ is generated. We will now show that the equivalence ≡, where two
elements x, y ∈ G] J̃ are equivalent if and only if k(x) = k(y), is generated by the given
construction. Hence we have to show that the equivalence closure of ≡ ∪ ≡f is ≡f , i.e.,
that ≡ ∪ ≡f = ≡f .

• ≡ ∪ ≡f ⊆ ≡f :
As already mentioned in Proposition 3.26, ≡f implies ≡f , i.e. ≡f is clearly a subset
of ≡f . The equivalence ≡ is also a subset of ≡f because of:

x ≡ y =⇒ k(x) = k(y) =⇒ f(x) = f ′(k(x)) = f ′(k(y)) = f(y)

• ≡ ∪ ≡f ⊇ ≡f :
Let x, y be elements of G] J̃ with x ≡f y, hence f(x) = f(y). As shown above the
equivalence classes f(x) and f(y) of ∼ contain k(x) and k(y) respectively, therefore
k(x) ∼ k(y). Hence there are x0, y1, x1, . . . , ym, xm such that xi ∼ yi for 1 ≤ i ≤ m
and xi ∼ yi+1 for 0 ≤ i < m with k(x) = x0 and k(y) = ym. Using the definition
of ∼ leads to the following properties:

xi ∼ yi =⇒ ∃zi ∈ G : (g(zi) = xi ∧ f(zi) = yi)
xi ∼ yi+1 =⇒ ∃z′i ∈ G : (g(z′i) = xi ∧ f(z′i) = yi+1)

This implies that zi+1 and z′i have the same image under f , hence zi+1 ≡f z′i,
and that zi and z′i have the same image under g, hence zi ≡ z′i. This leads to
x ≡ z′0 ≡f z1 ≡ z′1 ≡f · · · ≡ z′m−1 ≡f zm ≡ y, hence x ≡ ∪ ≡f y.

182

B.2. Proofs of Section 3.5

This concludes the proof that every pushout complement can be obtained by using the
given construction and it remains to be shown that two isomorphic pushout complements
give rise to the same equivalence.

Isomorphism of pushout complements. Let 〈Ii, gi : G Ii, f
′
i : Ii J〉 with i = 1, 2 be

two pushout complements and an let j : I1 I2 be an isomorphism with j ◦g1 = g2 and
f ′2 ◦ j = f ′1. It is sufficient to show that j commutes with the morphisms k1, k2, where
ki : G] J̃ Ii and k1, k2 are constructed analogously to the morphism k above. That
is, we have to show that j ◦ k1 = k2. Then k1, k2 give rise to the same equivalence ≡.
We distinguish the following cases (as in the definition of k): if x ∈ G, then j(k1(x)) =

j(g1(x)) = g2(x) = k2(x). If x is of the form yc for some item y of J , then we define
ki(x) = y′i for some y′i with f ′i(y′i) = y. Since f ′2(j(y′1)) = f ′1(y′1) = y we obtain y′2 = j(y′1).
Hence j(k1(x)) = j(y′1) = y′2 = k2(x). Finally, if x is of the form 〈ec, `〉 for some edge
e of J , then ki(x) = cIi(ki(e))[`] and so j(k1(x)) = j(cI1(k1(e))[`]) = cI2(j(k1(e)))[`] =
cI2(k2(e))[`] = k2(x). This completes the proof.

In the following we prove soundness of the construction defined in Proposition 3.30.
The completeness is proven in the Lemmas 3.31 and 3.32.

Proposition 3.30 (Pushout complements in Λ-HGp I). Let f : G H be a
injective and surjective, partial morphism and let g′ : H J be a total morphism such
that f and g′ satisfy Proposition 3.21, i.e. a pushout complement exists. We can compute
a pushout complement 〈I, g, f ′〉 with g : G I and f ′ : I J as follows (see also
Figure B.4):

1. Generate J̃ by taking a copy of J and adding a copy vc for every v ∈ VG for which
f(v) is undefined. Then add a copy ec for every e ∈ EG for which f(e) is undefined
with lJ̃(ec) = lG(e) and

cJ̃(ec)[i] =
{
g′(f(cG(e)[i])) if f(cG(e)[i]) is defined

vc with v = cG(e)[i] if f(v) is undefined

for 1 ≤ i ≤ ar(lJ̃(ec)).
We define the morphisms g̃ : G J̃ and f̃ ′ : J̃ J as follows:

g̃(x) =
{
g′(f(x)) if f(x) is defined
xc if f(x) is undefined

f̃ ′(x) =
{

x if x ∈ J
undefined else

2. Now let ≡ be any equivalence on J̃ , where
• if x ≡ y, then either x, y ∈ VJ̃ or x, y ∈ EJ̃ ,

183

Appendix B. Proofs of Chapter 3

• if x ≡ y and f̃ ′(x) is defined, then x = y holds, and
• if x ≡ y for x, y ∈ EJ̃ , then cJ̃(x)[i] ≡ cJ̃(y)[i] for 1 ≤ i ≤ ar(lJ̃(x)) =

ar(lJ̃(y)).

3. We obtain a pushout complement I by taking a copy of J̃/≡ and adding an arbitrary
(but finite) number of edges. For each such edge e there has to be an index i such
that f ′(cI(e)[i]) is undefined. The morphisms g and f ′ are defined as follows:

g(x) = [g̃(x)]≡

f ′(x) =
{

f̃ ′(x′) if x = [x′]≡ ∈ J̃/≡
undefined else

If we do not add any edges in step 3, this construction generates only finitely many
pushout complements.

G H

I

J̃ J

J

f

g̃
g

g′

f ′

f̃ ′ g

f

k

Figure B.4.: Pushout complement diagram for the construction in Proposition 3.30 and
its proof (dashed morphisms)

Proof. We will show that every graph I computed by this construction is a pushout
complement. First we show that all steps of the construction are well-defined.

Correctness of g̃ and f̃ ′. Obviously g̃ and f̃ ′ are well-defined and satisfy the morphism
properties. The latter holds for g̃ and any ec by definition of cJ̃ . If f(x) is defined, we
obtain f̃ ′(g̃(x)) = f̃ ′(g′(f(x))) = g′(f(x)) and if f(x) is undefined, then both g′(f(x))
and f̃ ′(g̃(x)), thus the morphisms commute (see Figure B.4).

Well-definedness of f and g. The last condition for ≡ in step 2 of the construction
ensures that g satisfies the morphism property. Obviously f ′ also satisfies this property,
but we have to show that it is well-defined. So let x ∈ J̃/≡. If there is an x′ ∈ x where
f̃ ′(x′) is defined, then by the second condition of step 2 x′ is the only element in x. If
there is no such x′, then f̃ ′ is undefined for every element of x, thus f ′ is well-defined.
Note that f ′ is undefined for every edge added in step 3.

184

B.2. Proofs of Section 3.5

Commutativity. The morphisms f ′, g commute with f̃ ′, g̃, and therefore with g′, f ,
since by definition f ′(g(x)) = f ′([g̃(x)]≡) = f̃ ′(g̃(x)). It remains to be shown that a
unique mediating morphism exist. Let f : I J and g : H J be two morphisms such
that f ◦ g = g ◦ f . Since f̃ ′ as well as f ′ are by definition surjective, we can define the
mediating morphism k : J J as

k(x) = f(x′) for some x′ with f ′(x′) = x.

Note that k is in fact well-defined, since f ′(x′) is defined implying that [x′]≡ contains
only x′. Obviously this also implies the commutativity f(x) = k(f ′(x)) for every x
for which f ′(x) is defined or for which f(x) is undefined. It remains to be shown that
f(x) is undefined if f ′(x) is undefined (the other way not necessarily holds). If f ′(x) is
undefined, then x is either an equivalence class containing only xc added in step 1 or an
edge added in step 3. In the first case x has a preimage in x′ ∈ G for which f(x′) (and
therefore also g(f(x′))) is undefined. By commutativity of the diagram f(x′) must be
undefined as well. If x is an edge added in step 3, then by definition it is incident to a
node v ∈ I for which f ′(v) is undefined. By the previous argument f(v) is undefined as
well and therefore f(x) must be undefined, since f is an morphism.

We now show the second commutativity g = k ◦ g′. Since f is injective and surjective,
for every x ∈ H there exists exactly one x′ ∈ G with f(x′) = x, thus we can prove that
the second triangle commutes by the following equalities:

g(x) = g(f(x′)) = f(g(x′)) = k(f ′(g(x′))) = k(g′(f(x′))) = k(g′(x))

Uniqueness of k. Finally it only remains to be shown that k is unique, so let k′ : J J
be another morphisms commuting with the diagram. By definition every element x ∈ J
has exactly one preimage x′ ∈ I. Therefore we can use the commutativity to show
k(x) = k(f ′(x′)) = f(x′) = k′(f ′(x′)) = k′(x).

Finiteness. If we do not add any edges in step 3, only finitely many pushout comple-
ments are generated. This is obvious, since all involved graphs – especially J̃ – are finite,
and thus there are only finitely many equivalences ≡ satisfying the conditions in step 2.
Each ≡ leads to one pushout complement.

Lemma 3.31. Let f : G H be a partial, injective morphism and let g : G I be any
partial morphism. The morphism f ′ of the pushout 〈J, f ′, g′〉 is injective.

Proof. Without loss of generality we assume that 〈J, f ′, g′〉 was generated by the con-
struction of Proposition 3.24, i.e. every element of J is a valid equivalence class of ∼, an
equivalence on the union of H and I.

Assume there are two z, z′ ∈ I with z 6= z′ where f ′(z) = f ′(z′), i.e. f ′ is non-injective.
By construction z ∼ z′, where ∼ is the equivalence closure of ∼, which is defined as
f(x) ∼ g(x) and g(x) ∼ f(x) for all x ∈ G (where ever f(x) and g(x) are defined). We

185

Appendix B. Proofs of Chapter 3

can assume that z has a preimages in G, since otherwise z is not related to anything
via ∼ and therefore [z]∼ = {z}. Obviously the same holds for z′. Since z ∼ z′, there is
a sequence g(x1) ∼ f(x1) = f(y1) ∼ g(y1) = g(x2) ∼ . . . ∼ g(yn) where g(x1) = z and
g(yn) = z′. Every f(xi) and f(yi) is defined, since otherwise the equivalence class of
z and z′ would we invalid and their image under f ′ would be undefined. Furthermore,
since f is injective, f(xi) = f(yi) implies xi = yi. Thus we obtain g(xi) = g(yi) and
g(yi) = g(xi+1) which finally implies z = g(x1) = g(yn) = z′. Hence our assumption
that z 6= z′ was wrong and f ′ must be injective.

Lemma 3.32. Let f : G H be a injective and surjective, partial morphism and let
g′ : H J be a total morphism. Every pushout complement 〈I, g, f ′〉 with g : G I
and f ′ : I J where g is conflict-free wrt. f can be obtained by the construction of
Proposition 3.30.

Proof. By Lemma 3.31 we know that f ′ must be injective. Furthermore, epimorphisms
– partial, surjective morphisms in Λ-HGp – are preserved by pushouts in the same
sense, thus f ′ is surjective as well. Effectively I contains a copy of J . We will now show
that a pushout complement 〈Î , ĝ, f̂ ′〉 exists which is isomorphic to I and which can be
generated by the given construction. We prove this by giving an isomorphism k : I Î
such that the triangles ĝ = k ◦ g and f ′ = f̂ ′ ◦ k commute, as shown in Figure B.5.

G H

I

Î

J

f

ĝ

g g′

f ′

f̂ ′
k

Figure B.5.: Pushout complement diagram for the proof of Lemma 3.32

Let v ∈ VI be some node of I. If f ′(v) is defined, then v belongs to the copy of J
generated in step 1. If f ′(v) is undefined, then v must have a preimage in G, since
otherwise, when computing the pushout of f and g, the equivalence class of v is valid
and f ′(v) is defined. By commutativity and since g is conflict-free wrt. f , every preimage
of v must be undefined under f . Thus we can obtain v by taking copies of element of G
for which f is undefined and then merge these copies appropriately. The same argument
also holds for edges, with the exception that edges need not have a preimage in G if
they have no image under f ′. However, according to Proposition 3.24 such an edge e is
deleted only if at least one of its incident nodes is deleted. Thus, such an edge will be

186

B.2. Proofs of Section 3.5

added in step 3 of the construction. Based on this we can define k as follows:

k(x) =


ĝ(x′) if x = g(x′) for some x′ ∈ G
x′ if f̂ ′(x′) = f ′(x) and f ′(x) is defined
xcp if f ′(x) is undefined and there is no x′ with g(x′) = x

where xcp denotes an edge added in step 3.

Well-definedness. Let ≡ be the equivalence on J̃ used in step 2 of the construction. To
obtain Î we use the equivalence where x ≡ y if x = y or x = x′c, y = y′c, i.e. x and y are
copies of elements x′ and y′ of G, and g(x′) = g(y′). Clearly this equivalence satisfies
the necessary conditions, since f̃ ′(x) and f̃ ′(y) are undefined if x and y are copies of
elements of G. This equivalence can now be used to show the well-definedness of k in
the first case. Since g is conflict-free wrt. f , either all preimages x′, x′′ of x are undefined
or all are defined under f . If all are undefined, then the images of x′ and x′′ belong to
the same equivalence class ĝ(x′) = ĝ(x′′). If f is defined for all preimages, then g′ ◦ f is
defined as well, and by commutativity f ′ ◦ g as well. By definition of ĝ we obtain:

g(x′) = g(x′′) =⇒ f ′(g(x′)) = f ′(g(x′′)) =⇒ g′(f(x′)) = g′(f(x′′))
=⇒ f̂ ′(ĝ(x′)) = f̂ ′(ĝ(x′′)) =⇒ ĝ(x′) = ĝ(x′′)

The well-definedness of the second case of k follows form the fact, that f̂ ′ is injective
and surjective, i.e. there is exactly one x′ with f̂ ′(x′) = f ′(x) for every x for which f ′(x)
is defined. In the third case of k, x is an edge connected to at least one node v for
which f ′(v) is undefined. Thus, we can assume that some xcp was added in step 3 with
lÎ(xcp) = lI(x) and cÎ(xcp) = k(cI(x)). Finally, if an x ∈ I has a preimage in x′ ∈ G
and f ′(x) is defined (i.e. the first and second case both apply), then by commutativity
f ′(g(x′)) = g′(f(x′)) = f̂ ′(ĝ(x′)) holds. Because of injectivity, ĝ(x′) is the only preimage
of f ′(x) under f̂ ′. Obviously k satisfies the morphism property (since it is defined using
other morphisms) and thus k is well-defined.

Isomorphism. By definition k is total, and we can assume that k is surjective, since we
need not add more edges in step 3 than necessary. Furthermore, k is obviously injective
in case 2 and 3 of its definition, since f ′ and f̂ ′ are injective. In the first case k(x) = k(y)
implies ĝ(x′) = ĝ(y′) for some g(x′) = x and g(y′) = y. Since ĝ(x′) = ĝ(y′) can only be
the case if g(x′) = g(y′) (regardless of whether x′ and y′ have images under f), we have
x = g(x′) = g(y′) = y.

Commutativity. The commutativity ĝ(x) = k(g(x)) holds by definition, since g(x)
obviously has a preimage in G (case one). It remains to be shown that f̂ ′ ◦ k = f ′.
Let x ∈ I such that f ′(x) is defined, then by definition f̂ ′(k(x)) = f ′(x) holds (case
two). If x ∈ I and f ′(x) is undefined, then either k(x) = xcp and f̂ ′(xcp) is undefined
by definition (case three), or x has a preimage x′ ∈ G. Due to the commutativity

187

Appendix B. Proofs of Chapter 3

f ′(g(x′)) = g′(f(x′)) = f̂ ′(ĝ(x′)), the morphism f̂ ′ must be undefined on ĝ(x′) = k(x)
(since ĝ is total).
Since Î and I are isomorphic, I is in fact a pushout complement computed by the

construction.

The construction of pushout complements for more general (partial) morphisms is
proven in the following.

Proposition 3.33 (Pushout complements in Λ-HGp II). Let f : G H be a
partial morphism and let g′ : H J be a total morphisms, as shown in Figure 3.15. We
can construct every pushout complement I ′ with morphisms k : G I and f ′ : I J
where k is conflict-free wrt. f as follows:

1. Split f into two morphisms f1 : G G′ and f2 : G′ H with f = f2 ◦ f1 where
f1 is injective and surjective, and f2 is total.

2. Use the construction of Proposition 3.26 to compute 〈I ′, g, f ′2〉, a pushout comple-
ment of f2, g′ with g : G′ I ′ and f ′2 : I ′ J .

3. Use the construction of Proposition 3.30 to compute 〈I, k, f ′1〉, a pushout comple-
ment of f1, g with k : G I and f ′1 : I I ′.

4. We define f ′ as the composition f ′ = f ′2 ◦ f ′1.

This construction will generate finitely many pushout complements if and only if the
construction of Proposition 3.30, will compute finitely many pushout complements.

Proof. First, since the left and the right square are both pushouts, by Lemma 3.7 the
outer rectangle is a pushout as well. Thus 〈I, k, f ′〉 is in fact a pushout complement of
f2 ◦ f1 and g′. Note that g is conflict-free wrt. f2 and k is conflict-free wrt. f2 ◦ f1, since
otherwise g′ would be partial.
It remains to be shown that every pushout complement of f and g′ can be obtained

in this way, so let 〈I, k, f ′〉 be such a pushout complement. Every f can be split into f1
and f2 satisfying the necessary restrictions. We generate G′ by taking a copy of G and
deleting every element which has no image under f . The morphism f1 is the identity for
every element for which f is defined, and undefined else. We define f2 as f2(x) = f(x)
for all x ∈ G′. Obviously f1 is injective and surjective, and f2 is total. According
to Lemma 3.8 there is a unique way to split f ′ into morphisms f ′1 and f ′2 such that
〈I ′, f ′1, g〉 is the pushout of k, f1 and 〈J, f ′2, g′〉 is the pushout of g, f2. We observe that
k is conflict-free wrt. f1, since otherwise k could not be conflict-free wrt. f , and thus g
is total. The pushout complements I ′ and I will be generated by the constructions of
Propositions 3.26 and 3.30 respectively, as proven by the Lemmas 3.29 and 3.32, and
therefore 〈I, k, f ′〉 is generated by this construction.

188

B.2. Proofs of Section 3.5

The split in step 1 is unique and the number of pushout complements for two total
morphisms (computed in step 2) is always finite. Thus, we will only obtain infinitely
many pushout complements if step 3 generates infinitely many pushout complements,
i.e. the construction of Proposition 3.30.

189

Appendix
C

Proofs of Chapter 6

This appendix contains proofs of Sections 6.1, 6.2 and 6.6 which where moved here to
ease the reading of those sections.

C.1. Proofs of Section 6.1
Here we prove the general property that conflict-free matches ensure total co-matches.
In fact, a match is conflict-free if and only if the co-match is total. The fact that injective
matches ensure injective co-matches already follows from the categorical framework we
use.

Lemma 6.5. Let r : L R be a partial and m : L G a total morphism. Furthermore,
let 〈H, r′,m′〉 with r′ : G H and m′ : R H be the pushout of r and m. If m is
injective, then m′ is total and injective as well. If m is conflict-free wrt. r, then m′ is
total.

Proof. In any category monomorphisms, the generalised notion of injectivity, are pre-
served by pushouts in the sense that m′ is a monomorphism if m is a monomorphism
[LS04]. Note that in Λ-HGp a morphism is a monomorphism if and only if it is total
and injective. Since injectivity implies conflict-freeness, we just have to show that m′ is
total if m is conflict-free.
Assume there is an element x ∈ R for which m′(x) is undefined. Without loss of

generality we can assume that H was constructed according to Proposition 3.24 using
the relation ∼ (where r(x) ∼ m(x) and vice versa for all x ∈ L). By definition m′(x) is
only undefined if the equivalence class of x is not valid, i.e there is an y with x ∼ m(y) and
r(y) is undefined (note thatm is total). Furthermore, there has to be an x′ with r(x′) = x
since elements in R without preimages in L have valid equivalence classes. Hence there

191

Appendix C. Proofs of Chapter 6

is a sequence r(x1) ∼ m(x1) = m(x2) ∼ r(x2) = r(x3) ∼ . . . ∼ m(xn−1) = m(xn)
with x1 = x′ and xn = y, where all r(xi) for i 6= n are defined (otherwise we could
shorten this sequence to satisfy this condition). This means that there are xn−1, xn
with m(xn−1) = m(xn) where r(xn−1) is defined, but r(xn) is not. Thus, m is not
conflict-free.

C.2. Proofs of Section 6.2
In this section we prove that minor morphisms are preserved by pushouts along total
morphisms and pushout closed. Furthermore, we prove that our algorithm for computing
represented injective predecessors is correct.

Lemma 6.20. Minor morphisms are preserved by pushouts along total morphisms (cf.
Definition 6.3).

Proof. Let G3 be the pushout of G0 along µ : G0 G1 and g : G0 G2, as shown in
Figure C.1. Without loss of generality we can assume that G3 was computed by the the
construction we gave in Proposition 3.24. Let v, w ∈ VG2 be two nodes that are mapped
to the same node z ∈ VG3 via the morphism µ′ : G2 G3. This means that v and w
are in the same equivalence class, and thus necessarily have preimages v′ and w′ in G0.

G0 G1

G2 G3

µ

g g′

µ′

Figure C.1.: Diagrams illustrating the proof of Lemma 6.20

Now, since they are in the same equivalence class, there exists a sequence of nodes
y1, y2, . . . , yn ∈ VG0 with y1 = v′ and yn = w′ such that µ(yi) = µ(yi+1) for every odd i
and g(yj) = g(yj+1) for every even j. Since µ is a minor morphism there exists a path (in
G0) from yi to yi+1 for every odd i such that all nodes on the path are mapped to µ(yi).
Since g is total, there also exists a path in G2 from g(yi) to g(yi+1) for every odd i. Now,
due to commutativity, all nodes on such a path (in G2) will be mapped to the same node
in G3. Also due to commutativity, the images of all the edges in this path are undefined,
since the equivalence class is not valid (due to µ being a minor morphism). Furthermore,
since g(yj) = g(yj+1) for even j, there is a path from g(y1) = v to g(yn) = w such that
all nodes on that path are mapped to the same node z ∈ VG3 , and none of the edges in
this path lie in the domain of µ′. Also, surjectivity (on nodes and edges) and injectivity
(on edges) is preserved by the pushout construction.
Thus, µ′ is a minor morphism.

192

C.2. Proofs of Section 6.2

Lemma 6.21. Minor morphisms are pushout closed (cf. Definition 6.11).

Proof. We will prove that minor morphisms are pushout closed by first constructing R′,
G′ together with minor morphisms µR : R R′ and µG : G G′. We then prove that
S is the pushout of µR ◦ r, µG ◦m and that µG ◦m is conflict-free wrt. r. So first, let
the morphisms r, r′,m,m′, µ be given as shown in Figure C.2 such that the square is a
pushout.

Construction of R′ and µR. From R, construct a minor R′ (and simultaneously a minor
morphism µR) as follows: first, let R′ be simply a copy of R. For e ∈ ER, if the image of
e in H under m′ is contracted to construct S, then contract the corresponding edge in R′
in the same way, i.e. according to the same partition. In this case e is undefined under
µR and its incident nodes are mapped to merged nodes in R′. If e is deleted (without
contracting the nodes), delete it in R′ as well, and leave e undefined under µR. Now,
let v ∈ VR be such that its image in H is deleted in constructing S. This implies that
the image of v in H is either an isolated node, or all its incident edges were deleted.
So since we deleted corresponding edges in R′, we can safely delete v in R′, and leave
it undefined under µR. (Note that it is not possible for R to have an edge that is not
mapped to an edge in H, since m is total and conflict-free and hence m′ must be total).
Now, R′ is a minor of R, because the construction involved only the allowed operations.

Further, due to its construction, µR is a minor morphism.

Construction of G′ and µG. Perform a similar construction for G′, with one difference:
For x ∈ G such that x has a preimage in L, do not contract/delete it in G′, even if x had
an image in H that was contracted/deleted in constructing S. (The intuition for this is
that it is enough for an item to be contracted/deleted by one of the minor morphisms
for it to be contracted/deleted in the pushout graph and a second deletion/contraction
would cause the match to be non-conflict-free.) The rest of the construction is as before.
Again, G′ is a minor of G and µG : G G′ is a minor morphism. Further µG ◦m is
total since m is total and µG is defined for all elements with a preimage in L.

Conflict-freeness of µG ◦m. Also, µG ◦m is conflict-free with respect to r. To see this,
suppose there exist nodes v1, v2 ∈ L such that (µG ◦m)(x1) = (µG ◦m)(x2). Whenever
x1, x2 are edges, then m(x1) = m(x2), since µG does not merge edges. In this case by
assumption r is either undefined on both or defined on both. A similar argument applies
whenever x1, x2 are nodes and m(x1) = m(x2). So now assume that x1, x2 are nodes
and y1 = m(x1) 6= m(x2) = y2. Then, µG(y1) = µG(y2) implies that y1 and y2 are nodes
and have distinct images in H with a path connecting them which is contracted while
constructing S. Hence, r(x1) and r(x2) are both defined and distinct. Thus there cannot
be a deletion/preservation conflict.

Construction of n. Now, we construct the morphisms n : R′ S and s : G′ S (see
Figure C.2). For any x ∈ R we define n as n(µR(x)) = µ(m′(x)). To see that this is

193

Appendix C. Proofs of Chapter 6

L R R′

G H

G′ S

X

r µR

m m′

r′

µG
µ

n

s

η′

f
η

g

Figure C.2.: Shows how the small pushout square can be extended to the large pushout
square; morphisms used in the correctness proofs are dashed

valid, first note that if µR(x) is undefined, then µ(m′(x)) will also be undefined because
of the construction of µR. Then, if there exist x1, x2 such that µR(x1) = µR(x2), then
x1 and x2 must be nodes and not edges, because µR is injective on edges. And we must
have µ(m′(x1)) = µ(m′(x2)). Thus the above definition is valid.
Further, m′ is total (since m is total and conflict-free), µ(m′(x)) is undefined if and

only if µ is undefined at m′(x), and in that case µR(x) will also be undefined. This,
combined with the fact that µR is surjective, implies that n is total. Also, the relevant
part of the diagram commutes, due to the definition of n.

Construction of s. Similarly, s is defined as s(µG(x)) = µ(r′(x)). By essentially the
same argument as in the case of n, we can show that this definition is valid and the
relevant part of the above diagram commutes. However, in this case s may be partial,
because for a node x with a preimage in L, r′(µ(x)) may be undefined but µG(x) will
still be defined. For such a node, s will be left undefined.

Commutativity and correctness of the outer square. Furthermore it can be straightfor-
wardly shown that n, s satisfy all properties of a morphism. And finally, since each of
the parts of the diagram in Figure C.2 commute, the diagram as a whole also commutes.

Existence of the mediating morphism η′. Now, let there be some graph X and two
morphisms f : R′ X and g : G′ X, such that (f ◦ µR) ◦ r = (g ◦ µG) ◦ m, then,
since H is a pushout, there exists η : H X such that η is the unique morphism with
f ◦µR = η ◦m′ and g ◦µG = η ◦ r′. For x ∈ H, define a morphism η′ : S X as follows
η′(µ(x)) = η(x). Since µ is surjective, every element y ∈ S has a preimage x ∈ H, hence
η′ can in principle be defined for every such y by the above definition. The current
situation is depicted in Figure C.2.

194

C.2. Proofs of Section 6.2

Correctness and uniqueness of η′. It is left to show that η′ is well-defined and unique.
Now, if there exist x1, x2 in H such that µ(x1) = µ(x2), then x1 and x2 must be nodes
(since µ is a minor morphism), and further, there must be a path connecting them, such
that all nodes on this path are also mapped to the same node. Then, if η(x1) 6= η(x2),
there exist y1, y2 which lie on this path from x1 to x2, such that they are adjacent, and
µ(y1) = µ(y2) but η(y1) 6= η(y2). Let e be the edge connecting them. It must have a
preimage in either R or G (or both). Suppose e has a preimage e′ in R with the preimages
of y1 and y2 being y′1 and y′2 respectively. Then, if e is contracted in S it holds that e′
is contracted in R′, and hence µR(y′1) = µR(y′2). But then, f ◦ µR = η ◦m′ implies that
η(y1) = η(y2), which leads us to a contradiction. Now, suppose e has a preimage e′′ in
G instead of R. If e′′ does not have a preimage in L, then we arrive at a contradiction
by a similar argument as before. On the other hand, if e′′ has a preimage in L, then e
must have a preimage in R (since H is a pushout), hence the previous argument applies.
Hence, such x1, x2 cannot exist, and η′ is well-defined.

L R′

G′ S

µR ◦ r

µG ◦m n

s

Figure C.3.: The outer square of Figure C.2 is a pushout

This gives us an η′ : S X such that η′ ◦ µ = η. This implies f ◦ µR = (η ◦ µ) ◦m′
and (g ◦ µG) = (η ◦ µ) ◦ r′. Now η and therefore η′ ◦ µ is the unique morphism with this
property. Since µ is fixed and surjective, this means that η′ is the unique morphism such
that f = n ◦ η′ and g = s ◦ η′. Thus, the diagram in Figure C.3 is a pushout.

As shown before, n and µG ◦m are both total, and µG ◦m is conflict-free with respect
to r.

Lemma 6.25. The set repsvQ(r,m) computed by Algorithm 6.24 satisfies the conditions
of Definition 6.17.

Proof. Let r : L R be a prepared rule, let m : L G be a match and let S be the
pushout of r,m. First we observe that the parameters of Algorithm 6.24 match the
requirements of Definition 6.17 and that repsvQ(r,m) ⊆ Q obviously holds due to line 10.
Moreover, termination is guaranteed mainly by the condition in lines 9 and 12. On the
one hand, there are only finitely many graphs G′′ and morphisms µ′′. On the other
hand, line 12 ensures that only those m′′ are kept that have less pairs of non-injectively
matched nodes than m′. This means that at some point any m′′ will be injective and no
more matches will be added in line 16. Note that for any pair 〈G′′, µ′′〉 the number of
possible m′′ is finite.

195

Appendix C. Proofs of Chapter 6

First condition. We now prove the first condition of Definition 6.17, i.e. that for every
G′ ∈ repsvQ(r,m) there are r1 : L R′, r2 : R′ R, m′ : L G′, µ : G′ G with
r1 ∈ origin(r) such that m = µ ◦m′ and r = r2 ◦ r1, and for the pushout H ′ of m′, r1
it holds that S � H ′. The existence and equality r = r2 ◦ r1 is obvious, since every
prepared rule is generated by composing an original rule with an order morphism. By
definition every G′ computed by the procedure is calculated in n steps by splitting the
match into a match and a minor morphism as shown in Figure C.4. Due to the condition
in line 11 mi = µi+1 ◦mi+1 holds for 0 ≤ i ≤ n− 1 where m0 = m. Thus, we can split
m into m′ = mn and µ = µ1 ◦ . . . ◦ µn.

L

G

G1

G2

Gn−1

Gn = G′

m
m1

m2
mn−1

mn = m′

µ1

µ2

µn−1

µn

Figure C.4.: Diagram illustrating the computa-
tion of m′ and µ by Algorithm 6.24

L R′ R

G H0 S

r1 r2

m

r′2

Figure C.5.: Diagram proving S v
H0

We now show that S is a minor of the pushout of m′ = mn and r1 by induction over
n. By an argument we already used in the proof of Lemma 6.13, S is a minor of the
pushout H0 of m, r1, as shown in Figure C.5. Due to pushout properties the morphism
r′2 : H0 S exists and is a minor morphism, since the right square is a pushout and all
matches are total.
Now let Hi be the (outer) pushout of r1,mi and let Hi+1 be the (upper) pushout of

r1,mi+1 withmi = µi+1◦mi+1, as shown in Figure C.6a. Due to commutativity a unique
morphism µ′i+1 : Hi+1 Hi exists and due to pushout properties (see Lemma 3.7) the
lower square is also a pushout. By proving that µ′i+1 is a minor morphisms, we will show
that S v Hi+1 holds (S v Hi holds by induction hypothesis). As shown in Figure C.6b
we split r′1 into r′p : Gi+1 G′i+1 and r′t : G′i+1 Hi+1 where r′p is injective, surjective
and defined for an x if an only if r′1(x) is defined. Note that this guarantees that r′t is
total. We then form the pushout G′i from which due to commutativity a morphisms to
Hi exists such that the right lower square is a pushout.
We now show that ν is a minor morphism. First assume there is an element x ∈ G′i

without preimage under ν. Due to pushout properties x must have a preimage in Gi.
Since µi+1 is surjective, x has a preimage under r′′p ◦ µi+1 and due to commutativity
also needs to have a preimage in G′i+1. Now assume there are two edges e1, e2 ∈ G′i+1
with ν(e1) = ν(e2). Then e1, e2 have to have preimages e′1, e′2 ∈ Gi+1, otherwise the

196

C.2. Proofs of Section 6.2

L R′

Gi+1 Hi+1

Gi Hi S

r1

mi+1 m′i+1
r′1

µi+1 µ′i+1

m′imi

(a) Commuting diagram existing due the defin-
tion of Algorithm 6.24

L R′

Gi+1 G′i+1 Hi+1

Gi G′i Hi S

r1

mi+1 m′i+1
r′p r′t

µi+1 ν µ′i+1
r′′p r′′t

(b) Spliting r′1 into a partial r′p and a total r′t
splits the lower pushout into two

Figure C.6.: Diagram proving S v Hi+1 if S v Hi

diagram would not be a pushout. Since the injectivity of r′p implies injectivity of r′′p
(see Lemma 3.31), this means that µi+1(e′1) = µi+1(e′2) would have to hold, which leads
to a contradiction. Finally let x1, x2 ∈ G′i+1 be nodes with ν(x1) = ν(x2). Again
this can only be the case if these nodes have preimages x′1, x′2 ∈ Gi+1 under r′p and
µi+1(x′1) = µi+1(x′2). This means that there is a path v0, e1, . . . , ek, vk in Gi+1 with
v0 = x′1 and vk = x′2. All r′p(ej) (for 1 ≤ j ≤ k) are defined, since any ej without image
under r′p must have a preimage in L due to the upper rectangle being a pushout. But
this would mean that there is an element in L for which µi+1 ◦mi+1 = mi is undefined!
Thus the path in Gi+1 used to contract x′1, x′2 also exists in G′i+1 and can be used to
contract x1, x2. Thus, ν is a minor morphism and, since r′t is total, µ′i+1 is a minor
morphism as well due to Lemma 6.20. Hence we obtain S v Hi+1 if S v Hi.

Second condition. We now prove the second condition of Definition 6.17, i.e. that every
graph satisfying the first condition is represented by an element of repsvQ(r,m). So let G′
be such a graph with an injective match m′ : L G′ and a minor morphism µ : G′ G.
We first compute a minimal graph G′′ with morphisms as shown in Figure C.7a such
that the diagram commutes. With minimal we mean that any further split of µ′ into
ν ◦ ν ′ = µ′ will cause ν ′ ◦m′′ to be non-injective. We now prove that G′′ is computed
by Algorithm 6.24 by splitting µ′ into minor morphisms that satisfy the conditions of
lines 9 and 12.
So first split µ′ into morphisms µi : Gi−1 Gi (for 1 ≤ i ≤ n) with G = G0, G′′ = Gn

and where every µi deletes a single node or contracts a single edge. No µi can simply
delete an edge, since this edge can not have a preimage in L (µ′ ◦m′′ would not be total)
and can thus already be deleted by µ′′, contradicting the minimality of G′′. By the same
argument every node deleted by an µi must be incident (in G′′) to an edge contracted
by some µj , since it would be isolated otherwise. Hence we can form minor morphism
νi : Ji−1 Ji (for 1 ≤ i ≤ k) with J0 = G, Jk = G′′ as shown in Figure C.7b where

197

Appendix C. Proofs of Chapter 6

L

G′

G′′

G

m′

µ

m′′µ′′

µ′

(a) We first form a minimal G′′ where this dia-
gram commutes

L

G′′

Jk−1

J1

G

m′′

µ′

νk
mk

ν1

(b) We then split µ′ into νi computed by the
algorithm

Figure C.7.: Shows the basic diagrams for proving the second condition of Definition 6.17

we compose each µi which deletes a node with the first µj introducing an edge incident
to the deleted node. It is obvious that every ν ′ satisfies the conditions of line 9, so we
only need to show the existence of nodes v3, v4 ∈ G′′ with preimages v1, v2 ∈ L and
νk(v3) = νk(v4). This is straight-forward, since νk ◦m′′ = mk would be injective if there
are no such nodes, a contradiction to G′′ being minimal. This argument also holds for
all other νi, since the order on edge contractions is arbitrary, i.e. if the property does
not hold for some νi, we can give a different decomposition of µ′ where it does not hold
for νk, doing the problematic edge contraction in the first step.
Thus for every G′ Algorithm 6.24 will successively compute, beginning with G, every

νi until finally obtaining and storing a G′′ with G′′ v G′.

C.3. Proofs of Section 6.6
This section contains all proofs regarding universally quantified rules. This includes the
proofs that instantiation steps can be swapped, boundρ exists, our (Gn)-pred-basis is
correct and the miscellaneous proofs about optimizations.

Lemma 6.52. Let ρ = 〈r, U〉 be a rule and let f : U → N0 be any function assigning
a quantity to each q-pair. Every instantiation of ρ which is generated by using f(u)
occurrences for each u respectively, yields the same morphisms (up to isomorphism).

Proof. We prove this property by showing that we can swap each two instantiation
steps without changing the instantiation containing both steps. Let ι = 〈π : L
L, γ : L R〉 be an instantiation of some rule ρ = 〈r : L R,U〉 and let u = 〈pu : L
Lu, qu : Lu Ru〉, v = 〈pv : L Lv, qv : Lv Rv〉 ∈ U be two q-pairs as shown in

198

C.3. Proofs of Section 6.6

Figure C.8. There the upper part of the diagram is the instantiation ιv = ι � v, while
the front part of the diagram is the instantiation ιu = ι � u.

L L R

Lu Lu

Ru Ru

π γ

pu p′u
π′u

qu
ηu

p′′u

π′′u

Lv Lv

Luv

pv
p′v

π′uv

π′v

π′vu

Rv Rv

Ruv

qv ηv

p′′v

ηuv

π′′uv

π′′v

π′′vu

Figure C.8.: Extending an instantiation with 〈pv, qv〉 and 〈pu, qu〉 leads to the same final
instantiation, regardless of order

Let Luv be the pushout of p′u, p′v and let Ruv be the pushout of p′′u, p′′v . By the properties
of pushouts a unique ηuv exists and we will show that ιu �v = 〈π′vu ◦π′v ◦pv, ηuv〉 = ιv �u.
By construction all small squares p′u◦π = π′u◦pu, p′v◦π = π′v◦pv and π′vu◦p′v = π′uv◦p′u

are pushouts. Therefore, the squares π′vu◦π′v◦pv = π′uv◦p′u◦π and π′vu◦p′v◦π = π′uv◦π′u◦pu
are pushouts as well. Thus, Luv is the pushout of pv, p′u◦π computed in the construction
of ιu � v as well as the pushout of pu, p′v ◦ π computed in the construction of ιv � u. The
same property holds for Ruv using the three large outer squares. Since ηuv is unique, both
sequences of the instantiation steps give rise to the same morphisms. This means that
every instantiation can be uniquely characterized only by the number on instantiation
steps for each u ∈ U .

To prove that boundρ exists, we first prove the two auxiliary Lemmas C.1 and C.2.
These lemmas prove that instantiations of greater length will produce larger pushout
complements. In the proof of Proposition 6.54 this is then used to show that pushout
complements of sufficiently large instantiations are already represented by smaller in-
stantiations.

Lemma C.1. Let ρ = 〈r, U〉 be a rule and let 〈π : L L, γ : L R〉 be an instantiation
of ρ. For every further instantiation 〈π, γ〉 �u using some u ∈ U , there are two subgraph
morphisms µ′u : Lu L and µ′′u : Ru R such that γ ◦ µ′u = µ′′u ◦ η.

199

Appendix C. Proofs of Chapter 6

Proof. By definition pu and qu ◦ pu are total and injective, thus, p′u and q′′u ◦ p′′u are total
and injective as well (see Lemma 6.5). Hence, the reverse morphisms µ′u and µ′′u are
partial, injective and surjective, i.e. subgraph morphisms. By using Lemma 3.7 it can
be shown that by forming the pushout R′ of p′u and γ, the pushout R′u of qu and π′

and then the pushout Ru of q′u and γ′, we obtain the same graph Ru as by forming the
pushout of qu ◦ pu and γ ◦π directly. Furthermore, the diagram in Figure C.9 commutes
with the exception of µ′u and µ′′u, for which we still have to show the commutativity with
η and γ.

L L R

Lu Lu

R′uRu

R
′

Ru

π γ

pu p′u

π′

qu
η

p′′u

π′′

γ′

q′u
γ′′

q′′u

µ′u

µ′′u

Figure C.9.: When extending γ to η, there are commuting subgraph morphisms µ′u, µ′′u

Let x ∈ Lu and assume γ(µ′u(x)) is defined. This means that there is exactly one
x′ ∈ L with p′u(x′) = x and γ(x′) is defined. Since q′′u ◦ p′′u is total and injective, there is
an x′′ ∈ Ru with q′′u(p′′u(γ(x′))) = x′′. Due to commutativity of the diagram we obtain
η(x) = x′′. Hence, we know that µ′′u(η(x)) is defined and γ(µ′u(x)) = µ′′u(η(x)).
Now assume µ′u(x) is defined, but γ(µ′u(x)) is undefined. Because of commutativ-

ity, γ′(x) is undefined as well and therefore also η(x) = q′′u(γ′(x)) is undefined. Thus,
γ(µ′u(x)) = µ′′u(η(x)) are both undefined.
Now assume µ′u(x) is undefined. If η(x) is undefined, γ(µ′u(x)) = µ′′u(η(x)) are ob-

viously both undefined, so we assume that η(x) is defined and show that η(x) has no
preimages under q′′u ◦ p′′u. For this we only have to consider elements in R′ which have
preimages in Lu, since an element without a preimage and mapped to η(x) would violate
the pushout property of the lower right square. We observe that γ′(x) has no preimage
in R, since the top right square would not be a pushout. In fact this holds for every
x′ ∈ Lu with η(x′) = η(x) if x′ has no preimage in L. By the same argument we also
know that γ′(x′) has exactly one preimage in Lu. This means that two x′ with and
without preimage in L are not merged by γ′. By showing that these x′ are also not
merged by q′u, we know that their image in the pushout Ru would not be equal and
prove that there are in fact no x′ with preimage in L.
If x′ has a preimage in L but not in Lu, then x′ is not merged with any other element

by q′u, since the left lower square is a pushout. If x′ has a preimage in L and Lu, it also
has (exactly) one preimage in L, because of the top left square being a pushout. Thus,

200

C.3. Proofs of Section 6.6

by Definition 6.49 qu may not merge the preimage of x′ with anything else, especially not
with the preimage of x. Since neither π′ nor qu merge the preimage of x′ with anything,
x is not merged with anything via q′u as well. Thus, η(x′) = η(x) cannot hold and η(x)
has no preimage in R.

We have shown that γ(µ′u(x)) is undefined if and only if µ′′u(η(x)) is undefined, thus
the commutativity γ ◦ µ′u = µ′′u ◦ η follows from µ′u being the reverse of p′u and µ′′u being
the reverse of q′′u ◦ p′′u.

Lemma C.2. Let ρ = 〈r, U〉 be a rule and let 〈πi : L Li, γi : Li Ri〉 for i ∈ {1, 2}
be two instantiations of ρ with 〈π2, γ2〉 = 〈π1, γ1〉 � u for some u ∈ U . Furthermore, let
µL : L2 L1, µR : R2 R1, µ′R : R1 R be subgraph morphisms with γ1◦µL = µR◦γ2
and let m : R G be a match. For every pushout complement H2 of µ′R ◦µR ◦γ2 and m
where m′2 : L2 H2 is total and injective, there is a pushout complement H1 of µ′R ◦ γ1
and m with H1 ⊆ H2.

Proof. We will show this by using the fact, that subgraph morphisms are preserved by
total pushouts and successively building the commuting diagram in Figure C.10.

L2

R2

H2

G2

γ2

m′2

m2γ′2

L1

R1

H1

G1

γ1

m′1

m1γ′1

µL

µR

µG

µH
R

G

m

µ′R

µ′G

γ′′2

Figure C.10.: Application of γ2 results in a G2 with G1 ⊆ G2 if γ1 ◦ µL = µR ◦ γ2

Let H2 be a pushout complement of µ′R◦µR◦γ2 andm, wherem′2 is total and injective.
We compute the pushout G2 of γ2 and m′2 and then the pushout G1 of µR and m2. Due
to Lemma 3.7, G1 is also the pushout of µR ◦ γ2 and m′2 and therefore there is a unique
µ′G : G1 G such that the diagram commutes. Since G is the pushout of µ′R ◦ µR ◦ γ2
and m′2, the rightmost square is in fact a pushout as well. Now form the pushout H1
of µL and m′2. Again the existence of γ′1 follows from the pushout properties. Since the
diagramm1◦γ1◦µL = γ′1◦µH ◦m′2 commutes with the pushoutm1◦µR◦γ2 = µG◦γ′2◦m′2,
it is also a pushout and hence, G1 is a pushout of γ1 and m′1. This means that H1 is in
fact a pushout complement of µ′R ◦ γ1 and m. Since subgraph morphisms are preserved
by total pushouts, µH is a subgraph morphism. Thus, H1 ⊆ H2.

201

Appendix C. Proofs of Chapter 6

Proposition 6.54. Let ι be an instantiation of length k of some rule ρ. If k is larger
than the number of nodes and edges of G, then every graph computed by the backward
application of ι is already represented by the backward application of an instantiation of
lower length.

Proof. Let ιk−1 = 〈π : L L, γ : L R〉 be a rule instantiation of length k−1 of 〈r, U〉
such that ιk = 〈π, γ〉 � u for some u ∈ U , let ν : Ru R be a subgraph morphism and
let m : R G be a co-match as shown in Figure C.11.

L L R

Lu Lu

R′uRu

R
′

Ru R G

π γ

pu p′u

π′

qu
η

p′′u

π′′

γ′

q′u
γ′′

q′′u

µ′u

µ′′u

ν

ν ′

m

Figure C.11.: If η exceeds the instantiation bound, then a ν ′ exists, making the backward
application of η superfluous

From Lemma C.1 we know that µ′u and µ′′u exist and the diagram commutes. We will
show the existence of a subgraph morphism ν ′ : R R satisfying ν = ν ′ ◦ µ′′u. Then
from Lemma C.2 it follows that every graph computed by a backward step of ν ◦ η, the
instantiation ιk, is already represented by a backward step of ν ′ ◦ γ, the instantiation
ιk−1.
First assume that γ′′(π′′(xu)) is undefined for every xu ∈ Ru which has no preimage

under qu ◦ pu. We can show that q′′u ◦ p′′u is a subgraph morphism by showing that it is
surjective. Assume there is an xu ∈ Ru without preimage under q′′u ◦ p′′u. Since the large
square is a pushout, there is an x′u ∈ Ru with γ′′(π′′(x′u)) = xu. By the first assumption
x′u must have a preimage x ∈ L under qu ◦ pu for γ′′(π′′(x′u)) to be defined. Due to
the commutativity, γ(π(x)) is defined and there is a preimage of xu in R, violating the
second assumption. Hence, q′′u◦p′′u is a subgraph morphism commuting with µ′′u (in fact R
and Ru are isomorphic). The morphism ν ′ = ν ◦q′′u ◦p′′u satisfies the necessary properties.
If at least one q-pair within ιk satisfies the previous restriction, by Lemma 6.52 we

can assume w.l.o.g. that it is the last instantiation step. So assume that for every
instantiation step there is at least one xu ∈ Ru without preimage under qu ◦ pu such
that γ′′(π′′(xu)) is defined. Since γ′′(π′′(xu)) has no preimage under q′′u ◦p′′u (otherwise it
would have a preimage in L), the graph Ru has at least k nodes and edges. Thus, since
R has less than k nodes and edges, for at least one instantiation step within ιk for every
x′u ∈ Ru without a preimage under qu ◦ pu, the image ν(γ′′(π′′(x′u))) is undefined. Again

202

C.3. Proofs of Section 6.6

by Lemma 6.52 we can assume w.l.o.g. that it is the last instantiation step of ιk.
In this case ν ′ = ν ◦ q′′u ◦ p′′u satisfies the necessary conditions. Obviously ν ′ is injective

and ν = ν ′ ◦ µ′′u holds, so it remains to be shown that it is surjective. Assume there
is an y ∈ R without a preimage under ν ′. Since ν is injective and surjective, there
is exactly one yu ∈ Ru with ν(yu) = y. Because of commutativity, xu cannot have a
preimage under q′′u ◦ p′′u. Since the outer square is a pushout, there has to be an yu ∈ Ru
with γ′′(π′′(yu)) = yu. By assumption this yu has a preimage under qu ◦ pu (otherwise
ν(γ′′(π′′(yu))) would be undefined), which in turn has an image in R. By commutativity
y must have a preimage under ν ′. Thus, ν ′ is surjective and a subgraph morphism.

Proposition 6.56. Let T be a UGTS containing standard rules as well as universally
quantified rules. The set uq-predsi

Gn
(T , S) computed by Algorithm 6.55 is an effective

Gn-pred-basis for the transition system T i
G(Λ) when using the subgraph ordering. Further-

more, uq-predsi
G(Λ)(T , S) is an effective pred-basis.

Proof. Let Q be any downward-closed class of graphs where membership is decidable.
We prove this proposition by showing that the Lemmas 6.13 and 6.14 hold for uq-predsi

Q
and use the proof of Proposition 6.19. In that proof we have shown that predsi

Q is a
correct Q-pred-basis. Since both G(Λ) and Gn are downward-closed, this proves both
statements of this proposition.
We first show that uq-predsi

Q(T , S) is a finite subset of PredQ(↑{S}). In fact, in the
proof of Proposition 6.19 we have already shown that every pushout complement of a
prepared rule is an element of PredQ(↑{S}), which also holds for prepared instantia-
tions. Furthermore, we drop every pushout complement where the instantiation is not
applicable and thus only use valid matches for the original rule ρ. Note that the appli-
cation condition is independent of the order morphisms composed with instantiations.
Since the number of instantiations is bounded by boundρ(S), only finitely many rules
are applied backwards and only finitely many pushout complements are added to G,
i.e. uq-predsi

Q(T , S) is finite.
We now prove that ↑uq-predsi

Q(T , S) ⊇ ↑PredQ(↑{S}). Let G0 be an element of
↑PredQ(↑{S}). Then there is a minimal representative G1 ∈ PredQ(↑{S}) with G1 ⊆ G0
via some morphism ν : G0 G1 and an instantiation 〈π : L L, γ : L R〉 of some
rule ρ rewriting G1 with a injective match m satisfying the application conditions of
Definition 6.53 to some elementG2 of ↑{S}. In Lemma 6.28 we have shown that subgraph
morphisms are pushout closed. Since m is injective and therefore conflict-free, the left
diagram in Figure C.12 can be extended to the right diagram, where the inner and outer
squares are pushouts.
Since m and µG are injective, µG ◦m is injective as well and due to the properties of

pushouts we know that n is also injective. Furthermore the pushout closure guarantees
that µG◦m is total. Sincem satisfied the application condition, every edge in G1 incident
to a universally quantified node has a preimage in L and therefore also an image in G3.

203

Appendix C. Proofs of Chapter 6

G0

L R

G1 G2

S

ν

γ

m m′

γ′

µ

G0

L R

G1 G2

S

R
′

G3

ν

γ

m m′

γ′

µ

µR

n

µG

s

Figure C.12.: Subgraph morphisms are pushout closed not just for ordinary rules, but
also for instantiations

The surjectivity of µG ensures that the application condition is also satisfied by µG ◦m.
Note that since G1 is an element of Q and Q is downward-closed, G3 is also in Q.
Since the outer square is a pushout, G3 is a pushout complement object. Thus, a

graph G4 with µ′G : G3 G4 will be obtained by uq-predsi
Q(T , S) at some point using

the (prepared) instantiation µR ◦γ. By the same argument as above µ′G ◦µG ◦m satisfies
the application condition and is an element of Q, thus G4 will not be dropped by the
procedure. Summarized, this means that uq-predsi

Q computes a graph G4 for every
graph G0 such that G4 ⊆ G3 ⊆ G1 ⊆ G0, i.e. every G0 is represented by an element of
uq-predsi

Q(T , S).

Lemma 6.57. Let ρ = 〈r : L R,U〉 and let 〈idL, r〉 �u = 〈π : L Lu, γ : Lu Ru〉.
If for every u ∈ U every edge e ∈ Ru without preimage in R is incident to a node v ∈ Ru
without preimage in R, then boundρ(G) = |VG|.

Proof. This can be shown by using the proof ideas of Proposition 6.54. If ν does not
delete all elements of Ru which where created in the instantiation step, Ru contains at
least one node more than R. If the created element not deleted by ν is an edge, by
conditions of this lemma, it is incident to a created node not deleted by ν. Thus, every
non-negligible instantiation step increases the number of nodes of the right-hand side by
at least one. No matches can exist if the number of instantiation steps is larger than the
number of nodes in G.

Lemma 6.58. Let ρ be a rule, 〈π : L L, γ : L R〉 an instantiation of ρ and
m : R G a co-match of the instantiation to some graph G. If there is a node x ∈ qn(ρ)
where m(γ(π(x)) is defined and incident to an edge e without preimage in R, then there
is no pushout complement H of γ, m satisfying the condition of Definition 6.53.

Proof. Assume there is a x ∈ qn(u) where x′ = m(γ(π(x))) is defined and there is an
edge e incident to x′ without preimage in R. Furthermore, assume H with m′ : L H

204

C.3. Proofs of Section 6.6

and γ′ : H G is a pushout complement of γ, m. Since the diagram is a pushout,
there is an e′ ∈ H with γ′(e′) = e, otherwise the mediating morphism does not exist or
is not unique. By commutativity of the diagram, e′ is incident to m′(π(x)) and there
cannot be an e′′ ∈ L with m′(e′′) = e′. Since x ∈ qn(u), this violates the condition of
Definition 6.53.

205

Bibliography

[AB+05] Parosh Aziz Abdulla, Nathalie Bertrand, Alexander Rabinovich, and
Philippe Schnoebelen. “Verification of probabilistic systems with faulty
communication”. In: Information and Computation 202.2 (2005),
pp. 141–165.

[AB+08] Parosh Aziz Abdulla, Ahmed Bouajjani, Jonathan Cederberg, Frédéric
Haziza, and Ahmed Rezine. “Monotonic Abstraction for Programs with
Dynamic Memory Heaps”. In: Proceedings of CAV ’08. Vol. 5123. LNCS.
2008, pp. 341–354.

[AC+04] Parosh Aziz Abdulla, Aurore Collomb-Annichini, Ahmed Bouajjani, and
Bengt Jonsson. “Using Forward Reachability Analysis for Verification of
Lossy Channel Systems”. In: Formal Methods in System Design 25 (1
July 2004), pp. 39–65.

[AČ+96] Parosh Aziz Abdulla, Kārlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay.
“General Decidability Theorems for Infinite-State Systems”. In: Proceed-
ings of LICS ’96. IEEE, 1996, pp. 313–321.

[ADR09] Parosh Aziz Abdulla, Giorgio Delzanno, and Ahmed Rezine. “Automatic
Verification of Directory-Based Consistency Protocols”. In: Proceedings
of RP ’09. Ed. by Olivier Bournez and Igor Potapov. Vol. 5797. LNCS.
Springer Berlin Heidelberg, 2009, pp. 36–50.

[AE+99] Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann,
Hans-Jörg Kreowski, Sabine Kuske, Detlef Plump, Andy Schürr, and
Gabriele Taentzer. “Graph transformation for specification and program-
ming”. In: Science of Computer Programming 34.1 (Apr. 1999), pp. 1–
54.

[Astra] Astra Website. url: http://www.rw.cdl.uni-saarland.de/~rtc/
astra/.

207

http://www.rw.cdl.uni-saarland.de/~rtc/astra/
http://www.rw.cdl.uni-saarland.de/~rtc/astra/

Bibliography

[Augur2] Augur2 Website. url: http://www.ti.inf.uni-due.de/research/
tools/augur2/.

[AWK02] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. “Scalable,
graph-based network vulnerability analysis”. In: Proceedings of CCS ’02.
New York, NY, USA: ACM, 2002, pp. 217–224.

[Bau06] Jörg Bauer. “Analysis of Communication Topologies by Partner Abstrac-
tion”. PhD thesis. Universität des Saarlandes, 2006.

[BC+10] Paolo Baldan, Andrea Corradini, Fabio Gadducci, and Ugo Montanari.
“Frm Ptr Nts t Grph Trnsfmtn Sstms”. In: Manipulation of Graphs,
Algebras and Pictures. Essays Dedicated to Hans-Jörg Kreowski on the
Occasion of His 60th Birthday. Ed. by Berthold Hoffmann. Hohnholt
Reprografischer Betrieb, 2010.

[BC87] Michel Bauderon and Bruno Courcelle. “Graph expressions and graph
rewritings”. In: Mathematical Systems Theory 20.1 (1987), pp. 83–127.

[BCK01] Paolo Baldan, Andrea Corradini, and Barbara König. “A Static Anal-
ysis Technique for Graph Transformation Systems”. In: Proceedings of
CONCUR ’01. Vol. 2154. LNCS. Springer-Verlag, 2001, pp. 381–395.

[BCM05] Paolo Baldan, Andrea Corradini, and Ugo Montanari. “Relating SPO
and DPO graph rewriting with Petri nets having read, inhibitor and reset
arcs”. In: Proceedings of PNGT ’05. Vol. 127.2. ENTCS. 2005, pp. 5–28.

[BD+12a] Nathalie Bertrand, Giorgio Delzanno, Barbara König, Arnaud Sangnier,
and Jan Stückrath. On the Decidability Status of Reachability and Cov-
erability in Graph Transformation Systems. Tech. rep. DISI-TR-11-04.
Dipartimento di Informatica e Scienze dell’Informazione, Università di
Genova, 2012.

[BD+12b] Nathalie Bertrand, Giorgio Delzanno, Barbara König, Arnaud Sangnier,
and Jan Stückrath. “On the Decidability Status of Reachability and Cov-
erability in Graph Transformation Systems”. In: Proceedings of RTA ’12.
Vol. 15. LIPIcs. Schloss Dagstuhl – Leibniz Center for Informatics, 2012,
pp. 101–116.

[BFH87] Paul Boehm, Harald-Reto Fonio, and Annegret Habel. “Amalgamation
of graph transformations: A synchronization mechanism”. In: Journal of
Computer and System Sciences 34.2-3 (1987), pp. 377–408.

[BG11] Laura Bozzelli and Pierre Ganty. “Complexity Analysis of the Backward
Coverability Algorithm for VASs”. In: Proceedings of RP ’11. Ed. by
Giorgio Delzanno and Igor Potapov. Vol. 6945. LNCS. Springer Berlin
Heidelberg, 2011, pp. 96–109.

208

http://www.ti.inf.uni-due.de/research/tools/augur2/
http://www.ti.inf.uni-due.de/research/tools/augur2/

[BK+13] Kshitij Bansal, Eric Koskinen, Thomas Wies, and Damien Zuf-
ferey. “Structural counter abstraction”. In: Proceedings of TACAS ’13.
Vol. 7795. LNCS. Springer-Verlag, 2013, pp. 62–77.

[BM99] Ahmed Bouajjani and Richard Mayr. “Model Checking Lossy Vector Ad-
dition Systems”. In: Proceedings of STACS ’99. Ed. by Christoph Meinel
and Sophie Tison. Vol. 1563. LNCS. Springer Berlin Heidelberg, 1999,
pp. 323–333.

[Boost] Boost Website. url: http://www.boost.org/.
[BR15a] Peter Backes and Jan Reineke. “Analysis of Infinite-State Graph Trans-

formation Systems by Cluster Abstraction”. In: Proceedings of VMCAI
’15. Ed. by Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen.
Vol. 8931. LNCS. Springer Berlin Heidelberg, 2015, pp. 135–152.

[BR15b] Peter Backes and Jan Reineke. “ASTRA: A Tool for Abstract Interpre-
tation of Graph Transformation Systems”. In: Proceedings of SPIN ’15.
Ed. by Bernd Fischer and Jaco Geldenhuys. Vol. 9232. LNCS. Springer
International Publishing, 2015, pp. 13–19.

[BS03] Nathalie Bertrand and Philippe Schnoebelen. “Model Checking Lossy
Channels Systems Is Probably Decidable”. In: Proceedings of FoSSaCS
’03. Ed. by Andrew D. Gordon. Vol. 2620. LNCS. Springer, Apr. 2003,
pp. 120–135.

[Clang] Clang Website. url: http://clang.llvm.org/.
[CM+97] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig,

Reiko Heckel, and Michael Löwe. “Algebraic Approaches to Graph Trans-
formation, Part I: Basic Concepts and Double Pushout Approach”. In:
Handbook of Graph Grammars and Computing by Graph Transformation,
Volume 1: Foundations. Ed. by Grzegorz Rozenberg. World Scientific,
1997. Chap. 3.

[CMake] CMake Website. url: http://www.cmake.org/.
[CMZ04] Jérémie Chalopin, Yves Métivier, and Wieslaw Zielonka. “Election, Nam-

ing and Cellular Edge Local Computations”. In: Proceedings of ICGT ’04.
Vol. 3256. LNCS. Springer, 2004, pp. 242–256.

[Cou90] Bruno Courcelle. “The Monadic Second-order Logic of Graphs. I. Rec-
ognizable Sets of Finite Graphs”. In: Information and Computation 85.1
(Mar. 1990), pp. 12–75.

[CS11] Maria Chudnovsky and Paul Seymour. “A well-quasi-order for tourna-
ments”. In: Journal of Combinatorial Theory, Series B 101 (1 Jan. 2011),
pp. 47–53.

209

http://www.boost.org/
http://clang.llvm.org/
http://www.cmake.org/

Bibliography

[CS14] Maria Chudnovsky and Paul Seymour. “Rao’s Degree Sequence Conjec-
ture”. In: Journal of Combinatorial Theory, Series B 105 (Mar. 2014),
pp. 44–92.

[Dam90] Peter Damaschke. “Induced subgraphs and well-quasi-ordering”. In:
Journal of Graph Theory 14.4 (July 1990), pp. 427–435.

[DFS98] Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. “Reset nets
between decidability and undecidability”. In: Proceedings of ICALP ’98.
Vol. 1443. LNCS. Springer, 1998, pp. 103–115.

[DH+06] Frank Drewes, Berthold Hoffmann, Dirk Janssens, Mark Minas, and Niels
Van Eetvelde. “Adaptive Star Grammars”. In: Proceedings of ICGT ’06.
Vol. 4178. LNCS. Springer, 2006, pp. 77–91.

[Dic13] Leonard Eugene Dickson. “Finiteness of the Odd Perfect and Primitive
Abundant Numbers with n Distinct Prime Factors”. In: American Jour-
nal of Mathematics 35.4 (1913), pp. 413–422.

[Din92] Guoli Ding. “Subgraphs and well-quasi-ordering”. In: Journal of Graph
Theory 16 (5 Nov. 1992), pp. 489–502.

[DKH97] Frank Drewes, Hans-Jörg Kreowski, and Annegret Habel. “Hyperedge
Replacement Graph Grammars”. In: Handbook of Graph Grammars and
Computing by Graph Transformation, Volume 1: Foundations. Ed. by
Grzegorz Rozenberg. World Scientific, 1997. Chap. 2.

[DS14a] Giorgio Delzanno and Jan Stückrath. Parameterized Verification of
Graph Transformation Systems with Whole Neighbourhood Operations.
arXiv:1407.4394. 2014.

[DS14b] Giorgio Delzanno and Jan Stückrath. “Parameterized Verification of
Graph Transformation Systems with Whole Neighbourhood Operations”.
In: Proceedings of RP ’14. Ed. by Joël Ouaknine, Igor Potapov, and
James Worrell. Vol. 8762. LNCS. Springer, 2014, pp. 72–84.

[DSZ10] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. “Parame-
terized Verification of Ad Hoc Networks”. In: Proceedings of CONCUR
’10. Vol. 6269. LNCS. Springer, 2010, pp. 313–327.

[DSZ11] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. “On the
power of cliques in the parameterized verification of Ad Hoc networks”.
In: Proceedings of FoSSaCS ’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 441–455.

[EE+06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Monographs in Theo-
retical Computer Science. An EATCS Series. Springer-Verlag New York,
Inc., 2006.

210

[EE+99] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, eds. Handbook of Graph Grammars and Computing by Graph
Transformation: Volume 2: Applications, Languages, and Tools. World
Scientific Publishing, 1999.

[EH+97] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila Ribeiro,
Annika Wagner, and Andrea Corradini. “Algebraic Approaches to Graph
Transformation, Part II: Single Pushout Approach and Comparison with
Double Pushout Approach”. In: Handbook of Graph Grammars and Com-
puting by Graph Transformation, Volume 1: Foundations. Ed. by Grze-
gorz Rozenberg. World Scientific, 1997. Chap. 4.

[EK+99] Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari, and Grzegorz
Rozenberg, eds. Handbook of Graph Grammars and Computing by Graph
Transformation: Volume 3: Concurrency, Parallelism, and Distribution.
World Scientific Publishing, 1999.

[EPS73] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. “Graph
grammars: An algebraic approach”. In: Proceedings of Switching and Au-
tomata Theory ’73. 1973, pp. 167–180.

[ER97] Joost Engelfriet and Grzegorz Rozenberg. “Node Replacement Graph
Grammars”. In: Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. Ed. by Grzegorz Rozenberg.
River Edge, NJ, USA: World Scientific Publishing Co., Inc., 1997, pp. 1–
94.

[FG09a] Alain Finkel and Jean Goubault-Larrecq. “Forward Analysis for WSTS,
Part I: Completions”. In: Proceedings of STACS ’09. 2009, pp. 433–444.

[FG09b] Alain Finkel and Jean Goubault-Larrecq. “Forward Analysis for WSTS,
Part II: Complete WSTS”. In: Proceedings of ICALP ’09. 2009, pp. 188–
199.

[FHR09] Michael R. Fellows, Danny Hermelin, and Frances A. Rosamond. “Well-
Quasi-Orders in Subclasses of Bounded Treewidth Graphs”. In: Proceed-
ings of IWPEC ’09. Vol. 5917. LNCS. Springer, 2009, pp. 149–160.

[FHR12] Michael R. Fellows, Danny Hermelin, and Frances A. Rosamond. “Well-
Quasi-Orders in Subclasses of Bounded Treewidth Graphs and Their Al-
gorithmic Applications”. In: Algorithmica 64.1 (2012), pp. 3–18.

[FK+95] Micheal Fellows, Jan Kratochvíl, Matthias Middendorf, and Frank Pfeif-
fer. “The complexity of induced minors and related problems”. In: Algo-
rithmica 13.3 (1995), pp. 266–282.

211

Bibliography

[FS01] Alain Finkel and Philippe Schnoebelen. “Well-Structured Transition Sys-
tems Everywhere!” In: Theoretical Computer Science 256.1-2 (Apr. 2001),
pp. 63–92.

[GBT] Graph Backwards Tool (GBT) Website. url: http://www.it.uu.se/
research/group/mobility/adhoc/gbt.

[GCC] GCC Website. url: https://gcc.gnu.org/.
[GH+10] Robert Ganian, Petr Hlinený, Joachim Kneis, Daniel Meister, Jan Ob-

drzálek, Peter Rossmanith, and Somnath Sikdar. “Are There Any Good
Digraph Width Measures?” In: Proceedings of IPEC ’10. 2010, pp. 135–
146.

[GM+12] Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Ed-
uardo Zambon, and Maria Zimakova. “Modelling and analysis using
GROOVE”. In: International Journal on Software Tools for Technology
Transfer 14.1 (Feb. 2012), pp. 15–40.

[Göt88] Herbert Göttler. Graphgrammatiken in der Softwaretechnik: Theorie und
Anwendungen. Vol. 178. Informatik-Fachberichte. Springer, 1988.

[Graphviz] Graphviz Website. url: http://www.graphviz.org/.
[Groove] Groove Website. url: http://groove.cs.utwente.nl/.
[GRV06] Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. “Ex-

pand, Enlarge and Check: New algorithms for the coverability problem of
WSTS”. In: Journal of Computer and System Sciences 72.1 (Feb. 2006),
pp. 180–203.

[GXL] Richard C. Holt, Andy Schürr, Susan Elliott Sim, and Andreas Winter.
GXL Website. url: http://www.gupro.de/GXL/.

[Hab89] Annegret Habel. “Hyperedge Replacement: Grammars and Languages”.
PhD thesis. Universität Bremen, 1989.

[Hab92] Annegret Habel. Hyperedge Replacement: Grammars and Languages.
Vol. 643. LNCS. Springer-Verlag, 1992.

[Hig52] Graham Higman. “Ordering by Divisibility in Abstract Algebras”. In:
Proceedings of the London Mathematical Society s3-2.1 (Jan. 1952),
pp. 326–336.

[HJ+10] Marvin Heumüller, Salil Joshi, Barbara König, and Jan Stückrath. “Con-
struction of Pushout Complements in the Category of Hypergraphs”. In:
Proceedings of GCM ’10. 2010.

212

http://www.it.uu.se/research/group/mobility/adhoc/gbt
http://www.it.uu.se/research/group/mobility/adhoc/gbt
https://gcc.gnu.org/
http://www.graphviz.org/
http://groove.cs.utwente.nl/
http://www.gupro.de/GXL/

[HJ+11] Marvin Heumüller, Salil Joshi, Barbara König, and Jan Stückrath. “Con-
struction of Pushout Complements in the Category of Hypergraphs”.
In: Selected Revised Papers from the Workshop on Graph Computation
Models (GCM 2010). Vol. 39. Electronic Communications of the EASST.
2011.

[HJ+15a] Jonathan Heinen, Christina Jansen, Joost-Pieter Katoen, and Thomas
Noll. “Juggrnaut: using graph grammars for abstracting unbounded heap
structures”. In: Formal Methods in System Design 47.2 (2015), pp. 159–
203.

[HJ+15b] Jonathan Heinen, Christina Jansen, Joost-Pieter Katoen, and Thomas
Noll. “Verifying pointer programs using graph grammars”. In: Science of
Computer Programming 97, Part 1 (2015). Special Issue on New Ideas
and Emerging Results in Understanding Software, pp. 157–162.

[HP01] Annegret Habel and Detlef Plump. “Computational Completeness of Pro-
gramming Languages Based on Graph Transformation”. In: Proceedings
of FoSSaCS ’11. Vol. 2030. LNCS. Springer, 2001, pp. 230–245.

[HP02] Annegret Habel and Detlef Plump. “Relabelling in Graph Transforma-
tion”. In: Proceedings of ICGT ’02. Vol. 2505. LNCS. Springer, 2002,
pp. 135–147.

[HP09] Annegret Habel and Karl-Heinz Pennemann. “Correctness of High-level
Transformation Systems Relative to Nested Conditions”. In: Mathemat-
ical Structures in Computer Science 19.2 (Apr. 2009), pp. 245–296.

[JK08] Salil Joshi and Barbara König. “Applying the Graph Minor Theorem to
the Verification of Graph Transformation Systems”. In: Proceedings of
CAV ’08. Vol. 5123. LNCS. Springer, 2008, pp. 214–226.

[JK12] Salil Joshi and Barbara König. Applying the Graph Minor Theorem to
the Verification of Graph Transformation Systems. Tech. rep. 2012-01.
Abteilung für Informatik und Angewandte Kognitionswissenschaft, Uni-
versität Duisburg-Essen, 2012.

[JR+01] Thor Johnson, Neil Robertson, Paul Seymour, and Robin Thomas. “Di-
rected Tree-Width”. In: Journal of Combinatorial Theory, Series B 82.1
(2001), pp. 138–154.

[KK06] Barbara König and Vitali Kozioura. “Counterexample-guided Abstrac-
tion Refinement for the Analysis of Graph Transformation Systems”. In:
Proceedings of TACAS ’06. Vol. 3920. LNCS. Springer, 2006, pp. 197–
211.

213

Bibliography

[KK08] Barbara König and Vitali Kozioura. “Augur 2—A New Version of a Tool
for the Analysis of Graph Transformation Systems”. In: Proceedings of
GT-VMT ’06. Vol. 211. ENTCS. Elsevier, 2008, pp. 201–210.

[KKR12] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. “The dis-
joint paths problem in quadratic time”. In: Journal of Combinatorial
Theory, Series B 102.2 (2012), pp. 424–435.

[KM69] Richard M. Karp and Raymond E. Miller. “Parallel Program Schemata”.
In: Journal of Computer and System Sciences 3.2 (May 1969), pp. 147–
195.

[KMP00] Manuel Koch, Luigi V. Mancini, and Francesco Parisi-Presicce. “A For-
mal Model for Role-Based Access Control Using Graph Transforma-
tion”. In: Proceedings of ESORICS ’00. Vol. 1895. LNCS. Springer, 2000,
pp. 122–139.

[KMP02] Manuel Koch, Luigi V. Mancini, and Francesco Parisi-Presicce. “Decid-
ability of Safety in Graph-Based Models for Access Control”. In: Pro-
ceedings of ESORICS ’02. London, UK: Springer-Verlag, 2002, pp. 229–
243.

[KMP05] Manuel Koch, L. V. Mancini, and Francesco Parisi-Presicce. “Graph-
based specification of access control policies”. In: Journal of Computer
and System Sciences 71.1 (July 2005), pp. 1–33.

[Koz07] Vitali Kozioura. “Verification of Random Graph Transformation Sys-
tems”. In: Electronic Notes in Theoretical Computer Science 175.4
(2007), pp. 63–72.

[Koz10] Vitaly Kozioura. “Abstraction and abstraction refinement in the verifica-
tion of graph transformation systems”. PhD thesis. Universität Duisburg-
Essen, Fakultät für Ingenieurwissenschaften, 2010.

[KS12a] Barbara König and Jan Stückrath. Well-Structured Graph Transforma-
tion Systems with Negative Application Conditions. Tech. rep. 2012-03.
Abteilung für Informatik und Angewandte Kognitionswissenschaft, Uni-
versität Duisburg-Essen, 2012.

[KS12b] Barbara König and Jan Stückrath. “Well-Structured Graph Transforma-
tion Systems with Negative Application Conditions”. In: Proceedings of
ICGT ’12. Vol. 7562. LNCS. Springer, 2012, pp. 89–95.

[KS14a] Barbara König and Jan Stückrath. A General Framework for Well-
Structured Graph Transformation Systems. arXiv:1406.4782. 2014.

214

[KS14b] Barbara König and Jan Stückrath. “A General Framework for Well-
Structured Graph Transformation Systems”. In: Proceedings of CON-
CUR ’14. Ed. by Paolo Baldan and Daniele Gorla. Vol. 8704. LNCS.
Springer, 2014, pp. 467–481.

[KS16] Barbara König and Jan Stückrath. “Well-Structured Graph Transforma-
tion Systems”. In: Information and Computation (2016). Accepted for
publication.

[Latex] LATEX. url: http://www.latex-project.org/.
[Ler11] Jérôme Leroux. “Vector addition system reachability problem: a short

self-contained proof”. In: Proceedings of POPL ’11. 2011, pp. 307–316.
[LR80] Andrea S. Lapaugh and Ronald L. Rivest. “The subgraph homeomor-

phism problem”. In: Journal of Computer and System Sciences 20.2
(1980), pp. 133–149.

[LS04] Stephen Lack and Pawel Sobocinski. “Adhesive Categories”. In: Proceed-
ings of FoSSaCS ’04. 2004, pp. 273–288.

[Mac78] Saunders Mac Lane. Categories for the Working Mathematician. 2nd.
Graduate Texts in Mathematics, Vol. 5. Springer, 1978.

[May03] Richard Mayr. “Undecidable Problems in Unreliable Computations”. In:
Theoretical Computer Science 297.1-3 (Mar. 2003), pp. 337–354.

[May81] Ernst W. Mayr. “An algorithm for the general Petri net reachability
problem”. In: Proceedings of STOC ’81. STOC ’81. New York, NY, USA:
ACM, 1981, pp. 238–246.

[May84] Ernst W. Mayr. “An Algorithm for the General Petri Net Reachability
Problem”. In: SIAM Journal on Computing 13.3 (1984), pp. 441–460.

[May98] Richard Mayr. Lossy Counter Machines. Tech. rep. TUM-19827. Tech-
nische Universität München, Oct. 1998.

[Mey09] Roland Meyer. “Structural Stationarity in the π-Calculus”. PhD thesis.
Carl-von-Ossietzky-Universität Oldenburg, 2009.

[Mil82] Robin Milner. A Calculus of Communicating Systems. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 1982.

[Min67] Marvin L. Minsky. Computation: Finite and Infinite Machines. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1967.

[Mist2] Pierre Ganty. Mist2 GitHub Repository. url: https://github.com/
pierreganty/mist/wiki.

[Mur89] Tadao Murata. “Petri Nets: Properties, Analysis and Applications”. In:
Proceedings of the IEEE 77.4 (Apr. 1989), pp. 541–580.

215

http://www.latex-project.org/
https://github.com/pierreganty/mist/wiki
https://github.com/pierreganty/mist/wiki

Bibliography

[Nag79] Manfred Nagl. Graph-Grammatiken: Theorie, Anwendungen, Implemen-
tierung. Vieweg, 1979.

[NM12] Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity. Springer
Berlin Heidelberg, 2012.

[OBM06] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. “A scalable ap-
proach to attack graph generation”. In: Proceedings of CCS ’06. New
York, NY, USA: ACM, 2006, pp. 336–345.

[PE02] Julia Padberg and Bettina E. Enders. “Rule Invariants in Graph Trans-
formation Systems for Analyzing Safety-Critical Systems”. In: Proceed-
ings of ICGT ’02. Ed. by Andrea Corradini, Hartmut Ehrig, Hans-Jörg
Kreowski, and Grzegorz Rozenberg. Vol. 2505. LNCS. Springer Berlin
Heidelberg, 2002, pp. 334–350.

[PEM87] Francesco Parisi-Presicce, Hartmut Ehrig, and Ugo Montanari. “Graph
rewriting with unification and composition”. In: Proceedings of the 3rd
International Workshop on Graph-Grammars and Their Application to
Computer Science. Springer, 1987, pp. 496–514.

[Pen09] Karl-Heinz Pennemann. “Development of Correct Graph Transformation
Systems”. PhD thesis. Department für Informatik, Universität Olden-
burg, 2009.

[Pet62] Carl Adam Petri. “Kommunikation mit Automaten”. PhD thesis. Uni-
versität Bonn, 1962.

[Petruchio] Petruchio Website. url: http://csd.informatik.uni-oldenburg.
de/~critter/petruchio/.

[Picasso] Picasso Website. url: http://pub.ist.ac.at/~zufferey/picasso/.
[Pie91] Benjamin C. Pierce. Basic category theory for computer scientists. Foun-

dations of computing series. MIT Press, 1991.
[Plu12] Detlef Plump. “The Design of GP 2”. In: Proceedings of WRS ’11. Ed. by

Santiago Escobar. Vol. 82. Electronic Proceedings in Theoretical Com-
puter Science. Open Publishing Association, 2012, pp. 1–16.

[PP14] Christopher M. Poskitt and Detlef Plump. “Verifying Monadic Second-
Order Properties of Graph Programs”. In: Proceedings of ICGT ’14. Ed.
by Holger Giese and Barbara König. Vol. 8571. LNCS. Springer Interna-
tional Publishing, 2014, pp. 33–48.

[PS98] Cynthia Phillips and Laura Painton Swiler. “A graph-based system for
network-vulnerability analysis”. In: Proceedings of NSPW ’98. New York,
NY, USA: ACM, 1998, pp. 71–79.

216

http://csd.informatik.uni-oldenburg.de/~critter/petruchio/
http://csd.informatik.uni-oldenburg.de/~critter/petruchio/
http://pub.ist.ac.at/~zufferey/picasso/

[Rac78] Charles Rackoff. “The covering and boundedness problems for vector
addition systems”. In: Theoretical Computer Science 6.2 (1978), pp. 223–
231.

[Ren03] Arend Rensink. “The GROOVE Simulator: A Tool for State Space Gen-
eration”. In: Proceedings of AGTIVE ’03. Vol. 3062. LNCS. Springer,
2003, pp. 479–485.

[Ros75] Barry K. Rosen. “Deriving Graphs from Graphs by Applying a Produc-
tion”. In: Acta Informatica 4 (1975), pp. 337–357.

[Roz97] Grzegorz Rozenberg, ed. Handbook of Graph Grammars and Comput-
ing by Graph Transformation: Volume 1: Foundations. World Scientific
Publishing, 1997.

[RS04] Neil Robertson and Paul Seymour. “Graph Minors XX. Wagner’s conjec-
ture”. In: Journal of Combinatorial Theory, Series B 92 (2 Nov. 2004),
pp. 325–357.

[RS10] Neil Robertson and Paul Seymour. “Graph Minors XXIII. Nash-
Williams’ immersion conjecture”. In: Journal of Combinatorial Theory,
Series B 100 (2 Mar. 2010), pp. 181–205.

[RS85] Neil Robertson and Paul Seymour. “Graph Minors – A Survey”. In: Sur-
veys in Combinatorics. Vol. 103. London Mathematics Society Lecture
Notes Series. Cambridge University Press, 1985, pp. 153–171.

[RS95] Neil Robertson and Paul Seymour. “Graph Minors. XIII. The Disjoint
Paths Problem”. In: Journal of Combinatorial Theory, Series B 63.1
(1995), pp. 65–110.

[Sch04] Philippe Schnoebelen. “The Verification of Probabilistic Lossy Channel
Systems”. In: Validation of Stochastic Systems. A Guide to Current Re-
search. Ed. by Christel Baier, Boudewijn R. Haverkort, Holger Hermanns,
Joost-Pieter Katoen, Markus Siegle, and Frits Vaandrager. Vol. 2925.
LNCS. Springer, 2004, pp. 445–465.

[Sch10] Philippe Schnoebelen. “Lossy Counter Machines Decidability Cheat
Sheet”. In: Proceedings of RP ’10. Ed. by Antonín Kučera and Igor
Potapov. Vol. 6227. LNCS. Springer, Aug. 2010, pp. 51–75.

[SM12] Tim Strazny and Roland Meyer. “An Algorithmic Framework for Cover-
ability in Well-Structured Systems”. In: Proceedings of ACSD ’12. June
2012, pp. 173–182.

[SS12] Sylvain Schmitz and Philippe Schnoebelen. “Algorithmic Aspects of
WQO Theory”. lecture notes. Aug. 2012.

217

Bibliography

[SS13] Sylvain Schmitz and Philippe Schnoebelen. “The Power of Well-
Structured Systems”. In: Proceedings of CONCUR ’13. Ed. by Pedro
R. D’Argenio and Hernán) Melgratti. Vol. 8052. LNCS. Springer, Aug.
2013, pp. 5–24.

[Ste07] Sandra Steinert. “The Graph Programming Language GP”. PhD thesis.
The University of York, 2007.

[Stü15] Jan Stückrath. “Uncover: Using Coverability Analysis for Verifying
Graph Transformation Systems”. In: Proceedings of ICGT ’15. Ed. by
Francesco Parisi-Presicce and Bernhard Westfechtel. Vol. 9151. LNCS.
Springer, 2015, pp. 266–274.

[SW01] Davide Sangiorgi and David Walker. The π-Calculus: A Theory of Mobile
Processes. New York, NY, USA: Cambridge University Press, 2001.

[SW14a] Jan Stückrath and Benjamin Weyers. “Lattice-extended Coloured Petri
Net Rewriting for Adaptable User Interface Models”. In: Proceedings of
GT-VMT ’14. 2014.

[SW14b] Jan Stückrath and Benjamin Weyers. Lattice-extended Coloured Petri
Net Rewriting for Adaptable User Interface Models. Tech. rep. 2014-01.
Abteilung für Informatik und Angewandte Kognitionswissenschaft, Uni-
versität Duisburg-Essen, 2014.

[SWJ08] Mayank Saksena, Oskar Wibling, and Bengt Jonsson. “Graph grammar
modeling and verification of ad hoc routing protocols”. In: Proceedings of
TACAS ’08. LNCS. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 18–32.

[SWW11] Dominik Steenken, Heike Wehrheim, and Daniel Wonisch. “Sound and
complete abstract graph transformation”. In: Proceedings of SBMF ’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 92–107.

[Symgraph] Symgraph Website. url: http : / / www . disi . unige . it / person /
DelzannoG/Symgraph/.

[Tur37] Alan M. Turing. “On Computable Numbers, with an Application to the
Entscheidungsproblem”. In: Proceedings of the London Mathematical So-
ciety s2-42.1 (1937), pp. 230–265.

[Uncover] Jan Stückrath. Uncover Website. url: http://www.ti.inf.uni-
due.de/research/tools/uncover/.

[WZH10] Thomas Wies, Damien Zufferey, and Thomas A. Henzinger. “Forward
Analysis of Depth-Bounded Processes”. In: Proceedings of FoSSaCS ’10.
2010, pp. 94–108.

[XercesC++] XercesC++ Website. url: http://xerces.apache.org/xerces-c/.

218

http://www.disi.unige.it/person/DelzannoG/Symgraph/
http://www.disi.unige.it/person/DelzannoG/Symgraph/
http://www.ti.inf.uni-due.de/research/tools/uncover/
http://www.ti.inf.uni-due.de/research/tools/uncover/
http://xerces.apache.org/xerces-c/

[ZWH12] Damien Zufferey, Thomas Wies, and Thomas A. Henzinger. “Ideal Ab-
stractions for Well-Structured Transition Systems”. In: Proceedings of
VMCAI ’12. Ed. by Viktor Kuncak and Andrey Rybalchenko. Vol. 7148.
LNCS. Springer, 2012, pp. 445–460.

219

List of Symbols

Basic Notation
N0, N Natural numbers with (N0) and without (N) zero, page 9

⊆, ⊂ Subset (⊆) and strict subset (⊂) relation, page 9

A× . . .×A or An Cartesian product of length n over the set A, page 9

〈a1, . . . , an〉 Element of a Cartesian product, page 9

A∗ Set of all sequences over the set A, page 10

s[i] The i-th element of the sequence s, page 10

|s| Length of the sequence s, page 10

[a]≡ Equivalence class of a wrt. the equivalence ≡, page 9

A/≡ Quotient set, i.e. set of all equivalence classes of A wrt. the equiv-
alence ≡, page 9

R Equivalence closure of a binary relation R, i.e. the smallest equiv-
alence containing R, page 10

General Transition Systems
⇒ One step transition relation, page 12

⇒Q One step transition relation within Q, page 17

⇒∗ Multi step transition relation, page 12

Succ(I) Set of direct successors of I, page 12

SuccQ(I) Set of direct successors of I within Q, page 18

Succ∗(I) Set of indirect successors of I, page 12

221

List of Symbols

Succ∗Q(I) Set of indirect successors of I within Q, page 18

Pred(I) Set of direct predecessors of I, page 12

PredQ(I) Set of direct predecessors of I within Q, page 18

Pred∗(I) Set of indirect predecessors of I, page 12

s1 s2 Backward step from s1 to s2, page 16

Graphs
〈VG, EG, cG, lG〉 Notation of a graph G, page 27

VG Set of nodes of G, page 27

EG Set of edges of G, page 27

cG : EG → V ∗G Connection function of G, page 27

lG : EG → Λ Labelling function of G, page 27

ar : Λ→ N0 Function assigning an arity to each label, page 27

Λ-HGt Category of Λ-hypergraphs and total morphisms, page 29

Λ-HGp Category of Λ-hypergraphs and partial morphisms, page 29

〈ΛV ,ΛE〉-HGtr Category of 〈ΛV ,ΛE〉-hypergraphs and relabelling morphisms,
page 63

Graph Morphisms
Partial morphism, page 28

Total morphism, page 28

Total and injective morphism, page 28

Generic order morphism, page 72

Minor morphism, page 73

Subgraph morphism, page 82

Induced subgraph morphism, page 88

Graph Classes and Transition Systems
G(Λ) Class of all graphs over the alphabet Λ, page 27

Gn Class of all graphs where the longest undirected path has length
n, page 83

222

Dn Class of directed graphs where the longest undirected path has
length n, page 89

Dn,k Subclass of Dn where every two nodes are connected by at most
k parallel edges with the same direction and label, page 89

TG Transition system on G induced by the GTS T and general
matches, page 31

T c
G Transition system on G induced by the GTS T and conflict-free

matches, page 31
T i
G Transition system on G induced by the GTS T and injective

matches, page 31
Quasi-Orders and Well-Quasi-Orders
� Generic quasi-order, page 10

v The minor ordering, page 72

⊆ The subgraph ordering, page 82

� The induced subgraph ordering, page 88

↑B Upward closure of a set B, page 11

↓B Downward closure of a set B, page 11

Procedures, Functions and Sets of the Backward Search
minimize�(G) Procedure minimizing (wrt. �) the set of graphs G, page 102

prepare�(T) Procedure preparing (wrt. �) the GTS T , page 102

minpoc�Q(r,m) Procedure computing the set of minimal pushout complements
in Q (wrt. �) for the rule r and match m, page 102 (definition),
page 111 (for v), page 115 (for ⊆), page 121 (for �)

origin(r) Function returning the set of original rules from which a prepared
rule r could have been generated from, page 99

reps�Q(r,m) Procedure computing the set of represented injective predecessors
in Q (wrt. �) for a prepared rule r and match m, page 107
(definition), page 112 (for v), page 117 (for ⊆ and �)

predsc
Q(T , S) The conflict-free Q-pred-basis for a prepared GTS T and a graph

S ∈ Q, page 103
predsi

Q(T , S) The injective Q-pred-basis for a prepared GTS T and a graph
S ∈ Q, page 108

223

List of Symbols

uq-predsi
Q(T , S) The injective Q-pred-basis for the subgraph ordering, a prepared

UGTS T and a graph S ∈ Q, page 132
qn(u) or qn(ρ) Set of quantified nodes of a q-pair u or universally quantified rule

ρ, page 128
boundρ(G) Function bounding the number of instantiations of ρ required to

be applied backwards to G, page 132

224

Index

adjacent nodes or edges, 27
antisymmetric up to equivalence, 72
arity of an edge, 27
arrow (of a category C), 24

backward search for GTS, 101
conflict-free Q-pred-basis, 103
inj. Q-pred-basis, 108
inj. Q-pred-basis for UGTS, 132
minimization procedure, 102
rule preparation procedure, 102

backward search for WSTS, 15
basis

see upward-closed set
see downward-closed set

butterfly minor, 95

category, 24
Set, 24
diagram, 25
Λ-HGp, 29
Λ-HGt, 29
〈ΛV ,ΛE〉-HGtr, 63

circumference, 95
co-match, 31
codomain, 24
commuting diagram, 25
composition, 24, 28, 29
conflict-free Q-pred-basis, 103

conflict-free match, 30
context-free GTS, 79
coverability, see coverability problem
coverability problem, 13, 18

backward search for GTS, 101
backward search for WSTS, 15
context-free GTS, 116
existential, 64
forward search for WSTS, 16
GTS with constant nodes, 46, 48
ind. subg. and cf. matches, 122
ind. subg. and inj. matches, 122
minors and cf. matches, 111
minors and inj. matches, 114
node- and edge-deleting GTS, 62
non-deleting GTS, 51
Q-restricted WSTS, 20
restricted coverability problem, 18
subgraphs and cf. matches, 115
subgraphs and inj. matches, 119
WSTS, 15

dangling condition, 32
diagram, 25
directed graph, 27, 89
directed topological minor, 95
domain, 24
doubly-labelled hypergraph, 62

225

Index

downward closure, 11
downward-closed set, 11

edge multiplicity, 89
effective Q-pred-basis, 18, 101

predsc
Q for GTS, 103

predsi
Q for GTS, 108

uq-predsi
Q for UGTS, 132

effective pred-basis, 14, 101
equivalence closure, 10
existential coverability problem, 64

edge relabelling GTS, 65
node and edge relabelling GTS, 67
node relabelling GTS, 66

feedback-vertex-set, 95
finite basis property, 11
forward search for WSTS, 16

general coverability problem, 18
see coverability problem

gluing condition, 32
graph, see hypergraph
graph morphism, 28

label-preserving, 63
relabelling, 63

graph transformation system, 31
constant number of nodes, 48
context-freeness, 79
edge-contracting, 57
edge-deleting, 57
negative application conditions, 93
no deletion and creation of nodes,

46
node-deleting, 57
non-deleting, 50

graph transition system, 31
GTS, see graph transformation system

hyperedge replacement systems, 79
hypergraph, 27

doubly-labelled, 62

visualisation, 28

identification condition, 32
incident, 27
induced minor, 95
induced subgraph, 88
induced subgraph morphism, 88
induced topological minor, 95
injective Q-pred-basis, 108

for UGTS, 132
isomorphism, 24

Λ-HGp, 29
Λ-HGt, 29
〈ΛV ,ΛE〉-HGtr, 63
label-preserving graph morphism, 63

marking (of a Petri net), 171
match, 30, 63
minimal pushout complements, 102

induced subgraph ordering, 121
minor ordering, 111
subgraph ordering, 115

minimization procedure, 102
minor, 72
minor morphism, 73
minor rules, 56
Minsky machine, 173
morphism, 24
multipath, 54

negative application condition, 93

object (of a category C), 24
order morphism, 72

induced subgraph morphism, 88
minor morphism, 73
subgraph morphism, 82

path, see undirected path
Petri net, 171
predecessor set, 12

226

prepared GTS, 98
prepared rule, 99
preservation by pushouts, 99

induced subgraph ordering, 119
minor ordering, 111
subgraph ordering, 114

pushout, 25
construction in Λ-HGp, 35
construction in Λ-HGt, 34
existence in Λ-HGp and Λ-HGt,

30
special properties, 25, 26

pushout closure, 103
induced subgraph ordering, 120
minor ordering, 111
subgraph ordering, 115

pushout complement, 27
construction in Λ-HGp, 40, 42
construction in Λ-HGt, 36
existence in Λ-HGp and Λ-HGt,

32

q-pair, see universal quantification pair
Q-predecessor set, 18
Q-restricted WSTS, 17

effective Q-pred-basis, 18
Q-predecessor set, 18
Q-successor set, 18

Q-successor set, 18
quantified nodes, 128
quasi-order, 10

antisymmetric up to equivalence, 72
butterfly minor, 95
directed topological minor, 95
induced minor, 95
induced subgraph, 88
induced topological minor, 95
minor, 72
representable by morphisms, 72
strong immersion, 96
subgraph, 82

topological minor, 95
weak immersion, 96

quotient set, 9

reachability, see reachability problem
reachability problem, 12

for context-free GTS, 81
for deleting and contracting GTS,

58
GTS with constant nodes, 46, 48
non-deleting GTS, 51

relabelling
graph morphism, 63
rule, 63

representable by morphisms, 72
represented injective predecessors, 107

minor ordering, 112, 114
subgraph ordering, 117, 118

restricted coverability problem, 18
ind. subg. and cf. matches, 122
ind. subg. and inj. matches, 122
minors and cf. matches, 111
minors and inj. matches, 114
Q-restricted WSTS, 20
subgraphs and cf. matches, 115
subgraphs and inj. matches, 119

rewriting rule, 30
rewriting step, 30
rule, 30

context-free, 79
edge contraction, 57
edge deletion, 57
negative application condition, 93
node deletion, 57
relabelling, 63

rule preparation procedure, 102

strong immersion, 96
subgraph, 82
subgraph morphism, 82
successor set, 12

227

Index

topological minor, 95
transition system, 12

predecessor set, 12
successor set, 12

tree-depth, 89
Turing machine, 172
type of a graph, 89

undirected path, 82
universal quantification pair, 128
universally quantified GTS (UGTS),

128
universally quantified rules, 128

application, 131

instantiation, 129
upward closure, 11
upward-closed set, 11

weak immersion, 96
well-quasi-order, 10

alternative definitions, 11
well-structured transition system, 14

backward search, 15
effective pred-basis, 14
forward search, 16
Q-restricted WSTS, 17

wqo, see well-quasi-order
WSTS, see well-structured TS

228

	Abstract
	Acknowledgements
	Introduction
	Graph Transformation and Verification
	Contributions by Publication
	Thesis Outline

	Transition Systems
	Basic notation
	General Transition Systems
	Well-Structured Transition Systems
	Q-Restricted Well-Structured Transition Systems

	Graph Transformation Systems
	Category Theory
	Category of Graphs
	Graph Transformation Systems
	Construction of Pushouts
	Construction of Pushout Complements

	Decidability Results for Graph Transformation
	Restrictions on the Deletion and Creation of Nodes
	Non-Deleting Graph Transformation Systems
	General Graph Transformation Systems with Minor Rules
	Relabelling Rules
	Overview

	Well-Structured Graph Transformation Systems
	Minor Ordering
	Subgraph Ordering
	Induced Subgraph Ordering
	Further Interesting Orders

	Backward Analysis
	A General Backward Procedure
	Minor Ordering
	Subgraph Ordering
	Induced Subgraph Ordering
	Optimizations
	Universally Quantified Rules
	Summary

	Implementation and Case Studies
	The Uncover Tool
	Termination Detection
	Leader Election
	Access Rights Management
	Dining Philosophers
	Public-Private Server Communication

	Conclusion
	Summary
	Related Work
	Future Work

	Related Formalism
	Petri Nets
	Turing Machines
	Minsky Machines (Two-Counter Machines)

	Proofs of Chapter 3
	Proofs of Section 3.4
	Proofs of Section 3.5

	Proofs of Chapter 6
	Proofs of Section 6.1
	Proofs of Section 6.2
	Proofs of Section 6.6

	Bibliography
	List of Symbols
	Index

